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WEIGHTED INEQUALITIES OF OSTROWSKI TYPE FOR
ABSOLUTELY CONTINUOUS FUNCTIONS AND
APPLICATIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some upper bounds for the quantity

b
9 () — 9 (@)] £ (&) — / F@®) g ()t

under the assumptions that g : [a,b] — [g(a),g(b)] is a continuous strictly
increasing function that is differentiable on (a,b) and f : [a,b] — C is an
absolutely continuous function on [a,b]. When g is an integral, namely g (z) =
J7w (s) ds, where w : [a,b] — (0, 00) is continuous on [a, b], then some weighted
inequalities that generalize the Ostrowski’s inequality are provided. Appli-
cations for continuous probability density functions supported on finite and
infinite intervals with two examples are also given.

1. INTRODUCTION

In 1938, A. Ostrowski [5], proved the following inequality concerning the dis-

tance between the integral mean ;2 f; f(t)dt and the value f (z), © € [a,b] of a

continuous and differentiable function f:

Theorem 1 (Ostrowski, 1938 [5]). Let f : [a,b] — R be continuous on [a,b] and
differentiable on (a,b) such that f': (a,b) — R is bounded on (a,b), i.e., |f'||, ==
sup |f' (¢)| < co. Then

t€(a,b)
2
1 b 1 x — afb
tydt| < |~ + | —2 Mo (b=
= | 1o < 4+( b_Q) 17 (b=,

for all x € [a,b] and the constant i is the best possible.
The best inequality from (1.1) is

f(“‘;”)—b_la/abm)dt

The following inequality of Ostrowski type for functions of bounded variation
holds:

(1.1) if(x) -

(1.2)

1 !
<1 1F . (- a).
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Theorem 2 (Dragomir, 1999 [6]). Let f : [a,b] — C be a function of bounded
variation on [a,b]. Then for all x € [a,b], we have the inequality

b
]\/(f),

where \/Z (f) denotes the total variation of f. The constant % is the best possible
one.
The best inequality one can get from (1.3) is

(1.4) |f<‘2”’> b_la/abf(t)dt

For related results, see the survey paper [11].
In order to extend Ostrowski’s type inequality (1.3) to weighted integral, in 2008
Tseng et al. [14] obtained the following result

a+b
2

b—a

T —

<

b
(1.3) 'f(x)—b_la/ £ dt %+

1b
§§Y(f).

1 b
(15) ’f(a:) - W/ £ (tyw (t)dt

1 faxw(s)ds—ffw(s)ds

-1
=5 +

for any = € [a,b], provided that w is continuous and positive on [a,b] and f is of
bounded variation on [a, b] .
This result was also recaptured from a more general inequality by Liu in [12].
Motivated by the above results, in this paper we establish some upper bounds
for the quantity

b
9 (b) - g (@)] f () - / F (g (1)t

under the assumptions that g : [a,b] — [g(a),g (D)] is a continuous strictly in-
creasing function that is differentiable on (a,b) and f : [a,b] — C is an absolutely
continuous function on [a,b]. When g is an integral, namely g (z) = [ w (s)ds,
where w : [a,b] — (0,00) is continuous on [a,b], then some related versions of
the inequality (1.5) that generalize the Ostrowski’s inequality (1.1) are provided.
Applications for continuous probability density functions supported on finite and
infinite intervals with two examples are also given.

2. MAIN RESULTS

We need the following result, which is an improvement on Ostrowski’s inequality,

Lemma 1 (Dragomir, 2002 [3]). Let h : [c,d] — C be an absolutely continuous
function on [c,d] whose derivative h' € Ly, [c,d]. Then

(2.1)

d
h(z)—diC/ h(t)dt




WEIGHTED INEQUALITIES OF OSTROWSKI TYPE 3

1 ¥ z—c\’ B d—2z\" d
3 12Nl e, 21,00 d_oc 1PN 2, 47,00 1—c (d—c)

ct+d

2
¥l |3+ (555) ] (@- 0
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3 (IR0 e+ I, ]
where « > 1 l—|—%=1;

oY

IN

ct+d

2
d—c

L 1Moo+ 1] 3+ I a-o

for all z € [c,d], where |||,  denotes the usual sup-norm on Lo [m,n], i.c.,
we recall that
190, m),00 = €sSUD g (£)] < o0
te[m,n]
Proof. For the sake of completeness we give here a simple proof.

