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WEIGHTED INEQUALITIES OF TRAPEZOID TYPE FOR
FUNCTIONS OF BOUNDED VARIATION AND APPLICATIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some upper bounds for the quantity

b
(9(z) —g(a)) f(a)+(g(b) —g(x)) f(b) - / f)g' (#)dt

under the assumptions that g : [a,b] — [g(a),g (b)] is a continuous strictly
increasing function that is differentiable on (a,b) and f : [a,b] — C is a
function of bounded variation on [a,b]. When g is an integral, namely g (z) =
JZw (s)ds, where w : [a,b] — (0, 00) is continuous on [a, b], then some weighted
inequalities that generalize the Trapezoid inequality are provided. Applica-
tions for continuous probability density functions supported on finite and in-

finite intervals with two examples are also given.

1. INTRODUCTION

The following trapezoid type integral inequality for mappings of bounded varia-
tion holds [9], [13] and [4]:

Theorem 1. Let f : [a,b] — R be a mapping of bounded variation.
We then have the inequality:

Lo (z —a) f(a) + (b—2) f (b)
bfa/af(t)dt_ b—a
b
1
< |Z
b
holding for all x € [a,b], where \/ (f) denotes the total variation of f on the interval

[a,b] .

The constant % 1s the best possible one.

(1.1)

_ atb
z 2

b—a

If we choose x = %2, then we get [12]:

L[ - {00

(1.2) — 5

1.0

a
which is the “trapezoid” inequality. Note that the trapezoid inequality (1.2) is in
a sense the best possible inequality we can get from (1.1). Also, the constant % is

the best possible.
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If w : [a,b] — R is continuous and positive on the interval [a, b] , then the function
W :[a,b] = [0,00), W (z) := [ w(s)ds is strictly increasing and differentiable on
(a,b) . We have W’ (x) = w (x) for any z € (a,).

In 2004 Tseng et al. [25] proved a weighted trapezoid inequality, which essentially
can be written as

Fa) [Tw(s)ds+ f(b) [Pw(s)ds 1 b
1.3 a z - F () w(t)dt
(13) f;w(s)ds fbw(s)ds a (t)w (2)
1 fjw(s)ds—f;w(s)ds b
S|t 7w (s) ds ]\a/(f)

for any « € [a,].

For related result concerning the Trapezoid inequality, see [1]-[3], [6]-[8] and
[10]-[24].

Motivated by the above results, in this paper we establish some upper bounds
for the quantity

lg () —g(a)] f(a) +]g(b) — g ()] f (b) 1 b /
7)) el RAGTACK:

under the assumptions that g : [a,b] — [g(a),g (D)] is a continuous strictly in-
creasing function that is differentiable on (a,b) and f : [a,b] — C is a function
of bounded variation on [a,b]. When g is an integral, namely g (z) = [ w(s)ds,
where w : [a,b] — (0,00) is continuous on [a,b], then some weighted inequalities
that generalize the Trapezoid inequality are provided. Applications for continuous
probability density functions supported on finite and infinite intervals with two

examples are also given.

2. MAIN RESULTS

We need the following result that improves Theorem 1:

Lemma 1. Let h : [¢,d] — C be a function of bounded variation on [c,d]. Then
for all z € [e,d]

(z—=c)h(c)+(d—2)h(d) 1 d

(2.1)

oW

=)+ (=) [

where p, q>1and%+%:

IN

=+ (Vi)'
L,

VHORAGERAGIE
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Proof. Let z € (c¢,d). Using the integration by parts formula for the Riemann-
Stieltjes integral we have,

z d
(2.2) / (t—z)dh(t) + / (t —2)dh (t)
:(z—c)h(c)—/zh(t)dt—i—(d—z)h(d)—/ h () dt
— =k + (d=Dh@ - [ bl

It is well known [2, p. 177] that if ¢ : [, 8] — C is continuous on [«, 8] and
v : [, B] — C is of bounded variation on [«, 5], then

/jq(w o (2)

