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INEQUALITIES FOR A GENERALIZED FINITE HILBERT
TRANSFORM OF DIFFERENTIABLE FUNCTIONS WITH
CONVEX DERIVATIVES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we consider a generalized finite Hilbert transform
and establish some inequalities for differentiable functions whose derivative are
either convex or, in the complex case, has the modulus convex. Applications
for some particular instances of finite Hilbert transforms are given as well.

1. INTRODUCTION

Finite Hilbert transform on the open interval (a,b) is defined by

(1.1) (Tf) (a,b;t) := %PV 1) dT = lim [/ /t+

o T—1 e—0+

m (T —1)

for t € (a,b) and for various classes of functions f for which the above Cauchy
Principal Value integral exists, see [13, Section 3.2] or [17, Lemma II.1.1].
We say that the function f : [a,b] — R is a-H-Holder continuous on (a,b), if

F@®) = F ()| < H[t—s|* forallt, s € (a,b),

where a € (0,1], H > 0.
The following theorem holds.

Theorem 1 (Dragomir et al., 2001 [1]). If f : [a,b] — R is a-H-Hélder continuous

n (a,b), then we have the estimate

i) -0 (20) < Lo 00

t—a am
for all t € (a,b).
The following two corollaries are natural.

Corollary 1. Let f : [a,b] — R be an L-Lipschitzian mapping on [a,b], i.e. f
satisfies the condition

lf@&)—f)|<Llt—s| forallt, s€la,b], (L>0).

Then we have the inequality

@@ - (

b—t)‘ Lb-0)

t—a T
for allt € (a,b).
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Corollary 2. Let f : [a,b] — R be an absolutely continuous mapping on [a,b]. If
' € Loo [a,b], then, for all t € (a,b), we have

(Tf) (a,b;t) — fit) ln(b—t)

W (0= a)

™

t—a ’

where || f'|| . = essupye () [f (¢)] < o0.
We also have:

Theorem 2 (Dragomir et al., 2001 [1]). Let f : [a,b] — R be a monotonic
nondecreasing (nonincreasing) function on [a,b]. If the finite Hilbert transform
(Tf)(a,b,-) exists in every t € (a,b), then

T @) = () 17 0 (1= )

t—a
for allt € (a,b).
The following result can be useful in practice.

Corollary 3. Let f : [a,b] = R and ¢ : [a,b] — R, £ (t) =t such that f—mt, M{— f
are monotonic nondecreasing, where m, M are given real numbers. If (T f) (a,b, )
exists in every point t € (a,b), then we have the inequality

(b—ﬂa)m b—t>§(b—a)M

(1.2) — -

S(Tﬁ(m&t%—ifuﬂn<

for allt € (a,b).

Remark 1. If the mapping is differentiable on (a,b) the condition that f — ml,
M/l — f are monotonic nondecreasing is equivalent with the following more practical
condition

m< f'(t) <M forallt€ (a,b).
From (1.2) we may deduce the following approximation result

b—t)_M+m M—m

— <
t—a 2 (b=a) <

1
(T1) (astit) = 21 (m
for allt € (a,b).
The following result also holds.

Theorem 3 (Dragomir, 2002, [6]). Assume that the differentiable function f :
(a,b) — R is such that f' is convex on (a,b). Then the Hilbert transform (T'f) (a,b;-)
exists in every point t € (a,b) and:

(1.3) % {f (t;b> -f (t;aﬂ + f7(:) In (f:;)
< (Tf)(a,b;t)
<1[ﬂw—ﬂ@+@—wf@ﬂ+ﬂﬂm(h%>

— 27 T

for any t € (a,b).
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@) (05"

=[O f@+0-ar (5]

In particular, fort = “;b we get

w0 22125

For several recent papers devoted to inequalities for the finite Hilbert transform
(Tf), see [2]-[10], [14]-[16] and [18]-[19].

We can naturally generalize the concept of Hilbert transform as follows.

