
REVERSES OF JENSEN�S INTEGRAL INEQUALITY VIA A
WEIGHTED LUPAŞ TYPE RESULT WITH APPLICATIONS FOR

COMPOSITE CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we obtain some reverses of Jensen�s integral inequal-
ity by employing a new weighted integral inequality of Lupaş type. Applica-
tions for general composite convex functions with examples for AG, GA-convex
functions and HA; AH-convex function are also given.

1. Introduction

Let (
;A; �) be a measurable space consisting of a set 
; a �-algebra A of parts
of 
 and a countably additive and positive measure � on A with values in R[f1g :
For a �-measurable function w : 
 ! R, with w (x) � 0 for �-a.e. (almost every)
x 2 
; consider the Lebesgue space

Lw (
; �) := ff : 
! R; f is �-measurable and
Z



w (x) jf (x)j d� (x) <1g:

For simplicity of notation we write everywhere in the sequel
R


wd� instead ofR



w (x) d� (x) :
In order to provide a reverse of the celebrated Jensen�s integral inequality for

convex functions, S. S. Dragomir obtained in 2002 [4] the following result:

Theorem 1. Let � : [m;M ] � R! R be a di¤erentiable convex function on (m;M)
and f : 
 ! [m;M ] so that � � f; f; �0 � f; (�0 � f) f 2 Lw (
; �) ; where w � 0
�-a.e. (almost everywhere) on 
 with

R


wd� = 1: Then we have the inequality:

0 �
Z



w (� � f) d�� �
�Z




wfd�

�
(1.1)

�
Z



w (�0 � f) fd��
Z



w (�0 � f) d�
Z



wfd�:

Let � : [m;M ]! R be a di¤erentiable convex function on (m;M) : If xi 2 [m;M ]
and wi � 0 (i = 1; : : : ; n) with Wn :=

Pn
i=1 wi = 1; then one has the reverse of
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Jensen�s weighted discrete inequality:

0 �
nX
i=1

wi� (xi)� �
 

nX
i=1

wixi

!
(1.2)

�
nX
i=1

wi�
0 (xi)xi �

nX
i=1

wi�
0 (xi)

nX
i=1

wixi:

The inequality (1.2) was obtained in 1994 by Dragomir & Ionescu, see [19].
The following result providing a sequence of bounds for the Jensen�s gap [4]:

Theorem 2. Let � : [m;M ] � R! R be a di¤erentiable convex function on (m;M)
and f : 
 ! [m;M ] so that � � f; f; �0 � f; (�0 � f) f 2 Lw (
; �) ; where w � 0
�-a.e. (almost everywhere) on 
 with

R


wd� = 1: Then we have the sequence of

inequalities:

0 �
Z



w (� � f) d�� �
�Z




wfd�

�
(1.3)

�
Z



w (�0 � f) fd��
Z



w (�0 � f) d�
Z



wfd�

� 1

2

8<:
�
�0� (M)� �0+ (m)

� R


w
��f � R



wfd�

�� d�
(M �m)

R


w
���0 � f � R



w (�0 � f) d�

�� d�
� 1

2

8>>><>>>:
�
�0� (M)� �0+ (m)

� hR


wf2d��

�R


wfd�

�2i 12
(M �m)

hR


w (�0 � f)2 d��

�R


w (�0 � f) d�

�2i 12
� 1

4
(M �m)

�
�0� (M)� �0+ (m)

�
:

For other similar reverses of Jensen�s integral inequality in the general setting of
Lebesgue integral, see [6]-[8].
In the recent paper [17], by the use of a weighted version of Ostrowski�s inequality,

we obtained the following reverse of Jensen�s integral inequality for functions of a
real variable:

Theorem 3. Let � : [m;M ] � R! R be a di¤erentiable convex function on
(m;M) ; w : [a; b] ! (0;1) be continuous on [a; b] and f : [a; b] ! [m;M ] be
absolutely continuous so that � � f; f; �0 � f; (�0 � f) f 2 Lw [a; b] :

(i) If f
0

w 2 L1 [a; b] ; then we have the inequality

0 � 1R b
a
w (s) ds

Z b

a

w (t) (� � f) (t) dt� �
 R b

a
w (t) f (t) dtR b
a
w (s) ds

!
(1.4)

� 1

8

�
�0� (M)� �0+ (m)

� 



f 0w





[a;b];1

Z b

a

w (s) ds:
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(ii) If � is twice di¤erentiable on (m;M) and (
�00�f)f 0

w 2 L1 [a; b] ; then

0 � 1R b
a
w (s) ds

Z b

a

w (t) (� � f) (t) dt� �
 R b

a
w (t) f (t) dtR b
a
w (s) ds

!
(1.5)

� 1

8
(M �m)





 (�00 � f) f 0w






[a;b];1

Z b

a

w (s) ds:

This result has the following particular cases of interest:

Corollary 1. Let � : [m;M ] � R! R be a di¤erentiable convex function on
(m;M) and f : [a; b] ! [m;M ] be absolutely continuous so that � � f; f; �0 �
f; (�0 � f) f 2 L [a; b] :

(i) If f 0 2 L1 [a; b] ; then we have the inequality

0 � 1

b� a

Z b

a

(� � f) (t) dt� �
 

1

b� a

Z b

a

f (t) dt

!
(1.6)

