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INEQUALITIES FOR THE FINITE HILBERT TRANSFORM OF
FUNCTIONS WITH BOUNDED DIVIDED DIFFERENCES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some inequalities for the finite Hilbert
transform of complex valued functions for which the divided differences in
any two points of the interval are bounded. Applications for some particular
functions of interest are provided as well.

1. INTRODUCTION

Allover this paper, we consider the finite Hilbert transform on the open interval
(a,b) defined by

f(

t—e
dT = lim l/ /
a e—0+ tte

for t € (a,b) and for various classes of functions f for which the above Cauchy
Principal Value integral exists, see [13, Section 3.2] or [17, Lemma II.1.1].

For several recent papers devoted to inequalities for the finite Hilbert transform
(T'f), see [2]-[10], [14]-[16] and [18]-[19].

The following result holds.

(Tf)(a,b;t) := %PV

T—t

Theorem 1 (Dragomir et al., 2001 [1]). Let f : [a,b] — R be a monotonic
nondecreasing (nonincreasing) function on [a,b]. If the finite Hilbert transform
(Tf)(a,b,-) exists in every t € (a,b), then

(1) (T (etit) 2 () 27 (0 (=1 )

t—a
for allt € (a,b).
The following result can be useful in practice.

Corollary 1. Let f : [a,b] — R and e : [a,b] — R, e(t) = ¢ such that f — me,
Me — f are monotonic nondecreasing, where m < M are given real numbers. If
(Tf)(a,b,-) exists in every point t € (a,b), then we have the inequality

2 O - Lram (P1) < -0

t—a ™

for allt € (a,b).
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Remark 1. If the function f is differentiable on (a,b) the condition that f — me,
Me— f are monotonic nondecreasing is equivalent with the following more practical
condition

(1.3) m< f(t) <M forallte (a,b).

From (1.2) we may deduce the following approzimation result
1 b—t M+m M—m
oo - Liow (=)

(b—a)| <
for allt € (a,b).

t—a 2T - 27

Motivated by the above results, in this paper we establish some inequalities
for the finite Hilbert transform of complex valued functions for which the divided
differences in any two points of the interval are bounded. Applications for some
particular functions of interest are provided as well.

2. MAIN RESULTS
For a function f : (a,b) — C we define the divided difference
t —
RN ICEVIC I

t—s
Now, for v, I' € C and (a,b) an interval of real numbers, define the sets of
complex-valued functions

(21) Tiaapa () i={f: (@,0) = C [Re[(T = [fit,]) ([Fitss] -7)] = 0,
brdH,sEQuw,t#s}

rt, s€(ab), t#s.

and

(2.2) A(a,b),d (v,[) = {f : (a,b) — C] ‘[f;t,s] _ %

1
<5 =1l
for all ¢, s € (a,b), t;«és}.
The following representation result may be stated.

Proposition 1. For any~,T € C, v # I, we have that U(q )4 (7,T) and Ay p).a (7, T)
are nonempty, convexr and closed sets and

(23) ﬁ(a,b),d (’yv F) = A(a,b),d (77 F) .
Proof. We observe that for any z € C we have the equivalence
r 1
z— % <50 =1

if and only if
Re[(' = 2) (- )] = 0.
This follows by the equality

_2+r

| =RelT—2) (-]

1
$I0=a - |
that holds for any z € C.
The equality (2.3) is thus a simple consequence of this fact. (I
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On making use of the complex numbers field properties we can also state that:
Corollary 2. For any v, I' € C, v # I',we have that
(24) Ugapy,a (1) ={f : (a,b) = C | (Rel —Re[f;t,s]) (Re[f;t, 5] — Rew)
+(ImT —Im([f;¢t,s]) Am[f;t,s] —Im~y) >0 for all t, s € (a,b), t # s}.

Now, if we assume that Re (I') > Re (v) and Im (T') > Im () , then we can define
the following set of functions as well:

(2.5) Sapya(7,T)={f:(a,b) > C| Re(I') = Re[f;t,s] > Re(y)
and Im (I') > Im [f;¢,8] > Im (v) for all ¢, s € (a,b), t # s}.