Using the integration by parts formula for absolutely continuous functions on
[¢, d], we have

(2.2) /Z(t—c)h’(t)dt:(z—c)h(z)—/zh(t)dt
and

d d
(2.3) / (t—d)h (t)dt = (d—z)h(z) — / h(t)dt,

for all z € [¢,d].
Adding these two equalities, we obtain the Montgomery identity (see for example
[13, p. 565]):
d z d
24)  (d—c)h(2) —/ h () dt :/ (t—c)h’(t)dt+/ (t—d) ' (£)dt
for all z € [c,d].
Taking the modulus, we deduce

d
(2.5) (d—c)h(z) — / h(t) dt

<

d
/ (t—d)n' (t)dt

/:(t—c)h/(t)dt‘-i-

z d
g/ (t—c)|h’(t)|dt+/ (d—t)|n' (t)| dt
‘ z ’ d
Wl [ (6=t W [ (a0
c z

1
= 5 [||h/| le,z],00 (Z — 0)2 + ||h/H[Z7d]700 (d _ Z)Z:|

and the first inequality in (2.1) is proved.




4 S.S. DRAGOMIR

Now, let us observe that

||h’/||[c7z],oo (Z - 6)2 + ||h/H[z,d],oo (d - Z)2
/ / 2 2
< max {1 o g o0 19 sy } [ (2= €7 + (@ = 2)°]

1 2 C+d 2
= ma {7 e I} [2<d—c> +2(x- 50

~+2
2 (d— o)

G

2
= (d = &) max {1l oo 10l o0 |

= (d =)’ W lje.q),06

and the first part of the second inequality in (2.1) is proved.
For the second inequality, we employ the elementary inequality for real numbers
which can be derived from Holder’s discrete inequality

1
(2.6) 0 <ms+nt < (m® Jrn“)é x (7 +17)7

provided that m, s, n, t > 0, a > 1 and é + % =1.
Using (2.6), we obtain

2 2
||h/||[c,z],oo (Z - C) + ||h/||[z,d],oo (d - Z)

< (Iw

a «a é %
oo I o) |2 = 0% 4 (= )%

and the second part of the second inequality in (2.1) is also obtained.
Finally, we observe that

||hIH[c,z],oo (Z - C)2 + ||h‘l||[z,d],oo (d - Z)2

<max {(z = 0 (d = 22} [N+ 1P o)

d—c c+d[]?
o ot | N A T

2 2

and the last part of the second inequality in (2.1) is proved. (I

The following corollary is also natural.
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Corollary 1 (Dragomir, 2002 [3]). Under the above assumptions, we have the
midpoint inequality

c+d 1 d
2. h - h(t) dt
27) ( : ) = [
sgld=¢ [Hh e, e54) 00 + IR [#,d],m]
1(@=) W eao0 s
< 2
=\ o = 0) [P g o+ I ]
where a > 1, é-i-ﬁ:l
‘We have:

Theorem 3. Let g : [a,b] — [g(a),g(b)] be a continuous strictly increasing func-
tion that is differentiable on (a,b) . Iff [a b] — C is absolutely continuous on [a, b]

and f, is essentially bounded, namely - € Lo [a,b], then we have

b
(2.8) ’f(x)—M [ g wa
<N g9(z) —g(a) g () —g(x) Cala
2“ [a,w(gw)—g(a))*’ . <gb> <a>>](9“’) 9(@)
.

1 g(z)— g(a)+g(b) )
’ 7 | a.0],00 [4 + < 9 —g(a) '

1
1 |:‘ @ :| o
2 [z,b],00

f/

g/

f/

g/

. ‘
[a,2],00

1
z)—g(a 28 g(b x 2P
<3 x| () + ()] v - s,
where o > 1, é—&-%— ;
5], 15,
2 9 la,z],00 9 [£,2b],oo
z _g(a)+g(®)

<[5+ ]2 || 6o -9

for all x € [a,b].