� 1

8
(b� a)

�
�0� (M)� �0+ (m)

�
kf 0k[a;b];1 :

(ii) If � is twice di¤erentiable on (m;M) and (�00 � f) f 0 2 L1 [a; b] ; then

0 � 1

b� a

Z b

a

(� � f) (t) dt� �
 

1

b� a

Z b

a

f (t) dt

!
(1.7)

� 1

8
(b� a) (M �m) k(�00 � f) f 0k[a;b];1 :

Corollary 2. Let � : [a; b] � R! R be a di¤erentiable convex function on (a; b) ;
w : [a; b]! (0;1) be continuous on [a; b] and �; �0 2 Lw [a; b] :

(i) If 1
w 2 L1 [a; b] ; then we have the inequality

0 � 1R b
a
w (s) ds

Z b

a

w (t) � (t) dt� �
 R b

a
tw (t) dtR b

a
w (s) ds

!
(1.8)

� 1

8

�
�0� (b)� �0+ (a)

� 



 1w





[a;b];1

Z b

a

w (s) ds:

(ii) If f � is twice di¤erentiable on (m;M) and �00

w 2 L1 [a; b] ; then

0 � 1R b
a
w (s) ds

Z b

a

w (t) � (t) dt� �
 R b

a
tw (t) dtR b

a
w (s) ds

!
(1.9)

� 1

8
(b� a)





�00w





[a;b];1

Z b

a

w (s) ds:

By employing a new weighted integral inequality of µCeby�ev type, in the recent
paper [18], we obtained the following reverse of Jensen�s integral inequality:

Theorem 4. Let � : [m;M ] � R! R be a twice di¤erentiable convex function
on (m;M) ; w : [a; b] ! (0;1) be continuous on [a; b] and f : [a; b] ! [m;M ] be
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absolutely continuous so that ��f; f; �0 �f; (�0 � f) f 2 Lw [a; b] : If f
0

w 2 L1 [a; b]
and (

�00�f)f 0

w 2 L1 [a; b] ; then we have the inequality

0 � 1R b
a
w (s) ds

Z b

a

w (t) (� � f) (t) dt� �
 R b

a
w (t) f (t) dtR b
a
w (s) ds

!
(1.10)

� 1

12





f 0w





[a;b];1





 (�00 � f) f 0w






[a;b];1

 Z b

a

w (s) ds

!2
:

The following particular cases are of interest:

Corollary 3. Let � : [m;M ] � R! R be a twice di¤erentiable convex function on
(m;M) and f : [a; b] ! [m;M ] be absolutely continuous on [a; b] : If f 0 2 L1 [a; b]
and (�00 � f) f 0 2 L1 [a; b] ; then we have the inequality

0 � 1

b� a

Z b

a

(� � f) (t) dt� �
 

1

b� a

Z b

a

f (t) dt

!
(1.11)

� 1

12
kf 0k[a;b];1 k(�

00 � f) f 0k[a;b];1 (b� a)
2
:

Corollary 4. Let � : [a; b] � R! R be a twice di¤erentiable convex function on
(a; b) ; w : [a; b] ! (0;1) a continuous function on [a; b] and �; �0 2 Lw [a; b] : If
1
w 2 L1 [a; b] and

�00

w 2 L1 [a; b] ; then we have the inequality

0 � 1R b
a
w (s) ds

Z b

a

w (t) � (t) dt� �
 R b

a
tw (t) dtR b

a
w (s) ds

!
(1.12)

� 1

12





 1w





[a;b];1





�00w





[a;b];1

 Z b

a

w (s) ds

!2
:

Motivated by the above results, in this paper we obtain some reverses of Jensen�s
integral inequality by employing a new weighted integral inequality of Lupaş type.
Applications for general composite convex functions with examples for AG, GA-
convex functions and HA; AH-convex function are also given.

2. Reverses of Jensen�s Inequality Via a Weighted LupaŞ Result

For two Lebesgue integrable functions f; g : [a; b] ! R, consider the µCeby�ev
functional :

(2.1) C (f; g) :=
1

b� a

Z b

a

f(t)g(t)dt� 1

(b� a)2
Z b

a

f(t)dt

Z b

a

g(t)dt:

In 1935, Grüss [21] showed that

(2.2) jC (f; g)j � 1

4
(M �m) (N � n) ;

provided that there exists the real numbers m; M; n; N such that

(2.3) m � f (t) �M and n � g (t) � N for a.e. t 2 [a; b] :
The constant 1

4 is best possible in (2.1) in the sense that it cannot be replaced by
a smaller quantity.
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The case of euclidean norms of the derivative was considered by A. Lupaş in [22]
in which he proved that

(2.4) jC (f; g)j � 1

�2
kf 0k2 kg

0k2 (b� a) ;

provided that f; g are absolutely continuous and f 0; g0 2 L2 [a; b] : The constant 1
�2

is the best possible.
Consider the functional:

(2.5) Ch0 (f; g) :=
1

h (b)� h (a)

Z b

a

f (t) g (t)h0 (t) dt

� 1

h (b)� h (a)

Z b

a

f (t)h0 (t) dt
1

h (b)� h (a)

Z b

a

g (t)h0 (t) dt;

where h is absolutely continuous and f; g are Lebesgue measurable on [a; b] and
such that the above integrals exist.
We also have the following weighted version of Lupaş inequality:

Lemma 1. Let h : [a; b]! [h (a) ; h (b)] be a continuous strictly increasing function
that is di¤erentiable on (a; b) : If f , g : [a; b]! R are absolutely continuous on [a; b]
and f 0

(h0)1=2
; g0

(h0)1=2
2 L2 [a; b] ; then we have

(2.6) jCh0 (f; g)j �
1

�2






 f 0

(h0)
1=2







[a;b];2






 g0

(h0)
1=2







[a;b];2

[h (b)� h (a)] :

The constant 1
�2 is best possible.

