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REVERSES OF JENSEN’S INTEGRAL INEQUALITY VIA A
WEIGHTED LUPAS TYPE RESULT WITH APPLICATIONS FOR
COMPOSITE CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR1!:2

ABSTRACT. In this paper we obtain some reverses of Jensen’s integral inequal-
ity by employing a new weighted integral inequality of Lupag type. Applica-
tions for general composite convex functions with examples for AG, GA-convex
functions and HA, AH-convex function are also given.

1. INTRODUCTION

Let (2, A, 1) be a measurable space consisting of a set 2, a o-algebra A of parts
of  and a countably additive and positive measure p on A with values in RU{co} .
For a p-measurable function w :  — R, with w (x) > 0 for p-a.e. (almost every)
x € 2, consider the Lebesgue space

Ly, (Qu):={f:Q—R, fis p-measurable and / w(z)|f (z)|dp (z) < oo}
Q

For simplicity of notation we write everywhere in the sequel fQ wdp instead of

Joyw (@) dia ().
In order to provide a reverse of the celebrated Jensen’s integral inequality for
convex functions, S. S. Dragomir obtained in 2002 [4] the following result:

Theorem 1. Let @ : [m, M] C R — R be a differentiable convex function on (m, M)
and f: Q — [m, M] so that o f, f, & o f (D' of)f € Ly (Q,pun), where w >0
p-a.e. (almost everywhere) on Q with fQ wdp = 1. Then we have the inequality:

(1.1) Og/Qw(d)of)dM—<I></wadu>
< [w@os) fan= [ w@op)dn [ wtin.

Let @ : [m, M] — R be a differentiable convex function on (m, M) . If x; € [m, M]
and w; > 0 (i=1,...,n) with W, := > w; = 1, then one has the reverse of
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Jensen’s weighted discrete inequality:

(1.2) 0< Zwl (2) (Z w:zc)
i=1 i=1 i=1
The inequality (1.2) was obtained in 1994 by Dragomir & Ionescu, see [19].
The following result providing a sequence of bounds for the Jensen’s gap [4]:
Theorem 2. Let @ : [m, M] C R — R be a differentiable convex function on (m, M)
and f: Q — [m, M] so that Do f, f, ® o f, (D' o f)f € Ly, (Q,pn), where w >0

p-a.e. (almost everywhere) on Q with fQ wdp = 1. Then we have the sequence of
inequalities:

(1.3) 0</Qw(<I>of)dp—<I>(/wadu)

Jw@ o fan= [ w@enau | wrd
[ () = @ ()] foy 0] = oy ] d

IN

1
Sf

2 (M —m) [qw|® of— [qw(® of)du|du

1 (@0 (M) — @/, ( ][f(zwf dp — (wifd,u)Qr
<=
-2

1
3
(O = m) [fyw (@0 )P dn— (fouw (@ o f)dn)’]
1
< 5 (M —m) [ (31) — @ (m)] .
For other similar reverses of Jensen’s integral inequality in the general setting of
Lebesgue integral, see [6]-[8].
In the recent paper [17], by the use of a weighted version of Ostrowski’s inequality,

we obtained the following reverse of Jensen’s integral inequality for functions of a
real variable:

Theorem 3. Let ® : [m,M] C R— R be a differentiable convexr function on

(m,M), w : [a,b] — (0,00) be continuous on [a,b] and f : [a,b] — [m,M] be
absolutely continuous so that ®o f, f, ® o f, (D' o f)f € Ly [a,b].

(i) If % € Lo [a,b], then we have the inequality

b
(1.4) ngs)ds/a w(t) (®o f)(t)dt — q><

b
b])oo/ w(s)ds.

Jw(t) f <>dt>

w

2 & 8

@ (00—, ()] | £
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((I)//Of)f/

(ii) If @ is twice differentiable on (m, M) and ~——"— € L [a,b], then

b
15) o<w/w<t)@of)<t>dt_¢(

‘ b
/ w(s)ds.
la,b],00 Y a

@// !/
1|2
w
This result has the following particular cases of interest:

Juw t)f(t)dt>
fbw(s)ds

a

1
< Z
-8

Corollary 1. Let ® : [m,M] C R — R be a differentiable convex function on
(m, M) and f : [a,b] — [m,M] be absolutely continuous so that ® o f, f, &' o

f, (@0 f)f€Llab].
(i) If f’' € Lo [a,b], then we have the inequality

b b
(1.6) ogﬁ/a ((Dof)(t)dt—CI)(b_la/a f(t)dt)

< % (b—a) [ (M) = @, (1)) £l 4 41,00 -

(ii) If @ is twice differentiable on (m, M) and (9" o f) f' € L [a,b], then

b b
(1.7) ogﬁ/ﬂ (cpof)(t)dt<p<b_1Q/a f(t)dt)

1
< g (0=a) (M =m) [[(2" 0 f) f'llj0, 51,00 -

Corollary 2. Let @ : [a,b] C R — R be a differentiable convex function on (a,b),
w : [a,b] — (0,00) be continuous on [a,b] and @, D" € Ly, [a,b].