One can easily observe that §(a7b) (7,T) is closed, convex and
(2.6) 0 # Sapy.a (1, T) € Ugapy.a (7,1
The following result holds:

Theorem 2. Let f : (a,b) — C be such that for some v, I' € C, v # T, we have
that f € Aapy,a (7, 1) . Then we have the inequality

f@ . (b—t\ 1y+D| 1
2. T ) ———In|{— | —-———| < —|'-
en  |enesn -2 - 20T < Liry
for any t € (a,b).
In particular, fort = ib we obtain
a—l—b 1y+T 1
2. - ' —~l.
(28) ) (ab52) - 25 < g ir -
Proof. Since f € Ay p).a(7,T) it follows that
vy+T 1
01615 =8| < 50 alle -
for any t, s € (a,b).
By the continuity of the modulus property, we have
y+T 1
10161 -5 le-sl < |0 -1 - TFE - 9) = i =alle- ol

for any ¢, s € (a,b), which implies that

() = F &) <5 (4TI + =] —s

for any t, s € (a,b), showing that f is also Lipschitzian on (a,b). Therefore, we
conclude that the finite Hilbert transform T (f) (a, b;t) exists for all ¢t € (a,b), see
[13, Section 3.2] or [17, Lemma II.1.1].
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For the mapping , 1(t) =1, ¢ € (a,b), we have

dr

1 b
dT+/ dr
—t t4e Tt

(T1) (a,bst) = %PV /b

a T—

|
3=

(I)—‘

=
| re— |
;\H_
&

\1

1 b
= — lim [1n|T—t|| +1n(7—t)\t+g}
1.
:;82%1+[ln5—1n(t—a)+ln(b—t)—lnE]

1 —
m(b t), t e (ab).
T t—a

Then, obviously, for f : (a,b) — R we have

1 f)=f@)+f(@)
(TF) (a, by ) = WPV/ L0 W g
b
:%pv/ I T:t tdr+f7(f)PV/ ——dr

from where we get the equality

_ bopir)
29 wnenn-Tn () < Ley [HO210,

T—1

for any ¢ € (a,b).
Since f € A(qp),q (7,1, hence

‘(Tf)(a bty — L0 ln(b_t> —17+F’

t—a T 2

—f@# ~4+T
PV/( p— -3 )dr

- () 7+F’d7
T—t 2

I /\

1 1 b
§7|F—7|—PV/ dr
2 T o

= — F—
27TI 7

and the inequality (2.7) is thus obtained. O

Remark 2. We observe that if f —me, Me — [ are monotonic nondecreasing,
where m < M are given real numbers, then we have that f € A p).a (m, M) and
from (2.7) we recapture (1.2).

We need the following technical lemma:
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Lemma 1. Let f : (a,b) — C and t € (a,b). Provided that all integrals below
exists, we have for any 6 € C that

(2.10) /t_Ef(T)_f(’t)dTJr IO,

T—1 tre T—1

1 t—e 1 b
+2<t+5—a/a f(T)dT—b_t+€/t+€f(T)dT>

b—t—e t—e—a
2 — t
* <b—t—|—€ t—i—a—a)f()

:H:_a/ats(f(?:i‘(t)_é) (T_a+;—e)d7_

e [ (A0 ) ()

where € > 0 and such that min {t — a,b —t} > .

Proof. We have for any § € C that
(2.11) /t_e fo =1 (r—t)dr

T—1

—/tsf(T)_f(t)dr ! /tE(T—t)dT

a T—t t—e—al,

/at5<f(7—7)_:f(t)5> <Ttt_51_a/ate(st)ds>d¢
() (e

fort—a>e>0.
Since

/”f(T)f(t)

T—1

(Tft)dT:/7€f(7')d7'—(t—e—a)f(t)

and

1 t—e t _
/ (r—t)dr =— te a,
t—e—al/, 2

then by (2.11) we get
/t_sf(T)dT—(t—a—a)f(t)—Ft+€_a/t_€f(T)_f(t)dT

2 T—1

(1 (e

from where we obtain

2 /at6f(r)d7—2<t_€_a)f(t)+/atEf(T)_f(t)dT

t+ec—a t+ec—a T—1

o [0 ) (e,
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namely

(2.12) /:Ef(TT):f(t)dT+t+g_/ f(r va(HZ:Z)f(t)

et [ (P ()

fort—a>¢e>0.
We have for any § € C that

iy [ LSOy [ IS0, 1 /b (r—t)dr
+e

t+e T—1 t+e T—1 b—e—t t

:/ti (W”) (T_t_b_i_t/t;(S—t)ds> dr
[ (E ) (-

forb—t>e>0.

Since
b b
LT ¢ = [ -0t 0)
t+e t+e
and ,
1 b—t+e
bst/t+€(7_t)d72 2

then by (2.13) we get
’ b—tte (" f()-f(t),
t

T

T~

@A —0-t-) ) ol M

( - _bfif /H:(s—t)ds>dr

L)
[

namely
ﬁ a2 ({5 ) s j:f():{(t)d

2 b ()= f (1) b+t+e
e () ()

which gives

EAGEFI0 2 t—e
(2.14) t1e T—t d_b—t+€ f dT+2( —t-l—e)f(t)

gt [ (S -

forb—t>e>0.
If we add (2.12) with (2.14) we deduce the desired equality (2.10).
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Theorem 3. Let f : (a,b) — C be such that for some v, I' € C, v # I, we have
that f € Awpy,a (7,T). Then we have the inequality