Proof. Assume that [c; d] � [a; b] : If g : [c; d]! C is absolutely continuous on [c; d] ;
then g � h�1 : [h (c) ; h (d)]! C is absolutely continuous on [h (c) ; h (d)] and using
the chain rule and the derivative of inverse functions we have

(2.7)
�
g � h�1

�0
(z) =

�
g0 � h�1

�
(z)
�
h�1

�0
(z) =

�
g0 � h�1

�
(z)

(h0 � h�1) (z)
for almost every (a.e.) z 2 [h (c) ; h (d)] :
Using the identity (2.7) above, we haveZ h(b)

h(a)

����g � h�1�0 (u)���2 du = Z h(b)

h(a)

�����
�
g0 � h�1

�
(u)

(h0 � h�1) (u)

�����
2

du:

By the change of variable t = h�1 (u) ; u 2 [h (a) ; h (b)] ; we have u = h (t) that
gives du = h0 (t) dt: ThereforeZ h(b)

h(a)

�����
�
g0 � h�1

�
(u)

(h0 � h�1) (u)

�����
2

du =

Z b

b

���� g0 (t)h0 (t)

����2 h0 (t) dt
=

Z b

b

����� g0 (t)

[h0 (t)]
1=2

�����
2

dt =






 g0

(h0)
1=2







2

[a;b];2

:

In a similar way, we also haveZ h(b)

h(a)

�����
�
f 0 � h�1

�
(u)

(h0 � h�1) (u)

�����
2

du =






 f 0

(h0)
1=2







2

[a;b];2

:
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This mean that 


�f � h�1�0



[h(a);h(b)];2

=






 f 0

(h0)
1=2







[a;b];2

and 


�g � h�1�0



[h(a);h(b)];2

=






 g0

(h0)
1=2







[a;b];2

:

By making use of Lupaş inequality (2.4) for the functions f � h�1 and g � h�1 on
the interval [h (a) ; h (b)] we get

(2.8)

����� 1

h (b)� h (a)

Z h(b)

h(a)

f � h�1(u)g � h�1(u)du

� 1

[h (b)� h (a)]2
Z h(b)

h(a)

f � h�1(u)du
Z h(b)

h(a)

g � h�1(u)du
�����

� 1

�2




�f � h�1�0



[h(a);h(b)];2




�g � h�1�0



[h(a);h(b)];2

[h (b)� h (a)] :

Observe also that, by the change of variable t = h�1 (u) ; u 2 [g (a) ; g (b)] ; we have
u = h (t) that gives du = h0 (t) dt andZ h(b)

h(a)

�
f � h�1

�
(u) du =

Z b

a

f (t)h0 (t) dt;Z h(b)

h(a)

g � h�1(u)du =
Z b

a

g (t)h0 (t) dt;Z h(b)

h(a)

f � h�1(u)g � h�1(u)du =
Z b

a

f (t) g (t)h0 (t) dt;

which together with (2.8) produces the desired result (2.6). �

Corollary 5. Assume that w : [a; b] ! (0;1) is continuous on [a; b] : If f; g :
[a; b] ! R are absolutely continuous on [a; b] and f 0

w1=2
; g0

w1=2
2 L2 [a; b] ; then we

have

(2.9) jCw (f; g)j �
1

�2





 f 0

w1=2






[a;b];2





 g0

w1=2






[a;b];2

Z b

a

w (s) ds:

We have the following reverse of Jensen�s integral inequality:

Theorem 5. Let � : [m;M ] � R! R be a twice di¤erentiable convex function
on (m;M) ; w : [a; b] ! (0;1) be continuous on [a; b] and f : [a; b] ! [m;M ] be
absolutely continuous so that ��f; f; �0�f; (�0 � f) f 2 Lw [a; b] : If f 0

w1=2
2 L2 [a; b]

and (
�00�f)f 0

w1=2
2 L2 [a; b] ; then we have the inequality

0 � 1R b
a
w (s) ds

Z b

a

w (t) (� � f) (t) dt� �
 R b

a
w (t) f (t) dtR b
a
w (s) ds

!
(2.10)

� 1

�2





 f 0

w1=2






[a;b];2





 (�00 � f) f 0w1=2






[a;b];2

Z b

a

w (s) ds:
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Proof. By (4.14) we have

0 � 1R b
a
w (s) ds

Z b

a

w (t) (� � f) (t) dt� �
 R b

a
w (t) f (t) dtR b
a
w (s) ds

!
(2.11)