Proof. Assume that [c,d] C [a,b]. If f : [c,d] — C is absolutely continuous on [c, d] ,
then fog=!:[g(c),g(d)] — C is absolutely continuous on [g (c), g (d)] and using
the chain rule and the derivative of inverse functions we have

/O —1 -
29 (eg ) ()= (Fog) (e () = L))

(90971 (2)
for almost every (a.e.) z € [g(c),g (d)].
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If x € [¢,d], then by taking z = g (z), we get

Therefore, since ;i: € L [c,d], hence (f o gil)/ € Lo lg(c),g(d)].

1

Now, if we use the inequality (2.1) for the function h = f o g~* on the interval

[g(a),g ()], then we get for any z € [g (a), g (b)] that

(210) |fog(2) ! /g(b)f (0t
. [ z)— —— [e)
g 90— g(@) Sy 77
<3 ||525 (e s | Lo (a0 Y
“2|[[gog! l9(a),2],00 g(b) —g(a) gog! [2,9(b)],00 g() —g(a)
x (g (b) — g(a))
Fog— ) o st ro® \ 2
18] v [+ (o) | 0) - g0

Q=

e}

3 U ]
2 [2,9(b)],00
1
B

28 28
z—g(a) g(b)—z
X {(g(b)—g(a)) +(8%0) ] (9(b) —g(a)),

1,1 9.
where a > 1, E+B_17

f/og—l
glog—l

f/og—l
g/og—l

) ‘

[9(a),2],00

IN

1 “ flog~! ‘ Llog~! ]

2 LHores lliga)zlioo | 1197097 iz, 9(b)) 00
L |2 steta®

X3+ | So=e@r || (90) —g(a)).

Taking z = g (z), = € [a,b], in (2.10) we then get

9(b)
(2.11) f(x)_g(b)lg(a)/() fog t(t)dt
1
= 2G0) - @)
f z) — g (a))? f —g(x))?
x U IR RIGI R i IOCE ))]
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2
’ (w)_y(a)er(b) )
5 fa.8].00 [}1 + (gq(b)_gfa) (9(b) —g(a));
[l L)
2 9 la,z],00 9 [z,b],00 )
28 2817
o(x)—g(a) 9(b)—g(z) ~
=) " [(gw)g()) + (ga))fg(a)) } (9 (0) = g(a)),
where a>1, &+ 5 =1;
[l L,
2 9 la,z],00 9 [1,217],00
xfg(a)ﬂz(b)
x[é+ %()} (9(b) — g(a))
since
el
909  g@g@noo 119 a0
and
el
929 lg@gmoo 19 iz pl,00

Observe also that, by the change of variable t = g~ (u), u € [g(a),g(b)], we
have u = g (t) that gives du = ¢’ (¢) dt and

g(b) b
(2.12) /() (fog_l)(u)du:/ f@) g (t)dt.

Finally, by making use of (2.11) we deduce the desired result (2.8). O

If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can define the g-mean of two numbers
a,bel as

(2.13) M, (a,b) =g (9(“)+9<b)) .

2

If I =R and g (t) =t is the identity function, then M, (a,b) = A(a,b) := %FL,
the arithmetic mean. If I = (0,00) and g (t) = Int, then M, (a,b) = G (a,b) := Vab,
the geometric mean. 1f I = (0,00) and g (t) = —1, then M, (a,b) = H (a,b) :=

%, the harmonic mean. If I = (0,00) and g (¢t) = t?, p # 0, then M, (a,b) =

M, (a,b) := (#)1/177 the power mean with exponent p. Finally, if I = R and
g (t) = expt, then

b
(2.14) M, (a,b) = LME (a,b) = In <W> ,

2

the LogMeanEzp function.
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Corollary 2. With the assumptions of Theorem 3 we have

b
(2.15) ‘f@%wﬁﬁ—g@ﬂlmw/

g;[ . +|Z ]@(b)—g(a))
I a, My (a,b)]00 (Mg (a:).b),
P ORI

AN

<
1 “f
38—1
278

[a
where o > 1,

] @O =@,

Mg (a,b)],00
1 _
+i=1.