For a continuous strictly increasing function g : [a,b] — [g(a),g (b)] that is
differentiable on (a,b) we define the following generalization of the finite Hilbert
transform of a function f : (a,b) — C by

(1.5) (Tyf) (a, b t) := PV/ f(T
f(7) '(T)
T =g — =~ dr

g, U /ﬁ Tl9(r) — g (D)

1 e (g (r b f(n)d (n) .
/a 79() dr + d]

T e—0t g(t) the 9(7) — g (t)

IN

IN

for t € (a,b), provided the above PV exists.
For [a,b] C (0,00) and ¢ (¢t) =1Int, ¢ € [a,b] we have

e fe) b f(n)
[ = +/+Erln<;>d71
where ¢ € (a,b).

For g (t) = exp (at), t € [a,b] C R with o > 0 we have
(L7)  (Texpy f) (a, bst)

[ @ewen L f@Wewlr)
T €L0+ [/a exp (aT) — exp (at)d + /t+6 exp (a7) — exp (at)d ]

where t € (a,b).
For [a,b] C (0,00) and ¢ (¢) =1t", t € [a,b], r > 0, we have

(1.6) (Tinf) (a,b;t) == 1 lim

T e—0+

(1.8) (T-f) (a,b;t) := T [/t_s fT(:)iT;;ldT + ' f(T)Tr_ldT‘| ’

J— t-‘,—g 7—7" — t’l‘

where ¢ € (a,b).
Similarly, we can consider the function g (t) = —t?, t € [a,b] C (0,00), p > 0,

and then we have
t—e —p—1 b —p—1
P f(r)r? f(r)r™?
(1.9)  (T-,f) (a,b;t) :== = lim l/a e —— dr + = — dr

_opt? e () b f(m)
_Trsli%iu T(Tptp)dTJr/Hsr(Tptp)dT]’

where ¢ € (a,b).
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For [a,b] C [—%, 2%} and g (t) =sin(pt), t € [a, b] where p > 0, we have

(110) (Tbm(p)f) (a’ ba t)
— P tim [/t_a f (1) cos (p1) dT—l—/b f (1) cos (p1) dT]

T e—0+ sin (p7) — sin (pt) e sin (p7) — sin (pt)

where ¢ € (a,b).
For ¢ (t) = sinh (ot), t € [a,b] C R with ¢ > 0 we have

(111) (Tsinh(o)f) (CL, b, t)
T [ /” f()cosh(or) /b f (7) cosh (o7) dT]

sinh (o7) — sinh (ot) +e sinh (o7) — sinh (ot)

where t € (a,b).
Similar transforms can be associated to the following functions as well:

g (t) =tan (pt), t € [a,b] C {— T ﬂ} where p > 0,

2" 2p
and
g (t) = tanh (ot), t € [a,b] C R with ¢ > 0.

Motivated by the above results, we establish in this paper some inequalities for
differentiable functions whose derivative are either convex or, in the complex case,
has the modulus convex. Applications for some particular instances of finite Hilbert
transforms are given as well.

2. MAIN RESULTS

Consider the function 1(¢) = 1, t € (a,b). We need the following preliminary
results:

Lemma 1. For a continuous strictly increasing function g : [a,b] — [g(a),g (b)]
that is differentiable on (a,b) we have

™

(2.1) (T,1) (a,b;t) = L (M) , t € (a,b).

<
—~
~
~
\
)
—
S
~

We also have for f: (a,b) — C that

_ b T) —
(2.2) (Tyf) (a,byt) = %f(t) In <‘;Etb))_§((;)>> + %PV/ ch()f(t))g/ (1)dr

for t € (a,b), provided that the PV from the right hand side of the equality (2.2)
exists.
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Proof. We have

t—e " (r b " (T

T e—0+ T)—g(t) 4e 9(7) —
=~ lim [lnlo(7) —g I + (o (7) — g ()]
— 2 lim (g~ g(t—2) ~la(g(®) ~ 9 ()
+ln(g (8) — g (1) ~In(g (t+2) =g (1))

