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REVERSES OF JENSEN’S INTEGRAL INEQUALITY VIA A
WEIGHTED CEBYSEV TYPE RESULT WITH APPLICATIONS
FOR COMPOSITE CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we obtain some reverses of Jensen’s integral inequal-
ity by employing a new weighted integral inequality of Cebysev type. Applica-
tions for general composite convex functions with examples for AG, GA-convex
functions and HA, AH-convex function are also given.

1. INTRODUCTION

Let (2, A, 1) be a measurable space consisting of a set 2, a o-algebra A of parts
of  and a countably additive and positive measure p on A with values in RU{co} .
For a p-measurable function w :  — R, with w (x) > 0 for p-a.e. (almost every)
x € 2, consider the Lebesgue space

Ly, (Qu):={f:Q—R, fis p-measurable and / w(z)|f (z)|dp (z) < oo}
Q

For simplicity of notation we write everywhere in the sequel fQ wdp instead of

Joyw (@) dia ().
In order to provide a reverse of the celebrated Jensen’s integral inequality for
convex functions, S. S. Dragomir obtained in 2002 [4] the following result:

Theorem 1. Let @ : [m, M] C R — R be a differentiable convex function on (m, M)
and f: Q — [m, M] so that o f, f, & o f (D' of)f € Ly (Q,pun), where w >0
p-a.e. (almost everywhere) on Q with fQ wdp = 1. Then we have the inequality:

(1.1) Og/Qw(d)of)dM—<I></wadu>
< [w@os) fan= [ w@op)dn [ wtin.

Let @ : [m, M] — R be a differentiable convex function on (m, M) . If x; € [m, M]
and w; > 0 (i=1,...,n) with W, := > w; = 1, then one has the reverse of
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Jensen’s weighted discrete inequality:

(1.2) 0< i:wiq) (zi) — @ (i: wﬂ%)
i=1 i=1
< Zwiq)’ (zi) z — sz@/ (z;) szxl
i—1 i=1 i=1

The inequality (1.2) was obtained in 1994 by Dragomir & Ionescu, see [18].
If h, g : @ — R are p-measurable functions and h, g, hg € Ly (Q, 1) , then we
may consider the Cebysev functional

(1.3) Ty (h,g) == / whgdp — / whdu/ wgdp.
Q Q Q
The following result is known in the literature as the Griiss inequality
1
(14) T (hyg)] < 7 (0 =) (A=),
provided
(1.5) —c0<y<h(z)<T<oo, —0<d<g(z)<A<oo

for p-a.e. a. x € Q). The constant i is sharp in the sense that it cannot be replaced
by a smaller quantity.
With the above assumptions, if h € L, 2 (2, i) then we may define

(1.6) Dy (h) := Dy 1 (h) ::/Qw'h—/ﬂwhd,u‘du

Dyo (h) := [/Q wh?dp — </Q whdu)Qr.

In 2002, Cerone & Dragomir [3] have obtained the following refinement of the
Griiss inequality (1.4):

and

Theorem 2. Let w,h,g : © — R be u-measurable functions with w > 0 p-a.e.
(almost everywhere) on Q and [, wdp = 1. If h, g, hg € Ly, (Q, 1) and there exists
the constants 6, A such that the condition (1.5) holds,

(1.7 [T (h,9)] < 5 (A= 8) Duy () < 3 (A~ 8) Doz ()

The constant % is sharp in the sense that it cannot be replaced by a smaller quantity.
Moreover, if h satisfies the condition (1.5), then

(18) T (h,9)] < 5 (A=) Dy (h) < (A —0) Dz () < § (P =) (A= 5).

On making use of Theorems 1 and 2 we can state the following result providing
a sequence of bounds for the Jensen’s gap [4]:

Theorem 3. Let @ : [m, M] C R — R be a differentiable convex function on (m, M)
and f: Q — [m, M] so that o f, f, ® o f, (D' of)f € Ly (Q,pun), where w >0
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p-a.e. (almost everywhere) on Q with fQ wdp = 1. Then we have the sequence of
inequalities:

(1.9) OS/Qw@Of)du‘P(/wadu)

Jw@ o fan= [ w@ona | wrd

[®L (M) = @ (m)] Jow|f = fowfdp|dp

IN

1
< =
2l M —m) fyw]® o f— [y (@ o f) du| dp
| (@ ) @ )] [y w P~ (fywfdn)’]
< =
-2 1
(M = m) [Jow (@0 f) dpp = (Jow (@ o ) dpr)°]”
< 3 (M —m) [8 (3) ~ &, (m)].