(i) If L € Lo [a,b], then we have the inequality

1 b fbtw(t)dt>
(1.8) 0<— [ w)yd@)dt—o | D
f;w(s)ds/a 620 <f;w(s)ds
Ly —® (a 1 bws s
sglro-oe|f e

(ii) If f @ is twice differentiable on (m, M) and %/ € Lo [a,b], then

1 b [ tw () dt)
1.9 0 —— wt)®)dt—d | L4——
(19) f:w(s)ds/a ©)2 () (f;w(s)ds
1 ol b
< 3 (b—a) o [a7b]7oo/a w(s) ds.

By employing a new weighted integral inequality of Cebysev type, in the recent
paper [18], we obtained the following reverse of Jensen’s integral inequality:

Theorem 4. Let ® : [m,M] C R — R be a twice differentiable convex function
on (m, M), w: [a,b] — (0,00) be continuous on [a,b] and f : [a,b] — [m, M] be
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absolutely continuous so that ®o f, f, ®' o f, (®' o f) f € Ly [a,b]. If ’% € L [a,b]

(‘I’”Of)f’
w

and € Lo [a,b], then we have the inequality

1 b [Pw(t) f(2) dt)
1.10 0<—— [ w®)(@of)(t)dt — @ [ LTI
(110 fbw(s)ds/a O )@ ( f;w(s)ds

f/ b 2
w (s) ds)
’ [a,b],00 </a

The following particular cases are of interest:

IN

H(‘I’”Of)f'
[a,b],00

w

_12

Corollary 3. Let ® : [m, M] C R — R be a twice differentiable convex function on
(m, M) and f : [a,b] — [m, M] be absolutely continuous on [a,b]. If f' € Ly [a,b]
and (" o f) f' € Ly [a,b], then we have the inequality

aw ot facpwa-e(pl [roa)

1
§EHf/H[a,b],ooH(‘I’”Of)f||[ab] (b—a)*.

Corollary 4. Let ® : [a,b] C R — R be a twice differentiable convex function on
(a,b), w: [a,b] — (0,00) a continuous function on [a,b] and ®, ' € Ly [a,b]. If
% € Ly [a,b] and %/ € L [a,b], then we have the inequality

(1.12) 0< 7 1( /bw(t)@(t)dt <§ tw( )ds>
" b 2
= % Hi’ [a,b],00 ‘ % [a,b],00 (/a w(s) ds)

Motivated by the above results, in this paper we obtain some reverses of Jensen’s
integral inequality by employing a new weighted integral inequality of Lupag type.
Applications for general composite convex functions with examples for AG, G A-
convex functions and HA, AH-convex function are also given.

2. REVERSES OF JENSEN’S INEQUALITY VIA A WEIGHTED LUPAS RESULT

For two Lebesgque integrable functions f, g : [a,b] — R, consider the Cebysev
functional:

b b b
e CU= gy [ wea— o [ [ gt

In 1935, Griiss [21] showed that

1
(2.2) IC(f.9)l <y (M —m)(N—n),
provided that there exists the real numbers m, M, n, N such that
(2.3) m<f#) <M and n<g(t)<N forae. t€lab.

The constant i is best possible in (2.1) in the sense that it cannot be replaced by
a smaller quantity.
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The case of euclidean norms of the derivative was considered by A. Lupasg in [22]
in which he proved that

(24) CUa < 17111, 0~ a)

provided that f, g are absolutely continuous and f, ¢’ € Ly [a, b] . The constant 5
is the best possible.
Consider the functional:

1 b
25) Cu (1) = gy |, {9 W O

1 b , 1 b ,
- i L TN Wi [ @
where h is absolutely continuous and f, g are Lebesgue measurable on [a,b] and

such that the above integrals exist.
We also have the following weighted version of Lupag inequality:

Lemma 1. Let h: [a,b] — [h(a),h (D)] be a continuous strictly increasing function
that is differentiable on (a,b). If f, g : [a,b] — R are absolutely continuous on [a, b]

and (}1’1;7;/2’ (hf;%/? € Ly a,b], then we have
Ly f g
(2.6) ICh (9| < = || =7 —7 [ (b) = h(a)].
/2 1/2
R [a,b],2 (n') [a,b],2

The constant # 18 best possible.