� 1R b
a
w (s) ds

Z b

a

w (t) (�0 � f) (t) f (t) dt

� 1R b
a
w (s) ds

Z b

a

w (t) (�0 � f) (t) dt 1R b
a
w (s) ds

Z b

a

w (t) f (t) dt:

Since � is twice di¤erentiable on (a; b), then

(�0 � f)0 (t) = (�00 � f) (t) f 0 (t)
for t 2 (a; b) :
If we use the inequality (2.9), then we get

1R b
a
w (s) ds

Z b

a

w (t) (� � f) (t) f (t) dt

� 1R b
a
w (s) ds

Z b

a

w (t) (�0 � f) (t) dt 1R b
a
w (s) ds

Z b

a

w (t) f (t) dt

� 1

�2





 (�0 � f)0w1=2






[a;b];2





 f 0

w1=2






[a;b];2

Z b

a

w (s) ds

=
1

�2





 (�00 � f) f 0w1=2






[a;b];2





 f 0

w1=2






[a;b];2

Z b

a

w (s) ds;

which, together with (2.11), proves the required inequality (2.10). �

Corollary 6. Let � : [m;M ] � R! R be a twice di¤erentiable convex function on
(m;M) and f : [a; b] ! [m;M ] be absolutely continuous on [a; b] : If f 0 2 L2 [a; b]
and (�00 � f) f 0 2 L2 [a; b] ; then we have the inequality

0 � 1

b� a

Z b

a

(� � f) (t) dt� �
 

1

b� a

Z b

a

f (t) dt

!
(2.12)

� 1

�2
kf 0k[a;b];2 k(�

00 � f) f 0k[a;b];2 (b� a) :

Corollary 7. Let � : [a; b] � R! R be a twice di¤erentiable convex function on
(a; b) ; w : [a; b] ! (0;1) a continuous function on [a; b] and �; �0 2 Lw [a; b] : If
1

w1=2
2 L2 [a; b] and �00

w1=2
2 L2 [a; b] ; then we have the inequality

0 � 1R b
a
w (s) ds

Z b

a

w (t) � (t) dt� �
 R b

a
tw (t) dtR b

a
w (s) ds

!
(2.13)

� 1

�2





 1

w1=2






[a;b];2





 �00w1=2






[a;b];2

Z b

a

w (s) ds:

De�ne the function ` (t) := t; t 2 R.
a). Let � : [m;M ] � R! R be a twice di¤erentiable convex function on (m;M)

and f : [a; b] � (0;1) ! [m;M ] be absolutely continuous and so that � � f; f;
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�0 � f; (�0 � f) f 2 L`�1 [a; b] : If f 0`1=2 2 L2 [a; b] and (�00 � f) f 0`1=2 2 L2 [a; b] ;
then by (2.10) for w (t) = 1

t ; we have

0 � 1

ln
�
b
a

� Z b

a

(� � f) (t)
t

dt� �
 R b

a
f(t)
t dt

ln
�
b
a

� !(2.14)

� 1

�2




f 0`1=2



[a;b];2




(�00 � f) f 0`1=2



[a;b];2

ln

�
b

a

�
:

b). Let � : [m;M ] � R! R be a twice di¤erentiable convex function on (m;M) and
f : [a; b]! [m;M ] be absolutely continuous and so that ��f; f; �0 �f; (�0 � f) f 2
Lexp [a; b] : If

f 0

exp1=2
2 L2 [a; b] and

(�00�f)f 0

exp1=2
2 L2 [a; b] ; then by (2.10) for w (t) =

exp (t) ; we have

0 � 1

exp b� exp a

Z b

a

(� � f) (t) exp tdt� �
 R b

a
f (t) exp tdt

exp b� exp a

!
(2.15)

� 1

�2





 f 0

exp1=2






[a;b];2





 (�00 � f) f 0exp1=2






[a;b];2

(exp b� exp a) :

c). Consider the function `p (t) := tp; t > 0; p 2 Rn f�1g : Let � : [m;M ] � R! R
be a twice di¤erentiable convex function on (m;M) and f : [a; b] � (0;1)! [m;M ]
be absolutely continuous and so that � � f; f; �0 � f; (�0 � f) f 2 L`p [a; b] : If
f 0`�p=2 2 L2 [a; b] and (�00 � f) f 0`�p=2 2 L2 [a; b] ; then by (2.10) for w (t) = `p; we
have

0 � p+ 1

bp+1 � ap+1
Z b

a

tp (� � f) (t) dt� �
 
(p+ 1)

R b
a
tpf (t) dt

bp+1 � ap+1

!
(2.16)

� 1

�2 (p+ 1)




f 0`�p=2



[a;b];2




(�00 � f) f 0`�p=2



[a;b];2

�
bp+1 � ap+1

�
:

For p = �2; we get from (2.16) that

0 � ab

b� a

Z b

a

(� � f) (t)
t2

dt� �
 

ab

b� a

Z b

a

f (t)

t2
dt

!
(2.17)

� 1

�2

�
b� a
ab

�
kf 0`k[a;b];2 k(�

00 � f) f 0`k[a;b];2 ;

provided f 0`; (�00 � f) f 0` 2 L2 [a; b] :