(t+e)—g(t)
for t € (a,b).
Since g is differentiable, we have
. g(t)—g(t—e) ’
g —glioe) MO g
e—0+ g (t + 6) ( ) e—0+ g(tte)—g(t) g/ (t)
for t € (a,b), and by (2.3) we get (2.1).
From the definition (1.5) we have
_ 1 fF®+f®)g (1)
(a,b;t) PV/ dr
T z GErO
1 ( 1 (
PV/ <t)g¢>d7+ Pv/fg
™ (t m (1) =9 (t)
/ b /
_lpy / )9 ( 1 / g (r)dr
™ (t 7r g(t)—g (t
1 ( ( )) / f(#) g (r)dr
=—f()In +—-PV
0 ( GEXIO) ORI
for ¢ € (a,b), which proves the identity (2.2). O

The following identity is of interest as well:

Lemma 2. Let g : [a,b] — [g(a),g ()] be a strictly increasing function that is
differentiable on (a,b) and f : (a,b) — R a locally absolutely continuous function

on (a,b), then

@) (@) b0 =2 om(

(
(

L [ ea ) (O =@ @) N

+2PV | (/ (g'og—1><<1—s>g<f>+sg<t>>d)g e

for any t € (a,b).

Proof. For an absolutely continuous function h : [¢,d] — C and for z, y € [c,d]
with x # y we have

W)~ h@) _ ['H (w)du
Yy— Yy—
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If we use the change of variable u = (1 — s) x+sy, s € [0, 1] we have du = (y — z) ds
and then

J2 R (u) du _ (y — ) fol R ((1—s)z+sy)ds
y—2x y—x

1
:/ R ((1—s)z + sy)ds.
0
For ¢, T € (a,b) with t # 7 we then have

f()—f@®) _fogt(g(r)—fogt(9(®)

g(1)—g(t) g(r)—g(t)
1
- / (Fog ™) ((1—s)g(r)+ s (t)) ds.

For z € (g (a),g (b)) we have

(2.5) (f ogil)/ (z) = (f/ 0971) (2) (971)’ (2) = m

and therefore
/0 (Fog™) (1 —s)g(r) +sg(t)ds =

for ¢, 7 € (a,b) with ¢ # 7.
This implies that

g t

_ F(ffeg ) (L=s)g (1) +59(t)) ,
—PV/a (/0 dS)g(T)dT

(g og™) (1 =s)g (1) +s59(t))

for t € (a,b) and by the equality (2.2) we deduce (2.4). O

bf(T)_f(t) /
v [ e
b

If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can define the g-mean of two numbers
a,bel as

(2.6 My (a,8) == g1 (9();9“’)) .

If I =R and g (t) =t is the identity function, then M, (a,b) = A(a,b) := £,
the arithmetic mean. If I = (0,00) and g (t) = Int, then M, (a,b) = G (a,b) := Vab,
the geometric mean. If I = (0,00) and g(¢) = 1, then M, (a,b) = H (a,b) :=

%, the harmonic mean. If I = (0,00) and g (t) = t?, p # 0, then M, (a,b) =

M, (a,b) := (w)l/p7 the power mean with exponent p. Finally, if I = R and
g (t) = expt, then
b
M, (a,b) = LME (a,b) := In (W) ,
the LogMeanEzp function.
We have the following result:
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Theorem 4. Let g : [a,b] — [g(a),g(b)] be a strictly increasing function that is
differentiable on (a,b) and f : (a,b) — R a differentiable function on (a,b). Assume
(

)
that g:gg:i is convex on (g (a),g (b)), then

(27) 215 Oy (0,1~ (Mg (t,a)
- (29228
< ;{ I 00 - s @]

for any t € (a,b).
In particular, for t = Mg (a,b) we get

2.8) 2 {fogl <3g (b);rg(a)> Cfog! <g(b) 239 (a))]
WS (Tyf) (a,b; Mg (a,b))

Flogt (gm)-;g(b))
-1 (g(a);rg(b))

<1[f(b)—f(a)+

- 27

[g(b) —g (a)]} :

gog

Proof. If a function ¢ : [0,1] — R is convex on [0, 1], then by Hermite-Hadamard
inequality we have

(2.9 ¢(3)= [ e@is< 5l +o.