For other similar reverses of Jensen’s integral inequality in the general setting of
Lebesgue integral, see [6]-[8].

In the recent paper [17], by the use of a weighted version of Ostrowski’s inequality,
we obtained the following reverse of Jensen’s integral inequality for functions of a
real variable:

Theorem 4. Let ® : [m,M] C R— R be a differentiable convex function on
(m,M), w : [a,b] — (0,00) be continuous on [a,b] and f : [a,b] — [m,M] be
absolutely continuous so that ®o f, f, ®' o f, (®' o f) f € Ly [a,b].

(i) If ’% € Lo [a,b], then we have the inequality

1 b [Pw(t) f(2) dt)
1.10 0<—— | wt)(@of)R)dt—® | le—"" 1~
) ffw<s>ds/a ke n ( S w(s)ds

1 fl b
<8[<I>'(M)—<I>’+(m)]’w / w () ds.
[a,b],00 Y a
11 18 twice differentiable on (m, an (@7er)f € L |a,b], then
i) If ® is twice differentiabl M d(‘l’w”f Lo [a,b], th

1 b J2w(t) f (t) dt)
111 0<—— [ w®)(@of)(t)dt — @ [ LoD
(L1 fbw(s)ds/a O ) @) ( f:w(s)ds

‘ b
/ w(s)ds.
[a,b],00 Y a

1 ("o f) f
< (M — A
-8 ( m) H w
This result has the following particular cases of interest:

Corollary 1. Let ® : [m,M] C R— R be a differentiable convex function on
(m,M) and f : [a,b] — [m,M] be absolutely continuous so that ® o f, f, &' o

[, (@0 f) f€Llab].
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(i) If f' € Ly [a,b], then we have the inequality

(1.12) 0< 1 b(@of)(t)dt—(I)(b_la/bf(t)dt>

“b—al/,

1
< 50— a) (2L () — @ m)] -
(i) If @ is twice differentiable on (m, M) and (9" o f) f' € L [a,b], then

b b
(1.13) ogﬁ/a ((bof)(t)dt—@(bia/a f(t)dt)

< 50— a) (M =) (8" 0 1) /0y

Corollary 2. Let @ : [a,b] C R — R be a differentiable convex function on (a,b),
w : [a,b] — (0,00) be continuous on [a,b] and ®, &’ € L, [a,b].
(i) If % € Ly [a,b], then we have the inequality

1 b fbtw(t)dt>
(1.14) 0<—— [ wwyowd—o WY
f;w(s)ds/a (f;W(S)ds

b
L / w () ds.
la,b],00 Y a

1
< 5ol - @) |
(i) If f @ is twice differentiable on (m, M) and %” € Ly [a,b], then

1 b fbtw(t)dt>
(1.15) 0<—— [ wye@d—o 200D
f:w(s)ds/a (f;w(S)ds

P b
/ w (s)ds.
[a,b],00 Y a

w

Motivated by the above results, in this paper we obtain some reverses of Jensen’s
integral inequality by employing a new weighted integral inequality of Cebysev type.
Applications for general composite convex functions with examples for AG, G A-
convex functions and HA, AH-convex function are also given.

1
<§(b—a)

2. REVERSES OF JENSEN’S INEQUALITY VIA A WEIGHTED CEBYSEV RESULT

For two Lebesgue integrable functions f, g : [a,b] — R, consider the Cebysev
functional:
1 b 1 b b
Q1 Clhe) =5 [ fOe0it - —— [ jwit [ g
aJq (b - a) a a

In 1935, Griiss [20] showed that

1
(22) IC(f.9)l < 7 (M —m)(N—n),
provided that there exists the real numbers m, M, n, N such that
(2.3) m<f({t)<M and n<g()<N forae. tE€]la,b.

The constant i is best possible in (2.1) in the sense that it cannot be replaced by
a smaller quantity.
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Another, however less known result, even though it was obtained by Cebysev in
1882, [2], states that

(2.4) O 0] < 75 1 o Il (0~ )

provided that f’, ¢’ exist and are continuous on [a, b] and || f'||, = sup,¢jq4 [f' ()]
The constant % cannot be improved in the general case.