3. Inequalities for Composite Convexity

We have the following result for composite convexity:

Theorem 6. Let 	 : [m;M ] � R! R be a twice di¤erentiable function on (m;M) ;

 : [m;M ] ! [
 (m) ; 
 (M)] a strictly increasing, continuous and twice di¤eren-
tiable function on (m;M) ; w : [a; b] ! (0;1) a continuous function on [a; b] and
g : [a; b]! [m;M ] an absolutely continuous function on [a; b] : Assume that 	�
�1
is convex on [
 (m) ; 
 (M)] and 	 � g; 
 � g 2 Lw [a; b] : De�ne

(3.1) �(	; 
; g) (t) :=
(	00 � g) (t) (
0 � g) (t)� (	0 � g) (t) (
00 � g) (t)

[(
0 � g) (t)]2

for t 2 [a; b] :
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If (

0�g)g0

w1=2
2 L2 [a; b] and �(	;
;g)

w1=2
2 L2 [a; b] ; then

0 � 1R b
a
w (s) ds

Z b

a

w (t) (	 � g) (t) dt�	 � 
�1
 R b

a
w (t) (
 � g) (t) dtR b

a
w (s) ds

!
(3.2)

� 1

�2





 (
0 � g) g0w1=2






[a;b];2





�(	; 
; g)w1=2






[a;b];2

Z b

a

w (s) ds:

Proof. If we write the inequality (2.10) for the convex function � = 	 � 
�1 on
[
 (m) ; 
 (M)] and for the function f = 
 � g on [a; b] ; then we have

(3.3) 0 � 1R b
a
w (s) ds

Z b

a

w (t)
�
	 � 
�1 � 
 � g

�
(t) dt

�	 � 
�1
 R b

a
w (t) (
 � g) (t) dtR b

a
w (s) ds

!

� 1

�2





 (
 � g)0w1=2






[a;b];2







�
	 � 
�1

�00
((
 � g)) � (
0 � g)
w1=2







[a;b];2

Z b

a

w (s) ds:

Using the chain rule and the derivative of inverse functions we have

(3.4)
�
	 � 
�1

�0
(z) =

�
	0 � 
�1

�
(z)
�

�1

�0
(z) =

�
	0 � 
�1

�
(z)

(
0 � 
�1) (z)
for every z 2 (
 (m) ; 
 (M)).
We have by (3.4) that

�
	 � 
�1

�00
(z) =

 �
	0 � 
�1

�
(z)

(
0 � 
�1) (z)

!0

=

�
	0 � 
�1

�0
(z)
�

0 � 
�1

�
(z)�

�
	0 � 
�1

�
(z)
�

0 � 
�1

�0
(z)

[(
0 � 
�1) (z)]2

=

(	00�
�1)(z)
(
0�
�1)(z)

�

0 � 
�1

�
(z)�

�
	0 � 
�1

�
(z)

(
00�
�1)(z)
(
0�
�1)(z)

[(
0 � 
�1) (z)]2

=

�
	00 � 
�1

�
(z)
�

0 � 
�1

�
(z)�

�
	0 � 
�1

�
(z)
�

00 � 
�1

�
(z)

[(
0 � 
�1) (z)]3

for every z 2 (
 (m) ; 
 (M)).
Therefore, for f = 
 � g we get�

	 � 
�1
�00
((
 � g) (t)) = (	00 � g) (t) (
0 � g) (t)� (	0 � g) (t) (
00 � g) (t)

[(
0 � g) (t)]3

and �
	 � 
�1

�00
((
 � g) (t)) (
0 � g) (t)

=
(	00 � g) (t) (
0 � g) (t)� (	0 � g) (t) (
00 � g) (t)

[(
0 � g) (t)]2
= �(	; 
; g) (t)

for any t 2 (a; b) :
By employing the inequality (3.3) we then get the desired result (3.2). �
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Corollary 8. Let 	 : [m;M ] � R! R be a twice di¤erentiable function on
(m;M) ; 
 : [m;M ] ! [
 (m) ; 
 (M)] a strictly increasing, continuous and twice
di¤erentiable function on (m;M) ; and g : [a; b] ! [m;M ] an absolutely continu-
ous function on [a; b] : Assume that 	 � 
�1 is convex on [
 (m) ; 
 (M)] and 	 � g;

 � g 2 L [a; b] : If (
0 � g) g0 2 L2 [a; b] and �(	; 
; g) 2 L2 [a; b] ; then

0 � 1

b� a

Z b

a

(	 � g) (t) dt�	 � 
�1
 

1

b� a

Z b

a

(
 � g) (t) dt
!