< max |q ()| \/(v).

z€[a,B]

Using the triangle inequality and the property (2.3) we then have

/:(t—z)dh(t)—s—/zd(t—z)dh(t)

~ d

< / (t—z)dh(t)'+/(t—z)dh(t)
. d

< gl = AV O+ g =AY 0

d
=(z=9\ W)+ -2\ (1)

and then, via the identity (2.2), we deduce the first inequality in (2.1).
By utilising Holder’s discrete inequality for two positive numbers, we also have

z d
(=) () +(d=2)\/(n)
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max { — ¢,d — 2} [V () + V2 (8)]
q71/q
) o @— 2 (Vi) (VEm) ]
B Wherep,q>1and%+%:1,
(2 = e+ d— 2y max {V} (n), V< (h) }
[3(@=o)+ ]z = < Vi)
) e vy + (viw)']
B Wherep,q>1and%+%:1,
(@=0) [V + 3 |Vim) - Vim)|].
which proves the last part of (2.1). O

Corollary 1. Let h: [¢,d] — C be a function of bounded variation and p € (c,d)
such that \/* (h) = \/z (k). Then we have the inequality

d—c d—c /.

(2.4) P—c)h(c)+(d-ph(d) 1 /dh(t)dt

1.4
<3 \/ (h).
c
We have:

Theorem 2. Let g : [a,b] — [g(a), g (b)] be a continuous strictly increasing func-
tion that is differentiable on (a,b). If f : [a,b] — C is a function of bounded
variation on [a,b], then we have

9@ 9@ f@ ) —g@fB) 1 N
(25) 90) 9@ i0) 9@ / fe)g (@) dt
g(@) —g@]\ g(0)—g@)]\
<[g@_g(a)]\!(fﬁ{g(b)_g(a)}\m/(f)
{é i ]\/Z (f).

[[at)” ¢ [azate]”] " [z 7+ (V2 0)]

where p, q>1and%+%:1,

IN

L Ve +

for all x € [a,b].

AGEYAG]

Proof. Assume that [c,d] C [a,b]. Let g(c) = 20 < 21 < ... < Zp—1 < 2z, = g(d),
n > 1, a division of the interval [g (¢), g (d)]. Put x; = g~ ! (2;), i € {0,...,n} . Then
c=x0 < x1 < ... <2zp_1 < 2z, =cis a division of [c,d].
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Observe that
n—1 n—1
dolfeog (z) = fog ()| = D If (@) — f (@),
i=0 i=0

which shows that, if f : [¢,d] — C is a function of bounded variation on [c,d], then
fogt:lg(c),g(d)] — C is of bounded variation on [g(c), g (d)] and the total
variation of f o g~! on [g(c),g(d)] is the same with the total variation of f on
[e, d] , namely

g(d) d
(2.6) \V (Feg )=\ (.
g(c) c

1

Now, if we use the inequality (2.1) for the function h = f o ¢g~! on the interval

[g(a),g(b)] we get for any z € [g (a), g (b)] that

< (irtata) Voo (5 V eery
3 ||Vl (e,
< [Girtsi)" (i) ] (Vi Goo)"+ (w2 o) "

where p, q>1and%+%:1,

LIVID (Fog™) + Vi (Fog™) = VIO (Fog )]

Using the property (2.6) and taking z = g (z), « € [a,b], in (2.7) we then get

9(b) x)—gl(a a —g(x
28) /g(a) (Fog™) (wdu— 2@ g()];”&))jég(g) g (@) f (b)
g(z)—g@]\ g(b) —g@)]\
S{gw)—g(a)}\!(m{g(m—g(a)w(f)
{14_ o a(a)ta(b) ]\/b )
2 g(b)—g(a) a ’

(Gr2e)” + (==Y vz o + (Ve )]

where p, q>1and%—i—%:17

IN

BAGES:

AGEAGIE
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Observe also that, by the change of variable t = g~ (u), u € [g(a), g (b)], we
have u = g (t) that gives du = ¢’ (¢) dt and

g(b) b
(2.9) / o) = [ 10 0

By choosing z = ¢ (x) with x € [a,b] in (2.8) and making use of (2.6) and (2.9)
we get the desired result (2.5).
The best constant follows by Lemma 1. O

If ¢ is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can define the g-mean of two numbers
a,bel as

(2.10) My (a,b) =g " (g(a)—l—g(b)) .