Proof. Assume that [c,d] C [a,b].If g : [¢,d] — C is absolutely continuous on [c,d] ,
then goh™! : [h(c),h(d)] — C is absolutely continuous on [k (c),h (d)] and using
the chain rule and the derivative of inverse functions we have

en  (er Y (@)= (0 on ) () () () = L))

(h" o h=1) (2)
for almost every (a.e.) z € [h(c),h(d)].
Using the identity (2.7) above, we have

no) ;e h()
/ ‘(goh_l) (u)‘ du:/
h(a) h(a)

By the change of variable t = h™! (u), u € [h(a),h (b)], we have u = h(t) that
gives du = R’ (t) dt. Therefore

/

(¢ o b1 (u)|”

(' o h=1) (u) du.

h®) | (o o -1 2 b
/ (g/ ° 71) ('LL) du — / g/ (t) h/ (t) dt
n(ay |(h"oh™1)(u) b | (E)
b / 2 ! 2
_ / g9 () _ |9
b | ()] (W) a2
In a similar way, we also have
/h(b) (f/ o h—l) ('LL) 2 /
n@ | (R h=D @) | )2
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This mean that

[(£ony =l
@h®12 [ ()77 42
and
—1\/ gl
H (g ° h 1) = || ——=
[h(a),h(b)],2 (h’)1/2 [a,b],2

By making use of Lupas inequality (2.4) for the functions foh™! and go h=! on
the interval [h (a), h (b)] we get

h(b)
(2.8) m /h foh Hu)goh (u)du

(a)

1 h(b) . h(b) B
_[h(b)w/h(a) foh (U)du/h(a) goh  (u)du

<5 |eony [tgony

Observe also that, by the change of variable t = h™! (u), u € [g (a), g (b)], we have
u = h(t) that gives du = b/ (t) d¢t and

h(b) b

/ (for™) (u)du:/ FON (0 dt,
h a
b

[h(b) = h(a)].

[h(a),h(b)],2 [h(a),h(b)];2

(@)

h(b)
/ goh—l(u)du=/ g (1) dt,
h(a) a

h(b) b
/ th_l(u)gOh_l(u)du:/ £ gt (&) dt,
h(a) a

which together with (2.8) produces the desired result (2.6). O

Corollary 5. Assume that w : [a,b] — (0,00) is continuous on [a,b]. If f, g :

[a,b] — R are absolutely continuous on [a,b] and w{%, w"i—/m € Ly[a,b], then we
have

b
(2.9) Cu (fr9)] < = /w@@
la,b],2 Y a

2
We have the following reverse of Jensen’s integral inequality:

/

g
wl/?

f/

wl/2

la,b],2

Theorem 5. Let ® : [m,M] C R — R be a twice differentiable convex function
on (m, M), w: [a,b] — (0,00) be continuous on [a,b] and f : [a,b] — [m, M] be
absolutely continuous so that ®o f, f, ®of ("o f) f € Ly [a,b]. Ifwfl—/2 € Lsa,b]

and (q)wjfz)f € Lo [a,b], then we have the inequality

1 ’ ﬁwwfwm>
2.10 0<— | wt)(@of)R)dt—d | e—""—
210 Lﬁwﬁﬁl (e s ( S w(s)ds
1 f/ (‘I)” Of) f/ bw ) ds
= 72 || wl/2 (5.2 wl/? [a7b]72/a ( ) .
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Proof. By (4.14) we have

(2.11) 0<

b
/bw(t) (Do f)(t)dt—® (faw(t)f(t)dt>

f: w(s)ds
b

7/ w(t) (o f) () F (£) dt

1

fbw(s)ds

a

—S)ds/ w (1) (@ o f) (£) dt /w(t)f(t)dt.

Jaw
Since ® is twice differentiable on (a,b), then
(@0 f) (1) = (2" 0 f) (8) ' (1)

for ¢t € (a,b).
If we use the inequality (2.9), then we get

_
f; w(s)ds

1 b , 1 b
- Femnd O N [u /0

1][(®of) I b
d
[a7b],2/a w(s)ds

<= wl/2
b
/ w (s)ds,
[a,b],2 Ya

=2 || Wiz
f/
which, together with (2.11), proves the required inequality (2.10). O

b
[ww@enwrma

[a,b],2

(@70 f) [

wl/2

1

T2

[a,b],2 w/?

Corollary 6. Let @ : [m, M] C R — R be a twice differentiable convex function on
(m, M) and f : [a,b] — [m, M] be absolutely continuous on [a,b]. If f' € Lo ]a,b]
and (" o f) f' € Lo [a,b], then we have the inequality

b b
(2.12) 0< ﬁ/ (@0 f) (t)dt — D (b_la/ f(t)dt)
< o 1 a2 1 0 1) gy (0= )

Corollary 7. Let ® : [a,b] C R — R be a twice differentiable convex function on
(a,b), w: [a,b] — (0,00) a continuous function on [a,b] and ®, &' € L, [a,b]. If
—5 € Ly [a,b] and 5}—'//2 € Lo [a,b], then we have the inequality

b b
tw (t) dt
(2.13) 0< %/ w(t)®(t)dt — @ (W)
[, w(s)ds Ja [, w(s)ds
1 1 P’ /b
<= ||l—= — w(s)ds.
w2 [Jw!/? [a,b],2 w!/? [a,b],2 /a