Let t, 7 € (a,b) with ¢t # 7. Since g:zg: is convex on (g (a),g (b)), then the
function

(f'og~ ") (L—s)g(1) +sg(t))
(g og™) (1 =s)g(7)+s9(t))

p(s) =

is convex on [0, 1] and by (2.9) we get

(f/ ogfl) (g(f)-;g(t)) _ 1 (f’ Og—l) (1= 38)g(r)+ sg (1))
(¢' 0 g~1) (M) “Jo (9097 ) ((1=s)g(1)+3s9(t))

(2.10)

for t, 7 € (a,b) with t # 7.
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If we multiply the inequality (2.10) by ¢’ (7) > 0 and take the PV, then we get

Y
(2.11) Pv/b ey

for ¢t € (a,b).
Observe that

o [ oo |

) N
gn? DAt g (t)/a g (rydr
7 (1)

=f(b)— f(a)+ 70 [9(b) — g (a)]

for t € (a,b).
Also, by the identity (2.5) we have

(oo™ (“2540) (9049
()~ ()

for t, 7 € (a,b), which gives

(2.13) PV /b i Og_l) ((g(f);g(t)> "(1)dr

_/a”(fog (2090 g oy
_2/ab(fog 1y’ 9(7);9@)>d<9(7);g(t)>
(

for t € (a,b).
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From (2.11) we get

s)g
oo (1290 +39(0)
1 7
<5 [ro-r@+ L8060 - 5w

for ¢ € (a,b) and by using the identity (2.4) we obtain the desired result (2.7). O

Remark 2. If we take g (t) =t, t € (a,b) in Theorem 4, then we recapture Theorem
3.

We have:
Theorem 5. Let g : [a,b] — [g(a),g (b)] be a strictly increasing function that is

differentiable on (a,b) and f : (a,b) — C a differentiable function on (a,b). Assume
that ”;gi: ‘ is convez on (g (a),g (b)), then

(2.14)

(T,f) (abi0) ~ —F (1) n (M)—g(ﬂ)‘

;V o+ L0 g ) - g<>>]

for any t € (a,b).
In particular, for t = M, (a,b) we get

(2.15) [(Ty.f) (a, b; My (a,b))]

(M, (@)
%[/ 7 |d7+w[g<b>—g<a>]].

Proof. By Hermite-Hadamard inequality for the convex function ’; :EZ — i we get

1 (Fog™) (g ()
=3 || oD@ | | Wos ) @)
RGN

‘2[g'<7> - g'<t>H
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for ¢, T € (a,b), which gives

018 PV /: ( [

1 f' (1)

2 g (1) (
L) I (t)
_Q/CLLJ’(T) g’(t)}

1

2

b
[ |f* (T)l dr + p

for t € (a,b).
By using the identity (2.4) we get the desired result (2.14). O

Remark 3. If we take g (t) = t, t € (a,b) in Theorem 5, then, by assuming that
|f'] is convex on (a,b), we get

1) [T e - Lrom (=) <5 Vb 7 ()15 (0] 0 a>]

t—a

for any t € (a,b).
In particular, fort = ‘%b we get

@19 Jon (an®30) < 5 [ [ 17 mlars

()]

3. EXAMPLES

For [a,b] C (0,00) and ¢ (t) = Int, t € [a,b], consider the following Logarithmic
Finite Hilbert transform

(3.1) (Tinf) (a,b;t) := 1 lim l/t_s 1(7) dT—l—/b () dT]

T e—0+ TIn (%) +eTln (%)

where t € (a,b) C (0,00).
Let f : (a,b) — R be a differentiable function on (a, b) . Assume that exp - (f’ o exp)
is convex on (Ina,lnd), then by Theorem 4

(3.2) 2@ (t1) - 1 (G (aD)

™

n (b
< (T f) (a,b5t) — %f(t) In (1 )

for any t € (a,b).
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In particular, for t = G (a,b) we get

(33) = [r (¥9a) = 1 (V)]
< (Tnf) (a,5:G (@)
<o [f0-r@+Gan s Gamm (L)

Let f : (a,b) — C be a differentiable function on (a, b) . Assume that exp - (|f'| o exp)
is convex on (Ina,Inb), then by Theorem 5

b
<t V 1/ (P)ldr -+ 1 (@) n (b)]
for any t € (a,b).