The Cebysev inequality (2.4) also holds if f, g : [a,b] — R are assumed to be
absolutely continuous and f', g € Lo [a,b] while || f']| ., = essupyer ) | ()]

We can define, as above

1 b
(2.5) Cw (f,9) = m/ f@)g)n (t)dt
1

1 b , b /
- i L TN Wi [ @

where h is absolutely continuous and f, g are Lebesgue measurable on [a, ] and
such that the above integrals exist.
The following weighted version of Cebysev’s inequality holds:

Lemma 1. Let h: [a,b] — [h(a),h (D)] be a continuous strictly increasing function
that is differentiable on (a,b). If f, g : [a,b] — R are absolutely continuous on [a, b]

and %, ;‘f—/, is essentially bounded, namely {ij % € Ly [a,b], then we have
1 2 || f g

2. , < — _ A g

( 6) |O}L (f? g)| — 12 [h (b) h (a)] h/ [a’b]’oo ' h/ [a’b],oo

The constant % is best possible.

Proof. Assume that [c,d] C [a,b].If g : [¢,d] — C is absolutely continuous on [c,d] ,
then goh~!: [h(c),h(d)] — C is absolutely continuous on [k (c),h (d)] and using
the chain rule and the derivative of inverse functions we have

()= L))
(Woh ) ()

/

(2.7) (go h_l)/ (z2)=(g'o h_l) (2) (h_l)

for almost every (a.e.) z € [h(c),h(d)].
If x € [¢,d], then by taking z = h(x), we get

oY () Gk (@) ¢ ()
(9o h™) &= o @) ~ W)

Therefore, since % € L [c,d], hence (g o h_l)l € Lo [R(€),h(d)]. Also

()

gl
n

(h(e)h(d)],0 ‘

[e,d],00
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(2.8)

Now, if we use Cebysev’s inequality (2.4) for the functions foh™' and go h~"
on the interval [k (a),h (b)], then we get
1 h(b) ) h(b) L
- foh™ udu/ goh™ (u)du
e AL PG
< —[h®) —h(@)P|(fort) H o b1y
12 ~.(6) (@) (f ) [h(a),h(b)],00 (g ) [7(a),h(b)],00
have u = h (t) that gives du = A/ (t) dt and
h(b) b
/ (foh™) (u)du = / FON () dt
h(a) a
(a)
h(b) b
| ren g wau= [ r@an @
}

i [ fen e
foh™ (u)goh™ (u)du
h(b) = h(a) Jh)
1
Observe also that, by the change of variable t = h™! (u), u € [g(a), g (b)], we
h(b) b
/ goh~(w)du = / g (1) dt,
h a
1(a)
|

Jisory

[h(a),h(b)],00 [a,b],00

and
!

Oh—l’ _ 1L
H(g ) (h(a).h®)oo ([ {[[4 41 00

By making use of (2.8) we then get the desired result (2.6).
The best constant follows by Cebysev’s inequality (2.4). O

If w : [a,b] — R is continuous and positive on the interval [a, b] , then the function
W :[a,b] — [0,00), W (z) := [ w(s)ds is strictly increasing and differentiable on
(a,b) . We have W’ (z) = w (x) for any = € (a,b).

Corollary 3. Assume that w : [a,b] — (0,00) is continuous on [a,b], f and g

are absolutely continuous on [a,b] with %, % is essentially bounded, namely

% € Lo [a,b], then we have
b 2
(/ w (S) ds)
[a,b],00 a

Remark 1. Under the assumptions of Corollary 8 and if there exists a constant
K, L > 0 such that |f' (t)] < Lw(t), |¢' (t)] < Kw (t) for a.e. t € [a,b], then by
(2.9) we get

b
(2.10) Cu (F.0)| < S LK ( [ ds)

We have the following reverse of Jensen’s integral inequality:

g

(2.9) |Cw (f, ‘
[a,b],00 w

&

|12’

The constant % is best possible.