Define the function ¢ (t) :=t¢, ¢t € R.
a). Let @ : [m, M] C R — R be a twice differentiable convex function on (m, M)
and f : [a,b] C (0,00) — [m, M] be absolutely continuous and so that ® o f, f,
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O of, (¥ of)f € Ly-r[a,b]. If f¢*? € Ly[a,b] and (& o f) f¢*/? € Ly[a,b],

then by (2.10) for w (t) = 1, we have

b b1 gy
(2.14) 0<— / @ N®) g faitb
In(2) Ja t In (2)
b
< || fp1/2 7 191/2 2.
o re [a,b],2 H((I) Of)f ¢ [a,b],21n <a)

b). Let @ : [m, M] C R — R be a twice differentiable convex function on (m, M) and
f i [a,b] — [m, M] be absolutely continuous and so that ®o f, f, ®’of, (P’ o f) f €

Lop[a.b]. ¢ =L € Lo [a,5] and L2200 ¢ L, [a,5], then by (2.10) for w () =

exp (t), we have

e15) 0 o /b(‘l)of)(t)exptdt (ffptdt>

expb—expa J, expb—expa
("0 f) f'

f/
expl/2 expl/2

1

= 2

(expb—expa).

la,b],2 [a,b],2

¢). Consider the function ¢ (t) :=t*, ¢t > 0,p € R\ {—1}. Let & : [m, M]C R - R
be a twice differentiable convex functlon on (m, M) and f : [a,b] C (0, 00) — [m, M]
be absolutely continuous and so that ® o f, f, ® o f, (<I>’ of)f € Ly |a, } If
fle=P/2 € Lya,b] and (9" o f) f'4=P/2 € Ly [a,b], then by (2.10) for w () =

have

(216)  0< ﬁ /ab 7 (®of)(t)dt— @ <(p Zﬁflf‘;iﬁf) dt)
el L P (CER Y all NCAD ]
For p = —2, we get from (2.16) that
(2.17) Ogbciba/ab (@otf)(t)dt(p(&/abftgt) )
< 2 (552 1 oy 160 1) £l

provided f'¢, (®" o f) f'l € Ly [a, ).

3. INEQUALITIES FOR COMPOSITE CONVEXITY
We have the following result for composite convexity:

Theorem 6. Let ¥ : [m, M] C R — R be a twice differentiable function on (m, M),
v i [m,M] = [y(m),y(M)] a strictly increasing, continuous and twice differen-
tiable function on (m, M), w : [a,b] — (0,00) a continuous function on [a,b] and
g [a,b] — [m, M] an absolutely continuous function on [a,b]. Assume that ¥o~y~!
is convex on [y (m),v(M)] and o g, yo g € Ly [a,b]. Define

(1) AW #) = L0 9l = (g (B) (" 09) ()
(v 29) (t)]
fortela,b).




REVERSES OF JENSEN’S INTEGRAL INEQUALITY 9

If (7'09)g € Ly [a,b] and 2529 ¢ [y [a,b], then

w1/2 w1/2
1 ' o (i) (og) () dt
(3.2) sf:w(s)dsfawww 9) (t)dt — W ory ( et )
1Y egd A(V,7,9) bw <) ds
< 2 wl/? o2 wl/? [a,b],2/a (s)ds.

Proof. If we write the inequality (2.10) for the convex function ® = ¥ o~~! on

[v(m),~v (M)] and for the function f =~ o g on [a,b], then we have

1

(33) 0<
f; w(s)ds

b
/ w(t) (FToy toyog)(t)dt

ot [Jew® (rog) () dt
v ( 2w (s)ds )

(Toy )" ((vog))- (v 0g)
wl/2

1

= 2

(yog)
wi/2

[a,b],2

/abw (s) ds.

Using the chain rule and the derivative of inverse functions we have
W oyt
BY  (Wor Y ()= (¥or ) () (7Y (= e )

(Y o) (2)
for every z € (y(m),vy (M)).
We have by (3.4) that

o1 (2) = (¥'or71) (2) l
(Foa™) ()_<(v’07‘1)(2)>
(¥'or ™) (z) (7 er ™) () = (¥or ™) (2) (o) ()
(v oy=1) (2))?

_ ("o 1))
") () e

[a,b]

) (o) (o) - (v
)

(v oy~1) ()]
(P70 1) () (Vo) (2) = (¥'or™!) (2) (W or ) (2)
(v o1 ()]

for every z € (y(m),vy (M)).
Therefore, for f = vy o g we get

N (¥"og)(t) (v og)(t) — (Y og) ) (v og)(?)
g’ o) o] =
(Tory™) ((vog) (1) (09 OF

and

(Tor ™) ((vog) @) (¥ og) ()
_ (Wog) () (v og) (1) = (¥ ; 9) ) (" og) ) _ A(W.7.9) (1
(v 0g) (t)]

for any t € (a,b).
By employing the inequality (3.3) we then get the desired result (3.2). O
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Corollary 8. Let ¥ : [m,M] C R— R be a twice differentiable function on
(m, M), v : [m,M] — [y(m),y(M)] a strictly increasing, continuous and twice
differentiable function on (m, M), and g : [a,b] — [m, M] an absolutely continu-
ous function on [a,b]. Assume that W o~~1! is conver on [y (m),~v (M)] and ¥ o g,
vog € Lla,b]. If (Y og)g € La[a,b] and A (V,v,g) € L2 [a,b], then

b b
(35 0= /@og)(t)dt—wv-l(b_la/mog)(t)dt)