1
a

Let f : [a,b] — C be an absolutely continuous function on [a, ]

the following examples of interest.
a). If we take g : [a,b] C (0,00) — R, g(t)
Lf € Lo [a,b] where £ (t) :=t, then we get

. We can give

= Int, in (2.8) and assume that

(2.16) EAOPY

()]
b

n (%)

~

—

~
I

1 !
<3 1€ N a,0,00 [

&l

145" )00

@\w@

In 2
b (HE)) )
L [0er g0 + 1681 100]

X Kh}(l:((é;)))m + (ln(c((éw))w] i In (%

1,1 _ 1.
where a>1,3+5—1,

Tt

IN

Q]
S—

3 (168 Moo + 1€ 00

[+ ]

for any z € [a,b] C (0,00).
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In particular, we have

F® 4

(2.17) |f (G (a,b)) —

<1 b
g ||£f l(a,G(a,b)),00 +|1ef G (ab).0l, }ln (a>
1€ a0 0 (2) 5

Q=

= 117, oo+ 1 Maa, o Tm),
Where a>1 +B_1'

b). If we take g : [a,b] C R — (0,00), ¢ (¢t) = expt, in (2.8) and assume that
exp € Lo |a,b], then we get

1 b

L[S <expa:expa )2 I <€Xpbe>(px >2
=9 exp la,z],00 (epr—expa) exp [a,b],00 (eXpb—eXpa)
X (expb —expa)
f! 1 exp;pf%ﬁ-epr 2 , |
|1 0 |1 T\~ wptmema ) | (expb—expa);
1
1 ¢ f' a o
2 P [a,z],00 [2,5],00
B
<{ x[(memme)” NG 222" (b - cxva),
1
where o > 1, 1 3
1L 5
2 P [a,z],00 P |l [2,b],00
<p o — SXPatexpb 2
X [%—&- e ] (expb — expa)

for any x € [a,b].
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In particular, we have

1 b
(2.19) ‘f (LME (a,b)) — m/ f(t)exptdt

1 ! !
<z ! / (expb—expa)
8 ||lexp [a,LM E(a,b)],c0 €XP ll[LME(a,b),b],00
1| £ .
1|59 |y 51,00 (expb—expa);
1
i | ) ’ expb—expa
2 [ P ||, LM B(ab)o0 1| P [LME(a,m,bLoo] (exp pa),

where o > 1, é+%:1.

c). If we take g : [a,b] C (0,00) = R, g(t) =t", r > 0 in (2.8) and assume that
0= f € Lo [a,b] then we get

(2.20)

b
fla)— / £t

b —a”

]‘ :L‘T — ar 2 bT _ xr 2
I=r g/ 1—r ¢t r r
=or [HE I a0 (b—a) 1 N o <b_a) ] (0" —a)

2
r__a”4b"
i+ <Tbr_a2r> ] (b —a");

3 10 T+ B 7]
(=) "+ (=) -,

where a > 1, é—i—%:l;

ol G [

IA

% |:H€1_Tf/H[a,z],oo + Hgl_rle[m,b],oo}

_aT4b"
S } (b" —a”)

1
X|:2+

for all € [a,b].
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In particular, we have

£yt tdt

(2.21) ‘f( + (a,b))

1 . r " —a’
? |£1 f H[aM(ab)] 17 g, ., }(b —a)
1 16777 |00 7 = @)

|€1 Tf,H[aM(ab) +||€1 Tf,H[M (a,b),b], }O (0" —a"),
Where a>1, f—l—ﬂ—l

where M, (a,b) = (W)l/p, 7> 0.
d). If we take g : [a,b] C (0,00) = R, g(t) = —t~", r > 0 in (2.8) and assume
that 71 f' € Lo [a,b], then we get

(2.22) ‘f Tbr ’ / FO T ldt

b"a"
2r (b" —a”)

b 2
l”(wlf la.01.00 (x_“a) o any il (b_xmr> ]

<

—_r —r T _Tr 2 r_T
e e |3 (77 = 1) )] ()

5 I g ]

2 2 B
) s ()] ()
z'r' b7~7a7' :E’V' b7~7a7' b’!‘ 70‘7' bl

11 _ 1.
where «a > 1, E"‘B—l

IN

1 o + 1 g )

2
1 —r _ a "4b"" b a” b a”
<[pr |l ) ) ()

for all x € [a,b].
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In particular,

(2.23) |f(M_, (a,b)) br . / f)y " dt
1 - . b"a”
< sr [Hg +1f/||[a,M,T(a,b)],oo + HZ +1f/||[M,T(a,b),b],oo:| (b’"—a’")
ﬁ ||£T+1fl|‘[a,b],oo (%) )
1
T s e 1T o) (25 )
Where a>1, 7+ﬁ*1
where

a—r+b—r -1/r 2a7b" 1/r
o = () ()