2
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Theorem 5. Let ® : [m,M] C R — R be a twice differentiable convex function
n (m, M), w: [a,b] — (0,00) be continuous on [a,b] and f : [a,b] — [m, M] be
absolutely continuous so that ®o f, f, &' of, (&' o f) f € Ly [a,b]. If % € Lo [a, b]

(‘b”of)f/

and € Lo [a,b], then we have the inequality

1 b Jiw®) f
(2.11) f / () (Do f)( @( o ds)

] ] (Les)
1

' f;’wt )
2.12 N ——— b o — &
212 ‘fw<>ds/ e ( Jiw(

(ll b
m/ w(t) (@ o f) () f (¢
1

b

a

1
< =
zl

[a,b],00

Proof. By (4.14) we have

=

<

Since @ is twice differentiable on (a,b), then

(@0 f)' (1) = (2" f) (1) f' (1)
for ¢t € (a,b).
If we use the inequality (2.9), then we get

1 b
M(s)ds/ w(t) (®o f)(t) f(t)dt
! b
f ) S)dS/a w(t) £ (t)dt
2
1 [(e ) ds)
b

o f)

/bw(t)(<1>’0f)(t) f,,wl(
[

dt
la,b],00 (
I :
= - (/ w (s) ds)
a,b],co a

[a,b],00 ’ w
which, together with (2.12), proves the required inequality (2.11). O

s
w

12 H w [a,b],00 '

1 ” (@7 f) f

Corollary 4. Let ® : [m, M] C R — R be a twice differentiable convex function on
(m, M) and f : [a,b] — [m, M] be absolutely continuous on [a,b]. If f' € Ly [a,b]
and (" o f) f' € L [a,b], then we have the inequality

(2.13) 0< ia/b(cpof)(t)dt@(bia/bf(t)dt>

1
72”.]0 Hab H(q)//of) f/”[a,b],oo (b_a’)2'

S

| A
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Corollary 5. Let ® : [a,b] C R — R be a twice differentiable convex function on
(a,b), w: [a,b] — (0,00) a continuous function on [a,b] and ®, &' € L, [a,b]. If
% € Ly [a,b] and %/ € Ly [a,b], then we have the inequality

1 b fbtw(t)dt>
2.14 w(t)d(t)dt — P | 22—
o =TT ol "0 <f5w<s>ds
1 1 P b 2
< —||— — w(s)ds
12 Hw [a,b],00 </u () )

[a,b],00 ‘ w

Define the function ¢ (t) :=t¢, ¢t € R.

a). Let @ : [m, M] C R — R be a twice differentiable convex function on (m, M)
and f : [a,b] C (0,00) — [m, M] be absolutely continuous and so that ® o f, f,
' of, (®of)f € Ly-1]a,b].If f'f € Ly [a,b] and (®" o f) f'l € Lo [a,b] then

by (2.11) for w (t) = 1, we have

1 [P (@of)®) Sy 2t
(2.15) ogln( )/a : dt—cb( O

b\ 2
< 12 Hf lia0),00 [(@" o f) f%”[a,b],oo <ln (a)) :
b). Let ® : [m, M] C R — R be a twice differentiable convex function on (m, M) and
f i [a,b] — [m, M] be absolutely continuous and so that ®o f, f, ®’of, (' o f) f €
Lexp [a,b] . If e{(—p € Ly [a,b] and % € Ly [a,b], then by (2.11) for w () =
exp (t), we have

b
(2.16) 0< S /b (Po f)(t)exptdt — P (f()f(t)e)(ptdt)

eprf expa J, expb—expa
! @l/ !
S H(Of)f (expb — expa)®.
12 la,b],00 exp [a,b],0c0

exp

¢). Consider the function ¢ (t) :==t*, ¢t > 0,p € R\ {—1}. Let ®: [m, M]C R - R
be a twice differentiable convex function on (m, M) and f : [a,b] C (0,00) — [m, M]
be absolutely continuous and so that ® o f, f, ® o f, (P’ o f)f € Ly [a,b]. If
fiP € Ly [a,b] and (" o f) f'47P € Ly [a,b] then by (2.11) for w(t) = P, we
have

’ 1) [P0 f () dt
o0 v g [roapwa-o (S ZR)

3 1O g 1@ 0 £ PP o 07 = a)7,

T 12(p+1)
For p = —2, we get from (2.17) that
ab (" (Do f)(t) ab [P f ()
. < — T
(2.18) O*b—a/ S dt—® b_a/a -