—a

S

1
Sz

0=a)l(v" 2 9) d'lljap,2 1A (T, 7,90 p),2-
We also have:

Corollary 9. Let ¥ : [a,b] C R — R be a differentiable function on (a,b), v
[a,b] — [y (a),v (b)] a strictly increasing, continuous and differentiable function on
(a,b), and w : [a,b] — (0,00) a continuous function on [a,b]. Assume that ¥o~y~!
is convex on [y (a),vy (b)] and ¥, v € Ly, [a,b]. Define, fort € (a,b),

AW, ) (1) = LD ([f,)/ ;5 )w]PQ’ ()" (t)

and assume that —17 € Ly [a,b] and (1/’;’) € Lo [a,b], then

b b
t t)dt
(3.6) 0§¥/ w )V (t)dt — W oyt <fw<>7<)>
b b
faw(s)ds a faw(s)ds

L A () b

S ; w1/2 W / UJ(S) ds.
[a,b],2 [a,b],2 Ya

Remark 1. Let U : [a,b] C R — R be a twice differentiable function on (a,b) and
v i [a,b] = [y(a),v(b)] a strictly increasing, continuous and twice differentiable
function on (a,b). Assume that ¥ o~y~1 is convex on [y (a),v (b)]. If v € La [a,b]
and A(V,v) € Ly [a,b], then

1 b 1 b
. < - S
(3.7) 0< = [ vwa-vey (b_a/a 7(t)dt>
|
S 3 (0= a) 17 ljap)2 1A (L) 0,4,

Also, if we take w =+ in (5.6), then we get

1 b 1 (7 () +7(a)
(3.8) 0<’Y(7 v (t)dt — W oy~ (2>
<5 b ,

[a,b],2

provided (AV(,“)P;,”Q € Ly a,b)].

4. APPLICATIONS FOR SOME PARTICULAR CONVEXITIES

Let v : [a,b] — [v(a),v (b)] be a continuous strictly increasing function that is
differentiable on (a,b).
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Definition 1. A function ¥ : [a,b] — R will be called composite-y~! convex (con-
cave) on [a,b] if the composite function W o~y~1 : [y(a),y(b)] — R is convex
(concave) in the usual sense on [y (a),~ (b)].

In this way, any concept of convexity (log-convexity, harmonic convexity, trigono-
metric convexity, hyperbolic convexity, h-convexity, quasi-convexity, s-convexity,

s-Godunova-Levin convexity etc...) can be extended to the corresponding compos-
1

ite-y~" convexity. The details however will not be presented here.
If ¥: [a,b] — R is composite-y~! convex on [a, b] then we have the inequality
(4.1) oy H((1=Nu+ ) <1 =N Toy ! (u) + AWoy ! (v)

for any u, v € [y (a),v(b)] and A € [0,1].
This is equivalent to the condition

(4.2) Doy ™ (L=X)7 () + A (s)) < (1= X) T (t) + AT (s)

for any t, s € [a,b] and X € [0,1].
If we take v (t) = Int, t € [a,b] C (0,00), then the condition (4.2) becomes

(4.3) T (Y < (1=MN) T (1) + AT (s)

forany t, s € [a,b] and A € [0, 1], which is the concept of G A-convezity as considered
in [1].
If we take v (t) = —3, t € [a,b] C (0,00), then (4.2) becomes

ts
4.4 UV(—F— | <(A=-XNT(t)+ AT
(1.4 (o) sa-Vv@+awe
for any t, s € [a,b] and X € [0, 1], which is the concept of H A-convezity as consid-
ered in [1].
If p > 0 and we consider v (t) = t*, t € [a,b] C (0,00), then the condition (4.2)
becomes

(4.5) v [((1 N+ AP < (1= A) W (8) + AT (s)

for any t, s € [a,b] and X\ € [0, 1], which is the concept of p-convezity as considered
in [28].
If we take v (t) = expt, t € [a, ], then the condition (4.2) becomes

(4.6) Un((1—Xexp(t) +expy(s)] < (1—=X)T )+ AT (s)

which is the concept of LogEzp convex function on [a,b] as considered in [16].
Further, assume that ¥ : [a,b] — J, J an interval of real numbers and ¢ : J — R
a continuous function on J that is strictly increasing (decreasing) on J.

Definition 2. We say that the function ¥ : [a,b] — J is d-composite convex
(concave) on [a,b], if § o U is convex (concave) on [a,b].

In this way, any concept of convexity as mentioned above can be extended to
the corresponding §-composite convexity. The details however will not be presented
here.

With v : [a,b] — [v(a),v(b)] a continuous strictly increasing function that is
differentiable on (a,b), U : [a,b] — J, J an interval of real numbers and § : J — R
a continuous function on J that is strictly increasing (decreasing) on J, we can also
consider the following concept:
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Definition 3. We say that the function ¥ : [a,b] — J is §-composite-y~! convex

(concave) on [a,b], if 6 o W o~~1 is convex (concave) on [y (a),v (b)].