In particular, for t = G (a,b) we get
(3.5) |(Tinf) (a,b; G (a,b))]

ln(
ln(

o+l

(3.4)

(Tinf) (a,b;t) — %f(t) In (

Q|

< % [/;|f’(7)|dT+G(a,b)|f’(G(a,b))1n (Z)}

For g (t) = exp (at), t € [a,b] C R with @ > 0, consider the Ezponential Finite
Hilbert transform

(36) (Texp(u)f) (a7 ba t)
1 . [/ts f(m)exp(ar) i+ /b f(m)exp (ar) dT]

exp (at) — exp (at) 1 exp (ar) —exp (at)

1
= — —t
7Texp( at)

: T f (D) exp(a(r —1t)) b f(r)exp(a(r —t)
xglir& [/a exp(a(T—t))—ldT+ e exp(a(T—t))—ldT]

where t € (a,b) C R.
‘o(L In
Let f : (a,b) — R be a differentiable function on (a,b). Assume that f'o (s tn)

[e3%

is convex on (exp (aa) ,exp (ab)), where £ (t) = t, t € (a,b), then by Theorem 4 we
have

(3.7) [f (LME, (t,0)) — f (LM E, (a, t))]

exp (ab) — exp (at) )
exp (at) — exp (aa)

N o

IA

(Texp(a f) (a,b5t) — %f (t)In (

e -+ LY

aexp (at)

IN

[exp (ab) — exp (aa)}]

for any t € (a,b).
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For t = LME,, (a,b) we get
2 3exp (ab) + exp (aa) Lo
(38) = {f lm < - ) 1

_f [ln <3 exp <aa>4+ exp (ab) ) Y ] }

< (Texp(a)f) (aa b; LME, ((I, b))

! ' (LME, (a,b))
< o9 [f (b) = f(a)+ N (w) [exp (ab) — exp (oza)]] .

"lo(L In
Let f : (a,b) — C be a differentiable function on (a,b). Assume that /] (Ee In)
is convex on (exp (o), exp (ab)), then by Theorem 5 we have

(3.9) '(Texp o) (a,b;t) — %f (#)In (exp (ab) — exp (at) )‘

exp (at) — exp (aa)
|f’( )|
< 27r l/ lf (7)] dT + aexp (o) [exp (ab) — exp (aa)]}

for any ¢ € (a,b).
For t = LME,, (a,b) we get

(310) |(Texp(a)f) (a’ b LME, (a’ b))|

Qi [ / \f' (1) dr + | f’ii\fiii(fz)ﬂ) [exp(ab)—exp(aa)]].

Let g : [a,b] C (0,00) = R, g(t) =

form

t—e b
311 (Trf) (@ bit) = = lim l/ TfT(T) dT+/t+ T{T(i)t)m],

f; and the Harmonic Finite Hilbert trans-

where ¢ € (a,b).
Let f : (a,b) — C be a differentiable function on (a,b). Assume that (-)™%- f’o

()2 is convex on (=%,—3), then by Theorem 4 we have

(3.12) [f (H (b,1)) = f(H (t,a))]

s ent 10w (5)
1

2,
<y [fO-f@+ Lroe-o)

2
v
<

for any t € (a,b).
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In particular, for ¢t = H (a,b) we get

[f <3jcfb) _f<a4+w3bﬂ

13)

IA I

(T-1f) (a,b; H (a,b))
2 a
< % [f(b)f(a)JrHCEb’b)f’(H(a,b)) (ba)} _

Let f : (a,b) — C be a differentiable function on (a,b) . Assume that (-)"2-|f’| o

is convex on (—%, —%) , then by Theorem 5 we have

b 2
<o | [ 1@l Siroe-a

any t € (a,b).
In particular,

15) (T-1f) (a,b; H (a,b))|

<o | [ 17 @+ 5 @] 0 )
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