1 /(b—
S 12( ab ) ||f£2H[ab] ||((I)Hof)f162H[a,b],oo’
provided f'¢%, (®" o f) f'¢* € Ly [a,b].
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3. INEQUALITIES FOR COMPOSITE CONVEXITY
We have the following result for composite convexity:

Theorem 6. Let U : [m, M] C R — R be a twice differentiable function on (m, M),
v i [m,M] = [y(m),y(M)] a strictly increasing, continuous and twice differen-
tiable function on (m, M), w : [a,b] — (0,00) a continuous function on [a,b] and
g : [a,b] — [m, M] an absolutely continuous function on |a,b]. Assume that ¥ o~y~!
is convex on [y (m),y(M)] and ¥ og, yo g € Ly [a,b]. Define

31 A(Wg)(#) = (V" og)(t) (v og)(t) — (¥ ; g)(t) (" og)(t)
(7 o g) ()]

—/" € Ly a,b] and % € Ly [a,b], then

b
,é/ w(t)(\llog)(t)dt—\llo'y_1<

ﬂwﬁﬂwwﬂﬂﬁ>
f; w(s)ds

b 2
(/ w ($) ds)
[a,b],00 a
1

Proof. If we write the inequality (2.11) for the convex function ® = ¥ o~~! on
[y (m),~ (M)] and for the function f =+ o g on [a,b], then we have

A(P,7,9)

1H(v’og)g’ H
la,b],00 w

w

b
(33) 0< fbwl(s)dg/ w(t) (Toy toyog)(t)dt
ot [Jw® o9 (@t
e ( [T (s) ds )
1 [[(vog) (Toy ) ((y0g) (v 0g) b ’
<1 Hw _ " ” (/a w(s) ds) .

Using the chain rule and the derivative of inverse functions we have
U/ oyt
B (o) ()= (o) () () (2) = (e )

(Y o) (2)
for every z € (y(m),vy (M)).
We have by (3.4) that

(Tor™) ()<(7’0'y_1)(2)>
(W oy ™) (2) (¥ er™) (&)= (Wor™) (2) (Vo) (2)
(v o) ()]
S (7 o1 (2) = (W o) (2) L
(7 oy1) (2)
(W'oy ™) (z) (7 or™) (2) = (¥ or ) (2) (7o) (2)
(v o) (2))
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for every z € (y(m),y (M)).
Therefore, for f = vy o g we get
(Wor )" ((vog) () = (¥"og)(t) (v og) (/t) - (¥ ° 9)(t) (v 0 g) @)
(v 2 9) (1)]

and

(Tor™) ((vog) @) (¥ 09) ()
_ W)@ 0en) ) = (Vo9 000 W) _ 5y, g1
(o 9) ()]

for any t € (a,b).
By employing the inequality (3.4) we then get the desired result (3.2). O

Corollary 6. Let ¥ : [m,M] C R— R be a twice differentiable function on
(m, M), v : [m,M] — [y(m),y(M)] a strictly increasing, continuous and twice
differentiable function on (m, M), and g : [a,b] — [m,M] an absolutely continu-
ous function on [a,b]. Assume that ¥ o~~! is convex on [y (m),y(M)] and ¥ o g,
vog € Lla,b]. If (Y 0g) ¢’ € Loo [a,b] and A (V,,g) € L [a,b], then

b b
(3.5) Ogﬁ/a (Wog)(t)dt—Wony~! (bla/a ('yog)(t)dt>

1
12

‘We also have:

§ (b - a’)2 H(Py, o g) g/||[a7b}7oo ||A (\P?Py}g)”[a’h],oo .