(3.5)

� 1

�2
(b� a) k(
0 � g) g0k[a;b];2 k�(	; 
; g)k[a;b];2 :

We also have:

Corollary 9. Let 	 : [a; b] � R! R be a di¤erentiable function on (a; b) ; 
 :
[a; b]! [
 (a) ; 
 (b)] a strictly increasing, continuous and di¤erentiable function on
(a; b) ; and w : [a; b]! (0;1) a continuous function on [a; b] : Assume that 	 � 
�1
is convex on [
 (a) ; 
 (b)] and 	; 
 2 Lw [a; b] : De�ne, for t 2 (a; b) ;

�(	; 
) (t) :=
	00 (t) 
0 (t)�	0 (t) 
00 (t)

[
0 (t)]
2

and assume that 
0

w1=2
2 L2 [a; b] and �(	;
)

w1=2
2 L2 [a; b], then

0 � 1R b
a
w (s) ds

Z b

a

w (t)	 (t) dt�	 � 
�1
 R b

a
w (t) 
 (t) dtR b
a
w (s) ds

!
(3.6)

� 1

�2





 
0

w1=2






[a;b];2





�(	; 
)w1=2






[a;b];2

Z b

a

w (s) ds:

Remark 1. Let 	 : [a; b] � R! R be a twice di¤erentiable function on (a; b) and

 : [a; b] ! [
 (a) ; 
 (b)] a strictly increasing, continuous and twice di¤erentiable
function on (a; b) : Assume that 	 � 
�1 is convex on [
 (a) ; 
 (b)]. If 
0 2 L2 [a; b]
and �(	; 
) 2 L2 [a; b] ; then

0 � 1

b� a

Z b

a

	(t) dt�	 � 
�1
 

1

b� a

Z b

a


 (t) dt

!
(3.7)

� 1

�2
(b� a) k
0k[a;b];2 k�(	; 
)k[a;b];2 :

Also, if we take w = 
0 in (3.6), then we get

0 � 1


 (b)� 
 (a)

Z b

a

	(t) 
0 (t) dt�	 � 
�1
�

 (b) + 
 (a)

2

�
(3.8)

� 1

�2
[
 (b)� 
 (a)]






�(	; 
)(
0)
1=2







[a;b];2

;

provided �(	;
)

(
0)1=2
2 L2 [a; b] :

4. Applications for Some Particular Convexities

Let 
 : [a; b] ! [
 (a) ; 
 (b)] be a continuous strictly increasing function that is
di¤erentiable on (a; b) :



REVERSES OF JENSEN�S INTEGRAL INEQUALITY 11

De�nition 1. A function 	 : [a; b]! R will be called composite-
�1 convex (con-
cave) on [a; b] if the composite function 	 � 
�1 : [
 (a) ; 
 (b)] ! R is convex
(concave) in the usual sense on [
 (a) ; 
 (b)] :

In this way, any concept of convexity (log-convexity, harmonic convexity, trigono-
metric convexity, hyperbolic convexity, h-convexity, quasi-convexity, s-convexity,
s-Godunova-Levin convexity etc...) can be extended to the corresponding compos-
ite-
�1 convexity. The details however will not be presented here.
If 	 : [a; b]! R is composite-
�1 convex on [a; b] then we have the inequality

(4.1) 	 � 
�1 ((1� �)u+ �v) � (1� �)	 � 
�1 (u) + �	 � 
�1 (v)

for any u; v 2 [
 (a) ; 
 (b)] and � 2 [0; 1] :
This is equivalent to the condition

(4.2) 	 � 
�1 ((1� �) 
 (t) + �
 (s)) � (1� �)	 (t) + �	(s)

for any t; s 2 [a; b] and � 2 [0; 1] :
If we take 
 (t) = ln t, t 2 [a; b] � (0;1) ; then the condition (4.2) becomes

(4.3) 	
�
t1��s�

�
� (1� �)	 (t) + �	(s)

for any t; s 2 [a; b] and � 2 [0; 1] ; which is the concept ofGA-convexity as considered
in [1].
If we take 
 (t) = � 1

t ; t 2 [a; b] � (0;1) ; then (4.2) becomes

(4.4) 	

�
ts

(1� �) s+ �t

�
� (1� �)	 (t) + �	(s)

for any t; s 2 [a; b] and � 2 [0; 1] ; which is the concept of HA-convexity as consid-
ered in [1].
If p > 0 and we consider 
 (t) = tp; t 2 [a; b] � (0;1) ; then the condition (4.2)

becomes

(4.5) 	
h
((1� �) tp + �sp)1=p

i
� (1� �)	 (t) + �	(s)

for any t; s 2 [a; b] and � 2 [0; 1] ; which is the concept of p-convexity as considered
in [28].
If we take 
 (t) = exp t; t 2 [a; b] ; then the condition (4.2) becomes

(4.6) 	 [ln ((1� �) exp (t) + exp 
 (s))] � (1� �)	 (t) + �	(s)

which is the concept of LogExp convex function on [a; b] as considered in [16].
Further, assume that 	 : [a; b]! J; J an interval of real numbers and � : J ! R

a continuous function on J that is strictly increasing (decreasing) on J:

De�nition 2. We say that the function 	 : [a; b] ! J is �-composite convex
(concave) on [a; b], if � �	 is convex (concave) on [a; b] :

In this way, any concept of convexity as mentioned above can be extended to
the corresponding �-composite convexity. The details however will not be presented
here.
With 
 : [a; b] ! [
 (a) ; 
 (b)] a continuous strictly increasing function that is

di¤erentiable on (a; b) ; 	 : [a; b]! J; J an interval of real numbers and � : J ! R
a continuous function on J that is strictly increasing (decreasing) on J; we can also
consider the following concept:
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De�nition 3. We say that the function 	 : [a; b] ! J is �-composite-
�1 convex
(concave) on [a; b] ; if � �	 � 
�1 is convex (concave) on [
 (a) ; 
 (b)] :