If we take r = 1 in (2.23), then we get

b
21)  |fH (@) - [T
1 ba
g |€2f H[a H(ab]oo+”£2f H[H(a b),b], } (ba)
1 HKQfIH[a B],00 ( = ) ;
= 125 e oo + 1 W) (25)
Where a>1, ,_|_ﬁ_1
provided £2f’ € Lo , where
2ab
H(a,b) := bt a

is the Harmonic mean of a, b > 0.

3. WEIGHTED INTEGRAL INEQUALITIES AND PROBABILITY DISTRIBUTIONS

If w : [a,b] — R is continuous and positive on the interval [a, b] , then the function
W :[a,b] — [0,00), W (z) := [ w(s)ds is strictly increasing and differentiable on
(a,b) . We have W' (z) = w (x) for any = € (a,b).

Proposition 1. Assume that w : [a,b] — (0,00) is continuous on [a,b] and f :
[a,b] — C is absolutely continuous on [a,b] with f; € Ly [a,b], then we have

(3.1) ’f(w) / 0

(fabms ) Hf
[a,2l,00 \ f, w(s)d

1 f !
2

f;)w(s)ds ’ bws }
[z,b],00 <f:’w(8) dS) ~/a ( )d
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1 ff w(s)dsff:' w(s)ds)2 b )
4 ’ [a,b],00 |:1 + ( fab w(s)ds fa w (8) dS,

1
2 |: [,b],00 :|
2615
S w(s)ds S, w(s)ds
” |:(f;w(s)ds) + (f w( S‘)ds) :| fa w (S) d87
+5=1

e [

il

w

il

w

la,z],00 ‘

w

IA

where o > 1, é

|

for all x € [a,b].
In particular, if

ff w(s)ds— [T w(s)ds
f: w(s)ds

w

|5

la,z],00

then we have

1 b
(3.2) ‘f(MW @)= / £ (tyw (t)dt

1 / / b
<- [Hf r ] / w(s)ds
8 ||lw [a, My (a,b)],00 [Mw (a,b),b],00 | Ja
i Hf—/ fabw(s) ds;
[a,b],00
< o 1
[ [ | ‘— b w(s)ds
23%—1 |:‘ w (Myy (a,b),8], :| fa ( ) 3

1

la, MW (a,b)],c0
/8 =

where o > 1, 7—1—

The above result can be extended for infinite intervals I by assuming that the
function f : I — C is locally absolutely continuous on I.

For instance, if I = [a,0), f : [a,00) — C is locally absolutely continuous on
[a,00) and w (s) > 0 for s € [a,00) with [ w(s)ds = 1, namely w is a probability
density function on [a, 00), and if ’% € Lo [a,00), then by (3.1) we get

s oL

[a,z],00

@+

(IWW@V]

[z,00),00
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[ L5+ OV 0 =)
Ll s ] e a-w )

y 1,01 4.
where a > 1, E+B_17

for any « € [a,00), where W (z) := [ w (s) ds is the cumulative distribution func-
tion.
If m € (a,00) is the median point for w, namely W (m) = %, then by (3.3) we

yid

w

L [+ W (@) - 37

N

[a,z],00 ‘ [z,00),00

get
oo 1 I !/
e |fm- [ rowwa<g|| D) 4|2
a 8 w [a,m],00 w [m,b],00
le;
4w [a,b],oo’
1
3/}71 |:’ L/ «@ ‘)i o :|o<
2 B w [a,m],00 w [m,b],00

1,01 _
where a > 1, E+B_1'

In probability theory and statistics, the beta prime distribution (also known as
inverted beta distribution or beta distribution of the second kind) is an absolutely
continuous probability distribution defined for x > 0 with two parameters « and
B, having the probability density function:

a1+ x)_a_ﬁ
N TN}

where B is Beta function

1
B (a, ) ::/ ta_l(l—t)ﬁ_l, a, B>0.
0
The cumulative distribution function is

W (x) = I e (o, B),
where I is the regularized incomplete beta function defined by

I (a,8) = ng;“’ﬁf !