(2.15) ‘(Tf) (a,b:) — &ln (b—t>

t—a

(o oo °)

< —Ir- —a).
_47T| v (b —a)

In particular, we have

(Tf)< ‘T’)j(b_ / [ ydr -

1
<—r- —a).
< T —~|(b—a)

Proof. By using the equality (2.10) for § = “H'F and the fact that f € A(qp).q (7,1),
we have for min {t — a,b —t} > ¢ > 0 that

(2.16)

S IGENI0 " f(r) - f (@)
(217) /a ?dT—F . ﬁdT
1 t—e 1 b
+2<t+g_a/a f“)df—b_w/mf(”“)
b—t—¢ t—ec—a
+2<b—t+5t+€—a>f(t)‘
2 = f(r)—f(@t) ~+T att—e
—t+s—a/a < r—t 2 )(T_ 2 >dT‘
2 b f(r)—f@) A4+T b+t+e
+b—t+a‘/ ( T—t 2 ><T_ 2 >dT
T)—f@{) ~+T att—e¢
Stﬁ*é‘*a‘/a ( PR — 2 )(7—_2>’d7—
/b ( f(t)’)/JrF)( b+t+s>‘d
—t+5 — 2 T 2 T
S%W*ﬂ
2 i=e a+t—¢ 2 b b+t+e
X t+6—aL TT T (h+b—t+sl;s 2 dﬁ

-—EW— | 2 a—g—@2+ 2 (b—t—e¢)?
I A R b—t+e 4

1 (t—e—a)®> (b—t—e)’
= I'=7l

4 t+e—a b—t+e
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By taking the limit over ¢ — 0+ in (2.17) we get

Pv/ fT dT+2(Ll/atf(T)dT_bit/tbf(T)dT>‘

<qIr- ﬂrt“)+“‘“]=iw—ﬂw—@

a b—t
for ¢t € (a,b) and by (2.9) we deduce the desired result (2.15). O

Corollary 3. Let f : (a,b) — R and e : (a,b) — R, e(t) = t such that f —
me, Me — f are monotonic nondecreasing on (a,b), where m < M are given real
numbers. Then

(2.18) ‘(Tf)(av t) - f(t)ln<b_t>

t—a

H( o)

< & (M —m)(b—a)

for all t € (a,b).
In particular, we have

x5) (a a;ﬁ-i(_a/ Frydr— thmﬂ

1
< (M-m)(b-a).

Remark 3. If the function f is differentiable on (a,b) and satisfies condition m <
J @) <M forallt € (a,b), then the inequalities (2.18) and (2.19) are valid.

(2.19)

3. SOME EXAMPLES

If we consider the function f (t) = e!, t € (a,b) a real interval, then

(3.1) (Tf) (a,bit) =
where F; is defined by

[Ei(b—t) = Ei(a—1)],

/ exp z e R.
Indeed, we have

b J—
E;(b—1t)— Ei(a—1) / exp(s) fPV/ (T 1)

exp (t)

T—1
=ex ) (Texp) (a,b;t)
and the equality (3.1) is proved.

We have that f’(t) = €', t € (a,b), which shows that m < exp(a) < f'(t) <
exp (b) = M.
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By utilising (1.4) we have

(3.2) (b— a)

Ei(bt)Ei(at)ln(bt) _ow(a—t) texp(b-1)

t—a 2
< exp(b—1t) —exp(a—1)
- 2

while from (2.18) we get

(b_a)v

(3.3) |Ei(b—t)—E;(a—t)—1In (f:;)
exp(b—t)—1 1—exp(a—t)
_2< b—t  t—a >’
Si(exp(b—t)—exp(a—t))(b—a)
for t € (a,b).

If we take in (3.2) and (3.3) ¢t = %t then we get

E, (b—a) _E (_b—a) _exp (—552) + exp (252) b a)

2 2

which, by taking x = b_?a > 0, gives

(3.4) |E; () — E; (—x) — [exp (—x) + exp (z)] z| < [exp (x) — exp (—z)] z
and
(3.5) |E;(x)— E;(—x)—2 (cxp (z) —|—xcxp (—z)) ‘ < % [exp (z) — exp (—x)] =

for > 0.
For the function f (t) = 1, with ¢ € (a,b) C (0,00) we have

(Tf)(a,b;t>:;tln<b‘t N (b)

t—a 7t a

Since f'(t) = —%, then m = — 2% < f/(t) < —45 = M, then by (1.4) we have

— 4,
b b +a? b
(3.6) ‘m () e (b—a)’ <120 )2
a a
while from (2.18) we get
b Int—Ina Inb—Int b+a 9
In{ -] —2t — <t b—
n(a> < t—a b—t )‘_ 4a2b2( @)

for ¢t € (a,b) C (0,00).

(3.7)
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