This definition is equivalent to the condition
(4.7) SoWont ((T=XN7E)+M () <X =N (oT)(t)+ A (o) (s)

for any t, s € [a,b] and X € [0,1].
If 6 : J — R is strictly increasing (decreasing) on J, then the condition (4.7) is
equivalent to:

(48) Wory H((1=N)7 () + A7 () < (2)8 (1= A) (50) (1) + A (30 T)(s)]

for any t, s € [a,b] and X\ € [0,1].

If 6 (t) =1Int, t >0 and ¥ : [a,b] — (0,00), then the fact that ¥ is d-composite
convex on [a,b] is equivalent to the fact that ¥ is log-conver or multiplicatively
conver or AG-convex, namely, for all z, y € I and t € [0, 1] one has the inequality:

(4.9) Wt + (1—)y) < [T @)] [T ()] .

A function ¥ : I — R\ {0} is called AH-convex (concave) on the interval I if
the following inequality holds [1]

1 B v (z) ¥ (y)
(410) (L =Nz +x) < (2) 7 T tAgs (1= ) ¥ (y) + AT ()

for any z, y € I and X € [0,1].

An important case that provides many examples is that one in which the function
is assumed to be positive for any x € I. In that situation the inequality (4.10) is
equivalent to

1 1 1
VG e =B e e
for any z, y € I and X € [0,1].
Taking into account this fact, we can conclude that the function ¥ : I — (0, 00)
is AH-convex (concave) on I if and only if ¥ is §-composite concave (convex) on I
with 6 : (0,00) — (0,00), 6 (t) = 1.
Following [1], we can introduce the concept of GH-convex (concave) function

U : ] C (0,00) — R on an interval of positive numbers I as satisfying the condition

JRES P 1 _ V() ¥ (y)
S R (e v ey w i s By VE T S T 3
Since
v (xl_)‘yA) =Poexp[(l1—A)Inz+ Alny]
and

U (z) ¥ (y) Voexp(lnz) ¥oexp(lny)

IT—NU () +AT(z) (1-NToexp(y) + A\ oexp(z)
then ¥ : I C (0,00) — R is GH-convex (concave) on I if and only if ¥ o exp
is AH-convex (concave) on Inl := {z| x =1Int, t € I'}. This is equivalent to the
fact that W is §-composite-y~! concave (convex) on I with § : (0,00) — (0, 00),
§(t)=1Yand y(t)=Int, t €.

t
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Following [1], we say that the function ¥ : I C R\ {0} — (0,00) is HH-convex

if
v v
o) Y (TR D [EL10
tx+(1—1)y (1-t)U(y) +tV(x)

for all , y € T and t € [0, 1]. If the inequality in (4.12) is reversed, then ¥ is said
to be H H -concave.

We observe that the inequality (4.12) is equivalent to

1 1 1
(4.13) CTw T S v (%)

for all z, y € I and ¢ € [0, 1].
This is equivalent to the fact that W is §-composite-y~
§:(0,00) = (0,00), 6(t) =1 and v (t) = =31, t € [a, b].
The function ¥ : I C (0,00) — (0,00) is called GG-convex on the interval I of

real umbers R if [1]
(4.14) U (a2 < (@ (@) @ ()

for any =, y € I and A € [0,1]. If the inequality is reversed in (4.14) then the
function is called GG-concave.

This concept was introduced in 1928 by P. Montel [24], however, the roots of the
research in this area can be traced long before him [25]. It is easy to see that [25], the
function ¥ : [a,b] C (0,00) — (0,00) is GG-convez if and only if the the function
v:[lna,Inb] — R, v =InoW¥oexp is convex on [Ina,Inbd]. This is equivalent to the
fact that ¥ is §-composite-y~! convex on [a,b] with 6 : (0,00) — R, 6 (t) = Int and
v(t) =Int, t € [a,b].

Following [1] we say that the function ¥ : I C R\ {0} — (0, 00) is HG-convez if

Ty 1—t t
(4.15) v <t:v+(1—t)y) <[] [ (y)]
for all x, y € I and t € [0, 1]. If the inequality in (4.2) is reversed, then ¥ is said to
be HG-concave.

Let ¥ : [a,b] C (0,00) — (0,00) and define the associated functions Gy :
[£,1] — R defined by Gy (t) = In¥ (1) . Then ¥ is HG-convez on [a,b] iff Gy is
convex on [%, ﬂ . This is equivalent to the fact that ¥ is J-composite-y~! convex
on [a,b] with §: (0,00) =R, §(t) =Int and v (t) = —1, t € [a,b].