This de�nition is equivalent to the condition

(4.7) � �	 � 
�1 ((1� �) 
 (t) + �
 (s)) � (1� �) (� �	) (t) + � (� �	) (s)

for any t; s 2 [a; b] and � 2 [0; 1] :
If � : J ! R is strictly increasing (decreasing) on J; then the condition (4.7) is

equivalent to:

(4.8) 	 � 
�1 ((1� �) 
 (t) + �
 (s)) � (�) ��1 [(1� �) (� �	) (t) + � (� �	) (s)]

for any t; s 2 [a; b] and � 2 [0; 1] :
If � (t) = ln t; t > 0 and 	 : [a; b] ! (0;1), then the fact that 	 is �-composite

convex on [a; b] is equivalent to the fact that 	 is log-convex or multiplicatively
convex or AG-convex, namely, for all x; y 2 I and t 2 [0; 1] one has the inequality:

(4.9) 	(tx+ (1� t) y) � [	 (x)]t [	 (y)]1�t :

A function 	 : I ! Rn f0g is called AH-convex (concave) on the interval I if
the following inequality holds [1]

(4.10) 	((1� �)x+ �y) � (�) 1

(1� �) 1
	(x) + �

1
	(y)

=
	(x)	 (y)

(1� �)	 (y) + �	(x)

for any x; y 2 I and � 2 [0; 1] :
An important case that provides many examples is that one in which the function

is assumed to be positive for any x 2 I: In that situation the inequality (4.10) is
equivalent to

(1� �) 1

	 (x)
+ �

1

	 (y)
� (�) 1

	 ((1� �)x+ �y)

for any x; y 2 I and � 2 [0; 1] :
Taking into account this fact, we can conclude that the function 	 : I ! (0;1)

is AH-convex (concave) on I if and only if 	 is �-composite concave (convex) on I
with � : (0;1)! (0;1) ; � (t) = 1

t :
Following [1], we can introduce the concept of GH-convex (concave) function

	 : I � (0;1)! R on an interval of positive numbers I as satisfying the condition

(4.11) 	
�
x1��y�

�
� (�) 1

(1� �) 1
	(x) + �

1
	(y)

=
	(x)	 (y)

(1� �)	 (y) + �	(x) :

Since

	
�
x1��y�

�
= 	 � exp [(1� �) lnx+ � ln y]

and
	(x)	 (y)

(1� �)	 (y) + �	(x) =
	 � exp (lnx)	 � exp (ln y)

(1� �)	 � exp (y) + �	 � exp (x)
then 	 : I � (0;1) ! R is GH-convex (concave) on I if and only if 	 � exp
is AH-convex (concave) on ln I := fxj x = ln t; t 2 Ig : This is equivalent to the
fact that 	 is �-composite-
�1 concave (convex) on I with � : (0;1) ! (0;1) ;
� (t) = 1

t and 
 (t) = ln t; t 2 I:
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Following [1], we say that the function 	 : I � R n f0g ! (0;1) is HH-convex
if

(4.12) 	

�
xy

tx+ (1� t) y

�
� 	(x)	 (y)

(1� t)	 (y) + t	(x)
for all x; y 2 I and t 2 [0; 1]. If the inequality in (4.12) is reversed, then 	 is said
to be HH-concave.
We observe that the inequality (4.12) is equivalent to

(4.13) (1� t) 1

	 (x)
+ t

1

	 (y)
� 1

	
�

xy
tx+(1�t)y

�
for all x; y 2 I and t 2 [0; 1].
This is equivalent to the fact that 	 is �-composite-
�1 concave on [a; b] with

� : (0;1)! (0;1) ; � (t) = 1
t and 
 (t) = �

1
t ; t 2 [a; b] :

The function 	 : I � (0;1) ! (0;1) is called GG-convex on the interval I of
real umbers R if [1]

(4.14) 	
�
x1��y�

�
� [	 (x)]1�� [	 (y)]�

for any x; y 2 I and � 2 [0; 1] : If the inequality is reversed in (4.14) then the
function is called GG-concave.
This concept was introduced in 1928 by P. Montel [24], however, the roots of the

research in this area can be traced long before him [25]. It is easy to see that [25], the
function 	 : [a; b] � (0;1) ! (0;1) is GG-convex if and only if the the function

 : [ln a; ln b]! R, 
 = ln �	 � exp is convex on [ln a; ln b] : This is equivalent to the
fact that 	 is �-composite-
�1 convex on [a; b] with � : (0;1)! R; � (t) = ln t and

 (t) = ln t; t 2 [a; b] :
Following [1] we say that the function 	 : I � R n f0g ! (0;1) is HG-convex if

(4.15) 	

�
xy

tx+ (1� t) y

�
� [	 (x)]1�t [	 (y)]t

for all x; y 2 I and t 2 [0; 1]. If the inequality in (4.2) is reversed, then 	 is said to
be HG-concave.
Let 	 : [a; b] � (0;1) ! (0;1) and de�ne the associated functions G	 :�

1
b ;

1
a

�
! R de�ned by G	 (t) = ln	

�
1
t

�
: Then 	 is HG-convex on [a; b] i¤ G	 is

convex on
�
1
b ;