Corollary 7. Let ¥ : [a,b] C R — R be a differentiable function on (a,b), v :
[a,b] — [y (a),v (b)] a strictly increasing, continuous and differentiable function on
(a,b), and w : [a,b] — (0,00) a continuous function on [a,b]. Assume that ¥o~y~!

is convez on [y (a), 7y (b)] and ¥, v € Ly [a,b]. Define, fort € (a,b),
A(T.~) () = LD = (57" (1)

by (¢))°
and assume that % € Ly [a,b] and w € Lo [a,b], then
1 ’ P (t)y () dt
(3.6) Ogbi/ ’w(t)\lf(t)dt—\lloy_l M
J, w(s)ds Ja [Pw(s)ds
/ b 2
§1‘7 HAWw) /w@%
12 || w [a,b],00 w la,b],00 a

Remark 2. Let U : [a,b] CR — R be a twice differentiable function on (a,b) and
v : la,b] = [y(a),v(b)] a strictly increasing, continuous and twice differentiable
function on (a,b). Assume that W o~~1 is convex on [y (a),v (b)]. If ¥ € Lo |a,b]
and A(V,v) € L [a,b], then

b b
(3.7) ogbia/a U (t)dt —Vonyt (b—la/a 'y(t)dt)

1 2
< ﬁ (b - a’) ||’y H[a,b],oo HA (\Il’fy)‘

la,b],00 °
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Also, if we take w =~ in (3.6), then we get

(3.8) 0<1/b\11(t)'y'(t)dt—\llo»y—1 (W)

~ (b)) —v(a)
1 A (Y, 9)

< 5 @) — 7 (a)? ;

)
[a,b],00

provided W € Lo [a,b].

4. APPLICATIONS FOR SOME PARTICULAR CONVEXITIES

Let 7 : [a,b] — [y (a),v (b)] be a continuous strictly increasing function that is
differentiable on (a,b).

Definition 1. A function ¥ : [a,b] — R will be called composite-y~! convex (con-

cave) on [a,b] if the composite function W o~~t : [y(a),v(b)] — R is convex
(concave) in the usual sense on [y (a),7 (b)].

In this way, any concept of convexity (log-convexity, harmonic convexity, trigono-
metric convexity, hyperbolic convexity, h-convexity, quasi-convexity, s-convexity,

s-Godunova-Levin convexity etc...) can be extended to the corresponding compos-
1

ite-y~ " convexity. The details however will not be presented here.
If ¥: [a,b] — R is composite-y~! convex on [a, b] then we have the inequality
(4.1) Toy ' ((1=Nu+ ) <1 =N Toy ! (u) + AV oyt (v)

for any u, v € [y (a),v (b)] and X € [0,1].

This is equivalent to the condition
(4.2) oy ((L=X)7 (1) + Ay (s)) < (1= X) (1) + AT (s)
for any t, s € [a,b] and X € [0,1].

If we take v (t) = Int, ¢ € [a,b] C (0,00), then the condition (4.2) becomes
(4.3) T (2N < (L= N) T (t) + AT (s)
forany ¢, s € [a,b] and A € [0, 1], which is the concept of GA-convezity as considered
in [1].

If we take v (t) = —31, t € [a,b] C (0,00), then (4.2) becomes

ts

4.4 V(oo | <A1 =-NT )+ AT
(1.0 (o) sa-Vv@+are
for any ¢, s € [a,b] and X € [0, 1], which is the concept of H A-convexity as consid-
ered in [1].

If p > 0 and we consider v (t) = tP, t € [a,b] C (0,00), then the condition (4.2)
becomes
(4.5) ¥ [((1—)\) 7+ AsP)P| < (1= A) U (£) + AT (s)
for any t, s € [a,b] and A € [0, 1], which is the concept of p-convezity as considered
in [27].

If we take v (t) = expt, t € [a,]], then the condition (4.2) becomes
(4.6) Un((1—Xexp(t)+expy(s)] < (1—=X)T )+ AT (s)

which is the concept of LogExp convex function on [a,b] as considered in [16].
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Further, assume that ¥ : [a,b] — J, J an interval of real numbers and § : J — R
a continuous function on J that is strictly increasing (decreasing) on J.

Definition 2. We say that the function ¥ : [a,b] — J is §-composite convex
(concave) on [a,b], if § o ¥ is convex (concave) on [a,b].

In this way, any concept of convexity as mentioned above can be extended to
the corresponding §-composite convexity. The details however will not be presented
here.

With v : [a,b] — [v(a),v(b)] a continuous strictly increasing function that is
differentiable on (a,b), U : [a,b] — J, J an interval of real numbers and § : J — R
a continuous function on J that is strictly increasing (decreasing) on J, we can also
consider the following concept:

Definition 3. We say that the function ¥ : [a,b] — J is 6-composite-y~' convex

(concave) on [a,b], if § o W oy~ is convex (concave) on [y (a),v (b)].

This definition is equivalent to the condition
(4.7 SoWoy™ (1=XN)yt)+Ay(8) < (1 =A)(60T) () +A(60T)(s)

for any t, s € [a,b] and X € [0,1].
If 6 : J — R is strictly increasing (decreasing) on J, then the condition (4.7) is
equivalent to:

(4.8) oy H((L=A)7 () + A7 () < (2)8 (1= A) (60P) (1) + A (30 T)(s)]

for any t, s € [a,b] and X € [0,1].

If§(t) =1nt, t >0 and ¥ : [a,b] — (0,00), then the fact that ¥ is é-composite
convex on [a,b] is equivalent to the fact that ¥ is log-convexr or multiplicatively
conver or AG-convex, namely, for all z, y € I and t € [0, 1] one has the inequality:

(4.9) Wt + (1 )y) < [V @) [2 @)

A function ¥ : I — R\ {0} is called AH-convezr (concave) on the interval I if
the following inequality holds [1]

1 _ Y (z) ¥ (y)
(410) T ((1—Nz+Ay) < (>) LN g + gy (L= N T () + AT ()

for any z, y € I and X € [0,1].

An important case that provides many examples is that one in which the function
is assumed to be positive for any x € I. In that situation the inequality (4.10) is
equivalent to

1 1 1
T R 7 T (Ve
for any x, y € I and X € [0,1].
Taking into account this fact, we can conclude that the function ¥ : I — (0, 00)
is AH-convex (concave) on I if and only if ¥ is d-composite concave (convex) on I
with & : (0,00) — (0,00), 6 (t) = 1.
Following [1], we can introduce the concept of GH-convex (concave) function

¥ : ] C (0,00) — R on an interval of positive numbers I as satisfying the condition

. 1 N v (z) ¥ (y)
(411) U (") < () (1N gl + Ags (L= MU (y) + AT ()
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Since
U (2 *y) =Toexp[(1—N)Inz + Alny]

and
U (2) W (y) Poexp(lnz)¥oexp(lny)

(1=XNT(y)+ AU (x) (1 —-XN)Toexp(y)+ A\Voexp(z)
then ¥ : I C (0,00) — R is GH-convex (concave) on I if and only if ¥ o exp
is AH-convez (concave) on Inl := {z| x =1Int, ¢ € I'}. This is equivalent to the
fact that W is §-composite-y~! concave (convex) on I with & : (0,00) — (0, 00),
§(t)=1and vy () =Int, t € I.
Following [1], we say that the function ¥ : I C R\ {0} — (0, 00) is HH -convex

if
zy V(@) ¥ (y)
4.12 v <
(4.12) (Fri=ms) S Toee) v
for all z, y € T and t € [0, 1]. If the inequality in (4.12) is reversed, then ¥ is said

to be H H -concave.
We observe that the inequality (4.12) is equivalent to

(4.13) 05w ”Wtw K (+1<>>

for all z, y € I and ¢ € [0, 1].
This is equivalent to the fact that ¥ is J-composite-y
§:(0,00) — (0,00), 6 (t) =+ and y (t) = —1,t € [a,b].
The function ¥ : I C (0,00) — (0,00) is called GG-conver on the interval I of
real umbers R if [1]

(4.14) U (2" < [ (@) T ()]

for any z, y € I and A € [0,1]. If the inequality is reversed in (4.14) then the
function is called GG-concave.

This concept was introduced in 1928 by P. Montel [23], however, the roots of the
research in this area can be traced long before him [24]. Tt is easy to see that [24], the
function ¥ : [a,b] C (0,00) — (0,00) is GG-convez if and only if the the function
v:[lna,Inb] — R, v =InoW¥oexp is convex on [Ina,Inbd|. This is equivalent to the
fact that W is §-composite-y~! convex on [a,b] with 6 : (0,00) — R, § (t) = Int and
v (t) =Int, t € [a,b].

Following [1] we say that the function ¥ : I C R\ {0} — (0, 00) is HG-convez if

~1 concave on [a,b] with

Ty

(4.15) v <m+(1—t)y) < [0 @) @)

for all z, y € I and ¢ € [0,1]. If the inequality in (4.2) is reversed, then ¥ is said to
be HG-concave.