Following [27], we say that the function ¥ : [a,b] — (0, 00) is r-convex, for r # 0,

! concave on [a,b] with

if
(4.16) T((1=Nz+Ay) <[(1—A) T (y) + A" ()]
for any z, y € [a,b] and X € [0,1].
If » > 0, then the condition (4.16) is equivalent to
U (I=XNz+Ay) < (1=X) ¥ (y) + A" (x)
namely U is §-composite convex on [a, b] where § (¢) =", t > 0.
If r < 0, then the condition (4.16) is equivalent to
U (I=XNz+Ay) > (1 =) ¥ (y) + A" (x)
namely ¥ is §-composite concave on [a, b] where § (t) =", t > 0.
For some results related to these concepts of convexity, see [9]-[15].
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We assume in the following that w : [a,b] — (0,00) is a continuous function on
[a,b] and ¢ : [a,b] — [m, M] is absolutely continuous on [a, b] .

If ¥ is log convexr on [m, M], then ¥ is §-composite-y~! convex on [a,b] with
§:(0,00) =R, §(t) =Int and vy (¢t) =€ (t) =1t, ¢t € [a,b]. If we use the inequality
(2.10) and assume that U is twice differentiable on (m, M), then we have

o B Jow g ()t
(4.17) 0< f:w(s) ds/a w(t)In (Pog)(t)dt—1 \I!< f:w(s)ds >]
1 g A(ln,g) bw o) ds
< 72 | wl/2 a2 wl/? [a7b],2/a (s)ds,

where
(0o g)(t) (Wog) (1) — (¥ og) (1)
A(nT,g)(t) = (Wog) (t))2 , t € [a,b]
and provided that ﬁ € Lz [a,b] and % € Ly a,b].

If ¥ is GA-convez on [a,b] C (0,00), then ¥ is §-composite-y~! convex on [a, b]

with v : (0,00) — R, 7(t) = Int and 6 (¢t) = £(t) = t, t € [a,b]. If we use the
inequality (2.10) and assume that ¥ is twice differentiable on (m, M), then we have

b b
t)1 t)dt
(4.18) 0< L/ w(t) (Wog)(t)dt — W |exp Jow ()Ing (1)
b b
[, w(s)ds Ja [, w(s)ds
L g A (¥, 1n, g) ’
=2 || guir 172 / w (s)ds,
[a,b],2 la,b],2 Ya

where

A (U, In,g) (t) = (¥"0g) () g (t) + (¥ 0 g) (¢)

and provided that gu?l//z’ A(f{l/r;’g) € Ly a,b).

The function ¥ : [a,b] — (0,00) is AH-conver on [a,b] if and only if U is
§-composite-y~! concave on [a,b] with § : (0,00) — (0,00), §(t) = + and and
v(t)=4(t) =t,t € [a,b]. If we use the inequality (2.10) for the convex function

—U~1 and assume that W is twice differentiable on (m, M), then we have

frowgewar)] 1 b w ()
‘I’< f:w(s)ds )] fbw(s)ds/a (Wog)(t)dt

(4.19) 0<

1 g 7A (—\Il_l,g) bw s)ds
] e O e W [ v
where
A (cu ) () (V2O O 0) () = 2((¥04) (1)

(Tog) (1)’
A(—0~1tg

and provided that w%//z, % € Ly [a,b].
If the function ¥ is HA-convex [a,b], then ¥ is é-composite-y~! convex on [a, b]
with v : (0,00) = R, y(t) = —t~ 1 and 6 (t) = £(t) = t, t € [a,b]. If we use the

1
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inequality (2.16) and assume that ¥ is twice differentiable on (m, M), then we have

1 b : d
(4.20) 0< bi/ w (t) (Yog)(t)dt— ¥ j;;uwi((f))s
J, w(s)ds Ja la POLS
1 g A (\I/,—E_l,g) /b
< |- -\ - 9 w(s)ds,
w2 || g?w!/2 [a,b],2 w!/? [a,],2 7@
where

AT~ g) (1) = (¥ 0g) (1) g° () +29 (1) (¥ 0 g) (1)

. / A(T,—¢7tg
and provided that 9231/2, ( 7 ) € Ly [a,b].

Similar results may be stated for the other concepts of convexity as presented
above, however the details are omitted.

REFERENCES

[1] G.D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequal-
ities, J. Math. Anal. Appl. 335 (2007) 1294-1308.

[2] P. L. Chebyshev, Sur les expressions approximatives des integrals définis par les outres prises
entre les méme limites, Proc. Math. Soc. Charkov, 2 (1882), 93-98.

[3] P. Cerone and S. S. Dragomir, A refinement of the Griiss inequality and applications. Tamkang
J. Math. 38 (2007), no. 1, 37-49. Preprint RGMIA Res. Rep. Coll. 5 (2002), No. 2, Art. 14.
[Online http://rgmia.org/papers/vbn2/RGIApp.pdf].

[4] S. S. Dragomir, A Griiss type inequality for isotonic linear functionals and applications.
Demonstratio Math. 36 (2003), no. 3, 551-562. Preprint RGMIA Res. Rep. Coll. 5 (2002),
Suplement, Art. 12. [Online http://rgmia.org/papers/v5e/GTIILFApp.pdf].