1
a

�
: This is equivalent to the fact that 	 is �-composite-
�1 convex

on [a; b] with � : (0;1)! R; � (t) = ln t and 
 (t) = � 1
t ; t 2 [a; b] :

Following [27], we say that the function 	 : [a; b]! (0;1) is r-convex, for r 6= 0;
if

(4.16) 	((1� �)x+ �y) � [(1� �)	r (y) + �	r (x)]1=r

for any x; y 2 [a; b] and � 2 [0; 1].
If r > 0; then the condition (4.16) is equivalent to

	r ((1� �)x+ �y) � (1� �)	r (y) + �	r (x)
namely 	 is �-composite convex on [a; b] where � (t) = tr; t � 0:
If r < 0; then the condition (4.16) is equivalent to

	r ((1� �)x+ �y) � (1� �)	r (y) + �	r (x)
namely 	 is �-composite concave on [a; b] where � (t) = tr; t > 0:
For some results related to these concepts of convexity, see [9]-[15].
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We assume in the following that w : [a; b] ! (0;1) is a continuous function on
[a; b] and g : [a; b]! [m;M ] is absolutely continuous on [a; b] :
If 	 is log convex on [m;M ], then 	 is �-composite-
�1 convex on [a; b] with

� : (0;1) ! R; � (t) = ln t and 
 (t) = ` (t) = t; t 2 [a; b] : If we use the inequality
(2.10) and assume that 	 is twice di¤erentiable on (m;M) ; then we have

0 � 1R b
a
w (s) ds

Z b

a

w (t) ln (	 � g) (t) dt� ln
"
	

 R b
a
w (t) g (t) dtR b
a
w (s) ds

!#
(4.17)

� 1

�2





 g0

w1=2






[a;b];2





�(ln	; g)w1=2






[a;b];2

Z b

a

w (s) ds;

where

�(ln	; g) (t) =
(	00 � g) (t) (	 � g) (t)� ((	0 � g) (t))2

((	 � g) (t))2
; t 2 [a; b]

and provided that g0

w1=2
2 L2 [a; b] and �(ln	;g)

w1=2
2 L2 [a; b] :

If 	 is GA-convex on [a; b] � (0;1) ; then 	 is �-composite-
�1 convex on [a; b]
with 
 : (0;1) ! R; 
 (t) = ln t and � (t) = ` (t) = t; t 2 [a; b] : If we use the
inequality (2.10) and assume that 	 is twice di¤erentiable on (m;M), then we have

0 � 1R b
a
w (s) ds

Z b

a

w (t) (	 � g) (t) dt�	
"
exp

 R b
a
w (t) ln g (t) dtR b
a
w (s) ds

!#
(4.18)

� 1

�2





 g0

gw1=2






[a;b];2





�(	; ln; g)w1=2






[a;b];2

Z b

a

w (s) ds;

where

�(	; ln; g) (t) = (	00 � g) (t) g (t) + (	0 � g) (t)

and provided that g0

gw1=2
; �(	;ln;g)

w1=2
2 L2 [a; b].

The function 	 : [a; b] ! (0;1) is AH-convex on [a; b] if and only if 	 is
�-composite-
�1 concave on [a; b] with � : (0;1) ! (0;1) ; � (t) = 1

t and and

 (t) = ` (t) = t; t 2 [a; b] : If we use the inequality (2.10) for the convex function
�	�1 and assume that 	 is twice di¤erentiable on (m;M), then we have

0 �
"
	

 R b
a
w (t) g (t) dtR b
a
w (s) ds

!#�1
� 1R b

a
w (s) ds

Z b

a

w (t)

(	 � g) (t)dt(4.19)

� 1

�2





 g0

w1=2






[a;b];2






�
�
�	�1; g

�
w1=2







[a;b];2

Z b

a

w (s) ds;

where

�
�
�	�1; g

�
(t) :=

(	00 � g) (t) (	 � g) (t)� 2 ((	0 � g) (t))2

((	 � g) (t))3

and provided that g0

w1=2
;
�(�	�1;g)

w1=2
2 L2 [a; b] :

If the function 	 is HA-convex [a; b] ; then 	 is �-composite-
�1 convex on [a; b]
with 
 : (0;1) ! R; 
 (t) = �t�1 and � (t) = ` (t) = t; t 2 [a; b] : If we use the



REVERSES OF JENSEN�S INTEGRAL INEQUALITY 15

inequality (2.16) and assume that 	 is twice di¤erentiable on (m;M), then we have

0 � 1R b
a
w (s) ds

Z b

a

w (t) (	 � g) (t) dt�	

0@R ba w (s) dsR b
a
w(t)
g(t) dt

1A(4.20)

� 1

�2





 g0

g2w1=2






[a;b];2






�
�
	;�`�1; g

�
w1=2







[a;b];2

Z b

a

w (s) ds;

where
�
�
	;�`�1; g

�
(t) := (	00 � g) (t) g2 (t) + 2g (t) (	0 � g) (t)

and provided that g0

g2w1=2
;
�(	;�`�1;g)

w1=2
2 L2 [a; b] :

Similar results may be stated for the other concepts of convexity as presented
above, however the details are omitted.
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