Here B (+; a, 8) is the incomplete beta function defined by

B(z;a,p) := / t*~ (1 - t)ﬁ_1 , a, B, z>0.
0

Assume that f : [0,00) — C is locally absolutely continuous on [0,00) with

W € Lo [0,00), were £ (t) = t. Using the inequality (3.3) we have for
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x > 0 that
1 (oo}
35) |f(z —-4444441/‘ FO 1+t ‘“‘5d4
35) 1@ g [ FOE A
1 1! 2
< -B I =
-2 (o) o1 (1 Jrg)*a*ﬁ [ T+o (a,ﬁ)}
la,z],00
f 2
1-7T =2 (a,8
e () el P ( i ))
[z,00),00
, . 2
B, ) | mmg===7 200 00 {4 + (Iﬁ (a,8) — 5) ] ;
1
’ « fl @ o
B (a, 5)[ i1y F [am]oo+ a7 ||, OO)’OO]
1
7
< xK 0m) (11 @)

where a > 1, é %: ;

1 ’ !

7B (., B) [ IO |[4.41,00 e i(14) o F [mm)m]

2

x [5+ [Te, (,8) - 3]

for a, 8 > 0.

Similar results may be stated for the probability distributions that are supported
Namely, if I = (—o00,00), f : R — C is locally
absolutely continuous on R and w (s) > 0 for s € R with [~

on the whole axis R =

(=00, 00).

w (s)ds = 1, namely

w is a probability density function on (—oco, c0), and if fE, € Lo (—00,00) then by

(3.1) we get
(3.6) ‘f (z) — / f@)w(t)dt
<341,
2 —00,z],00
1 ) il Ty
< 2 L w (—o0,z],00 w [z,00),00
where «a > 1, é—l—le'
l’i il
2 [ ll(= o0,  llfz,00),
for all z € (—o0, 00)

@+

[z,00),00

Q=

(1—WWMV]

(W @)% +(1-w @],
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16
In particular, if m € R is the median point for w, namely W (m) = 3, then by
(3.6) we get
1 i i
o o [romal= 2]l
8 w [m,00),00
1 ‘ bl
4w (—00,00),00
1
1 “ e ‘ i } °
351 o
2 B (—o00,m],00 [m,00),00
where o > 1, é + % 1.

for any z € (—o0, 00), where W (z) := [*__ w(s)ds is the cumulative distribution
function.

In what follows we give an example.
The probability density of the normal distribution on (—o0,00) is

1 (@ —p>
Wy 02 () = T exp| =55 | @ e R,

where 1 is the mean or expectation of the distribution (and also its median and

mode), o is the standard deviation, and o? is the variance
The cumulative distribution function is

1 1 T— W
= - - f
W/J«,U2(x) 2+2er (gﬁ)7
where the error function erf is defined by

erf (x / eXp t2 dt.
\/>

If f : R — Rislocally absolutely continuous with exp (
where £ (t) = t, then from (3.6) we get

(3.5) ‘f(x) — [ iwew <“;U§‘))dt

)f’EL (=00, 0),

_ 2 2
< 287r0 exp<(£2alj) )Jy - <1+erf<0\/§>>
=\, B 2

+ 6Xp<< 20/2‘) )f [ ) (1—erf (xa\/g>>
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2
e o (“58) 1]y 14 ot (0] ]
: - ) H =2\ m|¢ «
[Hexp( 552 ) (_OO’I],OO—F exp( 2(,12 )f (2,00) 00
28707
<« [(Herf( )" (1_erf(§;g)) } ,
where a > 1, i %
B [Hex ((52;,92)]0, (—c0,2] +He"p( 207 )f/ [,00) ]
2 ,x],00 T,00),00
X [14— erf(j\*/g)u
for any = € (—00,00).
In particular, we have
[e] 2
L—p
69) |- [ ses (-0 )
270 J—0o 20
210 (-mw*\ (=Y
< -~ 7
S5 "\ e ) e | o |/
(7007/‘]»00 [/,L,OO),OO
\V2ro (£—p)?
1 eXp( 202 ) (—o0,00),00
S 0 2 « ¢ 2 « i
s [foo (55 1|+l ()1, ]
2° B (—o0,p],00 [p,00),00

1 _
Where a>1,a B_l‘
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