Let ¥ : [a,b] C (0,00) — (0,00) and define the associated functions Gy :
[+, 1] — R defined by Gy (t) = In¥ (1) . Then ¥ is HG-convez on [a,b] iff Gy is
convex on [l ﬂ . This is equivalent to the fact that ¥ is J-composite-y~! convex
on [a,b] with § : (0,00) = R, 6 (t) =Int and v (t) = — 1, t € [a, b].

Following [26], we say that the function ¥ : [a,b] — (0, 00) is r-convex, for r # 0,
if
(4.16) T (1= Az +Ay) <[(1— )T (y) + 20" ()"
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for any z, y € [a,b] and A € [0, 1].
If r > 0, then the condition (4.16) is equivalent to

U ((L=Nz+Ay) < (1-2) " (y) + AV (2)

namely U is §-composite convex on [a, b] where § (t) =", ¢ > 0.
If » < 0, then the condition (4.16) is equivalent to

" (1=Nzx+Ay) > (1= (y) + A" (z)

namely ¥ is §-composite concave on [a, b] where § (t) =", t > 0.

For some results related to these concepts of convexity, see [9]-[15].

We assume in the following that w : [a,b] — (0,00) is a continuous function on
[a,b] and ¢ : [a,b] — [m, M] is absolutely continuous on [a, b] .

If ¥ is log convexr on [m, M], then ¥ is J-composite-y~! convex on [a,b] with
§:(0,00) =R, §(t) =Int and v (¢t) = £(t) =1t, ¢t € [a,b]. If we use the inequality
(2.11) and assume that U is twice differentiable on (m, M), then we have

b
D) 0s ! /bwmm(qfog) (t)dt ~n W(W)]
1 g; A(nv,g) ' i
= 12 ‘ la,b],00 H w la,b],00 (/a w(S) dS) ’

where

(7 0.6) (1) (W0 9) (8) — (¥ 0 g) (1))
A (In
(n: ) (6) = (¥ og) (@)

and provided that < E Lo [a,b] and M € Lo [a,b].

If ¥ is GA-convez on [a,b] C (0,00), then U is §-composite-y~! convex on [a, b]
with v : (0,00) — R, 7(t) = Int and 6 (¢t) = €(t) = t, t € [a,b]. If we use the
inequality (2.11) and assume that ¥ is twice differentiable on (m, M), then we have

, t € [a,b]

b n
(4.18) 0< fl/ w(t) (Tog)(t)dt — T |exp (f b()l gcgs) >‘|
<1 HA(\I”IHM‘I) ( )
~ 12 {1wglla,p,00 v g

where
A (P, 1n,g) (t) = (¥ 0g) (t) g (t) + (¥ o g) (t)

and provided that £, 829 ¢ [ [q,0].

The function ¥ : [a,b] — (0,00) is AH-conver on [a,b] if and only if ¥ is
§-composite-y~! concave on [a,b] with ¢ : (0,00) — (0,00), §(t) = + and and
v(t) =4L(t) =t,t € la,b]. If we use the inequality (2.11) for the convex function
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—¥~! and assume that W is twice differentiable on (m, M), then we have

fowgewat)] 1 P w
“19) 0= f:w(s)ds fabw(s)ds/a (Po “

2

1d A(=T1l g b
< D ‘ " % / w(s)ds |

la,b],00 [a,b],00 a
where ,

A (w1 (B2 0 (T o) () =2((¥ ) (1)
(Tog) ()’
and provided that %, w € Lo [a,b].

If the function W is H A-convex [a,b], then W is §-composite-y~! convex on [a, b]

with v : (0,00) — R, v(t) = =t Y and § (t) = £(t) = t, t € [a,b]. If we use the
inequality (2.17) and assume that ¥ is twice differentiable on (m, M), then we have

1 b bw (s)ds
(4.20) osbif w(t) (Wog)(t)di — W be
[, w(s)ds Ja Jo gy dt
2
1 g’ A \I’, _é_lvg b
A, e (s
9 [a,b],00 [a,b],00 e
where

A (T, =71, g) (8) := (P 0 g) (1) g* (t) + 29 (t) (V' 0 g) (t)

and provided that wg—g'Q, w € Lo [a,b].

Similar results may be stated for the other concepts of convexity as presented
above, however the details are omitted.
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