[5] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of re-
cent results. Aust. J. Math. Anal. Appl. 14 (2017), no. 1, Art. 1, 283 pp. [Online
http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].

[6] S. S. Dragomir, Some reverses of the Jensen inequality with applications. Bull. Aust. Math.
Soc. 87 (2013), no. 2, 177-194.

[7] S. S. Dragomir, Reverses of the Jensen inequality in terms of first derivative and applications.
Acta Math. Vietnam. 38 (2013), no. 3, 429-446.

[8] S. S. Dragomir, A refinement and a divided difference reverse of Jensen’s inequality with
applications. Rev. Colombiana Mat. 50 (2016), no. 1, 17-39.

[9] S. S. Dragomir, New inequalities of Hermite-Hadamard type for log-convex functions.
Khayyam J. Math. 3 (2017), no. 2, 98-115..

[10] S. S. Dragomir, Inequalities of Hermite-Hadamard type for GA-convex functions, to appear
in Annales Mathematicae Silesianae, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 30.
[Online http://rgmia.org/papers/vi18/v18a30.pdf].

[11] S. S. Dragomir, Inequalities of Hermite-Hadamard type for GG-convex functions,
Preprint RGMIA, Research Report Collection, 18 (2015), Art. 71, 15 pp., [Online
http://rgmia.org/papers/v18/v18a71.pdf].

[12] S. S. Dragomir, Some integral inequalities of Hermite-Hadamard type for GG-convex func-
tions, Mathematica (Cluj), 59 (82), No 1-2, 2017, pp. 47-64. Preprint RGMIA, Research Re-
port Collection, 18 (2015), Art. 74. [Online http://rgmia.org/papers/v18/v18a74.pdf].

[13] S. S. Dragomir, Inequalities of Hermite-Hadamard type for H A-convex functions, Maroccan
J. Pure & Appl. Analysis, Volume 3 (1), 2017, Pages 83-101. Preprint, RGMIA Res. Rep.
Coll. 18 (2015), Art. 38. [Online http://rgmia.org/papers/v18/v18a38.pdf].

[14] S.S. Dragomir, Inequalities of Hermite-Hadamard type for HG-convex functions, Probl. Anal.
Issues Anal. Vol. 6 (24), No. 2, 2017 1-17. Preprint, RGMIA Res. Rep. Coll. 18 (2015), Art.
79. [Online http://rgmia.org/papers/vi8/v18a79.pdf].

[15] S. S. Dragomir, Inequalities of Hermite-Hadamard type for H H-convex functions, to appear
in Acta et Commentationes Universitatis Tartuensis de Mathematica, Preprint, RGMIA Res.
Rep. Coll. 18 (2015), Art. 80. [Online http://rgmia.org/papers/v18/v18a80.pdf].



16 S.S. DRAGOMIR

[16] S. S. Dragomir, Inequalities for a generalized finite Hilbert transform of convex functions,
Preprint RGMIA Res. Rep. Coll. 21 (2018), Art

[17] S. S. Dragomir, Reverses of Jensen’s integral inequality via a weighted Ostrowski type result
with applications for composite convex functions, Preprint RGMIA Res. Rep. Coll. 21 (2018),
Art

[18] S. S. Dragomir, Reverses of Jensen’s integral inequality via a weighted Cebysev type result
with applications for composite convex functions, Preprint RGMIA Res. Rep. Coll. 21 (2018),
Art

[19] S. S. Dragomir and N. M. Ionescu, Some converse of Jensen’s inequality and applications.
Rev. Anal. Numér. Théor. Approz. 23 (1994), no. 1, 71-78.

[20] L. Fejér, Uber die Fourierreihen, II, (In Hungarian) Math. Naturwiss, Anz. Ungar. Akad.
Wiss., 24 (1906), 369-390.

[21] G. Griiss, Uber das Maximum des absoluten Betrages von ﬁ f: f@)g(x)dx —
=t [P f(x)dz [ g(x)de, Math. Z. , 39(1935), 215-226.

[22] A. Lupasg, The best constant in an integral inequality, Mathematica (Cluj, Romania),
15(38)(2) (1973), 219-222.

[23] D. S. Mitrinovi¢ and I. B. Lackovi¢, Hermite and convexity, Aequationes Math. 28 (1985),
229-232.

[24] P. Montel, Sur les functions convexes et les fonctions sousharmoniques, Journal de Math., 9
(1928), 7, 29-60.

[25] C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl., 3, (2000),
2, 155-167.

[26] A. M. Ostrowski, On an integral inequality, Aequat. Math., 4 (1970), 358-373.

[27] C. E. M. Pearce, J. Pecari¢ and V. Simi¢, Stolarsky means and Hadamard’s inequality. J.
Math. Anal. Appl. 220, 99-109 (1998)

(28] K. S. Zhang and J. P. Wan, p-convex functions and their properties. Pure Appl. Math. 23(1),
130-133 (2007).

IMATHEMATICS, COLLEGE OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO Box 14428,
MELBOURNE CiTy, MC 8001, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

2DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES,
ScHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-
SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA





