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INEQUALITIES FOR THE FINITE HILBERT TRANSFORM OF
A PRODUCT OF TWO FUNCTIONS

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. In this paper we establish some new inequalities for the finite
Hilbert transform of a product of two complex valued functions. Applications
for some particular functions of interest are provided as well.

1. INTRODUCTION

Allover this paper, we consider the finite Hilbert transform on the open interval
(a,b) defined by

(rﬂwﬁww=iPV[ffY}“ﬁ:@&[LtE*[;

for t € (a,b) and for various classes of functions f for which the above Cauchy
Principal Value integral exists, see [15, Section 3.2] or [19, Lemma II.1.1].

For several recent papers devoted to inequalities for the finite Hilbert transform
(Tf), see [2]-[11], [16]-[18] and [20]-[21].

We say that the function g : (a,b) — C is L-r-Holder continuous, or, of L-r-
Hélder type, where L > 0, r € (0,1] if

Ilf(t)— f(s)] < L|t—s|" foranyt, s € (a,b).

o
5"

s

If r = 1, we call it Lipschitzian on (a,b).
The following result holds.

Theorem 1 (Dragomir, 2003, [10]). Assume that f is of Ly-r1-Holder type and g
is of Lo-ro-Holder type on (a,b), where Ly, Ly > 0, m1,72 € (0,1]. Then we have
the inequality:

(L1 T (fg) (a,b;t) = f () T (9) (a,b;)

—ngUMm&ﬂ+i““““m<h%M

t—a
< 2L1L2 (b — a)r1+7‘2
- w(ry +172)

LlLQ ri4r T1+T
b_t 1 2 t_ 1 2
7w (ry + o) [( ) +(t—a) }

for any t € (a,b).
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In particular,

(1.2) 'T(fg) (a,b; “2“’> _f (a;rb> T (o) (M; a-2|—b)

a+b a+b LiLy (b—a)™*"
- T b; < .
g( 2 ) () (a” 2 )‘_772””21(7“1+T2)

The following corollary also holds.

Corollary 1. If f and g are Lipschitzian with the constants Ky and Ko, then we
have the inequality

(1.3) |T(fg)(a,b;t) = f(£) T (g) (a,b;t)

t—a

KK |1 2 a+b 2
< —— ~ | = — —
l (b a) + (t B) >

—g ()T (f) (a,b;t)Jrif(t)g(t)ln(bt)‘

for any t € (a,b).
a+b

In particular, for t = 432, we have

o o e 5) - (52) e

o (50 (a0 < B 0o

Motivated by the above results, in this paper we establish some new inequali-
ties for the finite Hilbert transform of a product of two complex valued functions.
Applications for some particular functions of interest are provided as well.

2. MAIN RESULTS

For a function f : (a,b) — C we define the divided difference

[f;t,s] ::w for t, s € (a,b), t #s.

Now, for 7, I' € C and (a,b) an interval of real numbers, define the sets of
complex-valued functions

(21) Tlaa (1) = {F : (a,0) = C | Re [ = [£5t,5)) ([fit5] -7) | = 0,
for all ¢, s € (a,b), t;«és}
and
y+r
2

22) BanateD) = {7 @n — el [Ifitsl - THE < S -al

for all ¢, s € (a,b), t#s}

The following representation result may be stated.
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Proposition 1. For any~,T € C, v # I, we have that U(q )4 (7,T) and Ay p).a (7, T)
are nonempty, convexr and closed sets and

(23) U(a,b),d (’yv F) = A(OL,b),d (77 F) .
Proof. We observe that for any z € C we have the equivalence
v+T 1
e R L

if and only if

1 v+T 2
§I0 = = o= T = Relr - 2) -
that holds for any z € C.
The equality (2.3) is thus a simple consequence of this fact. O

On making use of the complex numbers field properties we can also state that:
Corollary 2. For any~, I' € C, v # I',we have that
(2.4) ﬁ(a,b),d (v,T)={f:(a,b) = C| (Rel' = Re[f;t,s]) (Re[f;t, s] — Rex)
+(ImT — Im [f;¢,s]) Im[f;t, 8] —Im~) >0 for allt, s € (a,b), t#s}.

Now, if we assume that Re (I') > Re () and Im (T') > Im () , then we can define
the following set of functions as well:

(25) Stawya (1) = {f: (a,b) = C | Re(I) > Re[fit,s] > Re ()
and Im (T') > Im [f;¢,8] > Im (y) for all ¢, s € (a,b), t # s}.
One can easily observe that S(a’b) (7,T) is closed, convex and
(2.6) 0 # Stapy.a(1:T) C Uapy.a (7, 1)
The following result holds:

Theorem 2. Assume that f : (a,b) — C belongs to A(a,b),d (v,T) for some 7,
FeC,v#7T and g : (a,b) — C is of H-r-Holder type, where H > 0, r € (0, 1].
Then we have the inequality

2.7) |T(fg)(a,b;t) = f (1) T (g) (a,b;t) — g (t) T (f) (a, ;)

RAOKIY m(b‘t) St (/bg(T)dT—g(t)(b—a)>’

T t—a

for allt € (a,b).
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In particular, for r =1 and Lipschitzian constant L, we get

(2.8) T (fg)(a,b;t) = f ()T (g) (a,b5t) — g (t) T (f) (a, b; 1)

+f(t)7rg(t) . <3_2> _%$ (/bg(T)dT—g(t) (b—a))

1 2 a+b 2
1 (0—a) +<t— 5 )

1
< —|P—~|L
_%I ol

for allt € (a,b).
Proof. Since f € A(a’b)’d (v,T) it follows that

v+
HCRVICEES:
for any ¢, s € (a,b).
By the continuity of the modulus property, we have

£ - £ ()] - | 2L PO 1) =15 =9 < 50l

for any ¢, s € (a,b), which implies that

IF @) = Fs)l <5 (|W+F|+|P W[t = sl

for any t, s € (a,b), showing that f is also Lipschitzian on (a,b).
Since g is also of H-r-Holder type, hence it follows that T' (fg) (a, b;t), T (g) (a, b; t)
and T (f) (a, b; t) exist for all ¢ € (a,b), see [15, Section 3.2] or [19, Lemma I1.1.1].
Now, for any t, 7 € (a,b), we may write that

fO=F®)(g(m)=g@®)=F(T)g(m)+f{E)g)—F#)g(r)=Ff(T)g®)

giving

(t=9) < 5= lle

[t —s| <

1@90) _ iy 80, 10090
(/ (1) = F (1) (9(7) — 9 1))

T—1

+

for any ¢, 7 € (a,b),t # 7.
Consequently,

(2.9) T (fg)(a,bst)

- ipv/b f(:)_gt(T)dr

1f(t)PV/bf(T)dT+g(t)71TPV/bf(T)dT

T -t T—1
b b B N
- Zrwewrv [ atev | SO S0 g0,
=f)T(g)(ab5t) +g ()T (f) (a, b5t)
_f(t)g

a0, (2=1) +71TPV/b ()= F ) (g —9()
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for any ¢ € (a,b) .
For any 6 € C we then have

2.10) Lpy / (F2219 5 o) - g anar
= Lev [P LD o) -y an
1

™

= Loy [(H2O) o) - g0y ar

ié(/ g(r)dr g <><ba>>
for any ¢ € (a,b).

From (2.9) and (2.10) we get the following equality of interest

(2.11) T (f9)(a,b5t) = f ()T (g) (@, b5t) — g (1) T (f) (a, b5 )

[0 n(t_2>;5(ng(7)d79<t><ba>>

_ipv/ab (F2=0 - 5) e - g0par

T—1

- Lspv / (g(r) — g () dr

for any t € (a,b) and ¢ € C.
The following property of the Cauchy-Principal Value follows by the properties
of integral, modulus and limit,
b
PV / Al(t,s)ds

b
(2.12) < PV/ |A(t, 5)| ds,

assuming that the PV's involved exist for all ¢ € (a,b).
By making use of the identity (2.11) for § = W-ZH“
f € Agpy.a(y,T) we have

\T (fg) (asbst) — F ()T (g) (arbst) — g (0T (£) (a, b 1)

+f(t)7rg(t) . (f:i) _%¥ (/bg(T)dT—g(t) (b—a)>|

PV/( (-1 7+F)(9(7)—9(t))d7

T—1 2
<lpy [ (“Tj:{“) ) ) - g ar
- I" - vl/lg (0] dr < 5|7 - WIH/ 4] dr

:WIF v|H[< — ) (- a) ]
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for any ¢ € (a,b), which proves (2.7). O

Corollary 3. Let f : [a,b] — R and m < M such that f—me, Me—f are monotonic
nondecreasing, and g : (a,b) — C is of H-r-Hélder type, where H > 0, r € (0,1].
Then

(2.13) ‘T (f9) (a,b;t) — f ()T (9) (a,b5t) — g () T (f) (a,b;)

+f(t)g(t)ln<b—t> _%m“;M (/bg(r)dT—g(t)(b—a)>’

e t—a
1
“2(r+ 1)

for any t € (a,b) and forr=1and H=1L

(M —m)L [(b —t) T (- a)”l}

(2.14) \T (fg) (asbst) — F ()T (g) (arbit) — g (0T (£) (a, i)

+f(t)7rg(t)ln<f:i> _%mﬂ;M (/bg(r)dT—g(t)(b—a)>

1 2 CL-'—b 2
L(b-a) +<t— : )

Remark 1. The best inequalities we can get from (2.7) and (2.8) are obtained for
t= ’ITH’ and are as follows

for any t € (a,b).

(2.15) ‘T(fg) (CL, b; (12+b> —f()T(9) (a,b; a;b> —g(®)T(f) (a,b; “‘;b)

JLotr (/:g<r>dr—g(“;b) (b—a>>‘

L=y H(b-a)"

P —
2t (r4+ 17

(2.16) ‘T(fg) <a, b; a;rb> — ()T (9) (a,b; “;rb> 9T () (a,b; a;b)

JLodt (/:gw—g(“jb) (b—a))

Remark 2. If the function f is differentiable on (a,b) the condition that f — me,
Me— f are monotonic nondecreasing is equivalent with the following more practical
condition

(2.17) m< f(¢) <M forallte (a,b).

1 2
< —|I'—=~|L(b—- .
S g T—70L(b—a)

Now, for ¢,® € C and [a,b] an interval of real numbers, define the sets of
complex-valued functions

Ulap) (0, @) := {g : [a,b] — C|Re [(<I> —g(t) (m— E)} >0 foreach te [a,b}}
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and
Rius) (9. ®) i= {g fa,b] — C]

The following representation result may be stated.

730+<I>
g(t) 3

1
< §|<I>fg0| for each t € [a,b]}.

Proposition 2. For any ¢, ® € C, ¢ # &, we have that U[mb] (p, @) and A[a,b] (¢, @)
are nonempty, convexr and closed sets and

(2.18) Ula) (9, @) = Do) (0, @)
The proof is as in Proposition 1.
Corollary 4. For any ¢, ® € C, p # ®,we have that
(2.19) Upap) (9, @) ={g: [a,0] = C | (Re® —Reg (t)) (Reg (t) — Reyp)
+(Im® —Img(t)) (Img (t) —Ime) >0 for each t € [a,b]}.

Now, if we assume that Re(®) > Re(p) and Im (®) > Im(p), then we can
define the following set of functions as well:

(220) Sy (0.8) = {g: a8 — C | Re(®) > Reg (t) > Re (9)
and Im (@) > Img (¢) > Im (¢) for each ¢ € [a,b]}.

One can easily observe that S[a,b} (¢, ®) is closed, convex and

(2.21) 0 # Siap) (0, @) C U (0, @) .

We use the following Griiss type inequality for complex valued functions:

Lemma 1 (Dragomir, 1999 [6]). Assume that f, g : [a,b] — C are integrable
and there exist o, ®, ¢, ¥V € C, ¢ # @, ¢ # W such that f € Ay (p, ®) and
g€ A[a,b] (wa \Il) , then

b_la/abf(x)g(m)dx—b_la/abf(x)da:bia/abg(x)dx

1
< 71— gllv—y].

(2.22)

The constant % is best possible in (2.22).

Theorem 3. Assume that the functions f, g : (a,b) — C are differentiable on
(a,b) and the derivatives f', g’ satisfy the conditions that f' € Ay (0, ®) and
g € A(mb) (1, W) for some complex constants o, @, v, Vwith ¢ # &, 1» # V. Then

22 [0 k0~ [OT @) @) -5 OT () )
1090, (2=1)

T t—a

+

b t
_ U (-5 (g (- [ (T—a)f’(T)g’(T)dT]

™

1 1 ) a+b\>
<D — [T - | = (b— .
< el wlh(b a)+<t 5 )

for allt € (a,b).
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In particular, we have

i (c4232) 1 (4555
(

()i
—— V;w—ﬂf'm g (r )dT_/fﬁ_a)ff(T)gf@)dT]

™

(2.24)

2
< o fo =gl -yl (0 0)".

Proof. Observe that

for all ¢ € (a,b) .
From (2.9) we have

Loy /” (D)= F ) (g () =9 ()

=T (f9)(a,b;t) = fF (1) T (g) (a,b5t) — g (£) T (f) (a, b; 1)

and by using the integration by parts, we get

v ([ rods)e
/</f o
(/ I ds) —/jﬁ'() g (r >dr]
(/tf ) </f ds)a / f(ﬂg’h)ch]
:/tbf’cs)g’ (s ds+a/a ()9 (
-/ 0 - [ dT]

b t
1[/t (b*T)f'(T)gl(T)dT*/ (Ta)f/(T)gl(T)dT]

™

A Al A
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for all ¢ € (a,b).
By (2.25) we then have the following identity of interest

R v Y

=T (f9) (0. 55) = F (T (g) (@, 1) — g (O T (£) (0, i)
1090, (2=1)

T t—a

+

b t
. [/ (b—T)f’(T)g’(T)dT—/ (T—a>f'<r>g’<f>dr]

for all ¢ € (a,b) .

By taking the modulus in (2.26) and using the property (2.12), we have
@) |70 k0~ FOT 6 @b0 9O (1) b0
1000, (b-1)

+
™ t—a

= /tb(b—T)f’(ﬂg’(T)dT—/:(T—a)f’(T)g’(T)dT]
Sipv/: (f(r)—f(tpt / o

for all ¢t € (a,b).
Using the inequality (2 22) for the derivatives f’ and ¢’ we get

(f(r)—f(1)
T—t /f
L f/tf’(S)g(S) i@ ol |2~ r 1
for all t,7 € (a,b) with t # 7.
Therefore
b ) —
(2.28) %PV/ () f(i_t /f

1 b1
<Ipv [ Do ppw -yl —tar
m o 4
1 b
— e —ellv =PV [ -dar
47 a
1 b
— e —ellw vl [ Ir—tar
™ a

b—1t)° + (t—a)’
2

! 1 ) a+b\?
= Lo gljw ) L(ba) +(e- 55

1
= Lo
m
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for all ¢ € (a,b).
On making use of (2.27) and (2.28) we get the desired result (2.23). O

3. AN EXAMPLE

Consider the identity function ¢(t) = ¢, t € R and (a,b) a finite interval. Then

1 ’ 1 b
(3.1) T () (a,bst) = *PV/ T dT:fPV/ Tttt
™ a t v a T —1

T —

I t b q
- 7/ dTJr—PV/ a
T Ja T o T—1

(b—a)+;ln(b_t>

t—a

1
oo
for t € (a,b).

We observe that ¢ is Lipschitzian with the constant L = 1.

Assume that f : (a,b) — C belongs to A(a,b),d (v,T) for some v, ' € C, v # T,
then by the inequality (2.8) for g = ¢ we have

T (€f) (a,b;t) = f(8) T (£) (a,b;) — T (f) (a, b;¢)

+tf(t)ln(bt)”;F (/deTt(ba)>‘
= t—a T a

1 1 b\ 2
< — T -4 (b—a)2+<t—a+ )

)

T 27 4 2
namely _
TN @b - F0) |2 0@+t (0] <) b
L0 123E (o)
g%w—y\ li(b—a)% (t—a;by :

which is equivalent to

(32) [T(F) (@ b5) ~ ~ (1) (b—a) — T (£) (a i)

for t € (a,b).
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In particular, we have

(3.3) ' (ﬁ)( ‘T)lf(a;b)(ba)

—a+bT(f) <a,b;a+b)‘ SS%IF—WI(b—a)Q.

2

t € (a,b) a real interval, then

—
=
=
@
o
©]
B
<
[oW
@
=
+
=
@
=
=]
Q
=
Q
=]

~

S~—
®

(3-4) (T'f) (a,b;t) = [Ei (b—1t) = Ei(a—1)],

where F; is defined by

Indeed, we have

b—t _
Ei(b—t)—FEi(a—1t) = PV/ exp (s) PV/ exp(r =t),
(—t)

T—1

=exp(— W(Texp) (a,b;t)

and the equality (3.4) is proved

We have that f’ (¢t) = €', t € (a,b), which shows that m < exp (a) < f'(t) <
exp (b) = M for t € (a,b). Then by (3.2) for I' = M = exp (b) and v = m = exp (a)
we get

(3.5) |T (¢exp) (a,b;t) — %et (b—a)— w [E;(b—t)— E;(a—1)]
_%exp(a)—zi—exp(b) (b ><a+b_t>‘
S;T[exp@)—exp(anl<b—a>2+(t—“‘;”) ,

for t € (a,b).
In particular,

(3.6) ’ (Lexp) <a b; “+b> - %e”? (b—a)

< e () — exp (@) (b - 0)”.
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