-+

If I =R and g (t) =t is the identity function, then M, (a,b) = A(a,b) := £,
the arithmetic mean. If I = (0,00) and g (t) = Int, then M, (a,b) = G (a,b) := Vab,
the geometric mean. If I = (0,00) and g (t) = —+, then M, (a,b) = H (a,b) :

%, the harmonic mean. If I = (0,00) and g (t) = t?, p # 0, then M, (a,b) =
1/p

M:D (a,b) = (#)
g (t) = expt, then

, the power mean with exponent p. Finally, if I = R and

(2.11) M, (a,b) = LME (a,b) := In (eXp“JreXpb> ,

2

the LogMeanExp function.

Corollary 2. With the assumptions of Theorem 2 we have

b
(2.12) f(a);rf(b) G ig(a)/a f(6) g (t)dt

<

DN =

b
\V ()
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and
[9(%52) —g(a)] f(a)+ [g(b) — g (2£2)] £ (b)
(2.13) ORYIC)
1 b ,
s g J, T @
g(42) —g(a) & g) —g(=) ]
Sl -9 (@ ]\a/(f” OETION DAL
e v,
9(“3*)—g(a b g(b)—g( 4 /e atb q q711/4q
<3 || i (v ) (Vi )]

where p, q>1and%—|—%:1,

LVe )+ [V ()= Vi 0]

2

The proof follows by Theorem 2 by taking « = M, (a,b), in the first case and

T = “7“’, in the second.

We also have:

Corollary 3. With the assumptions of Theorem 2 and if we have p € (a,b) such
that \/% (h) = /%, () , then

@) 9@ f @+ la®)-g@IfB) 1 oo
(2.14) 95 —g(a) 90 —g(@) [ swa

b
V(&)

<

DO =

Let f : [a,b] — C be a function of bounded variation. We can give the following
examples of interest.



S.S. DRAGOMIR

(t) =1Int, in (2.5) then we get

(2.15) |

IN

for any « € [a,b] C (0,00).
In particular, we have

b b
(2.16) f@+/® _lnzb)/ T <2\
If p € (a,b) is such that \/? (f) = \/2 (f), then
Fl@m (2) + £ () (2 b b
(2.17) In (%) () 1n%b)/a P <3V )

b). If we take ¢ : [a,b] C R — (0,0), g (t) = expt, in (2.5) then we get

(expx —expa) f (a) + (expb —expz) f (b)

2.18
( ) expb—expa
1 b
g —— / f () exptdt
T b
exXpT — expa expb—expx
P i el s el
- (epr— expa> \a/(f) * <epr— expa> \a:/
exp p— SXpatexpb b
I:% + pexp bfexf)a i| \/a (f) ’
expx—exp a p expb—exp x py1/p T q b ay1/q
<) [(smmeee) (s ) ] [(VE i + (Vo)) ]

where p, q>1and%+%:1,

LIV +

b

VAGEAG]

for any z € [a
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In particular, we have

L0

fla)+f(b) 1 ’
(2.19) | ey — /a f(t)exptdt

If p € (a,b) is such that \/* (f) = \/Z (f), then

(expp —expa) f (a) + (expb —expp) f (b)
expb—expa

1 b
e —— /L; f(t)exptdt

(2.20)

<

b
\ ().

DN | =

c). If we take g : [a,b] C (0,00) = R, g(t) =t", r > 0 in (2.5), then we get

(2.21)

(=) + (=) " [ovi o+ (V)

IN

for any « € [a,b] C (0,00).
In particular, we have

W@ OO [ g < L

br —a”

(2.23)
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d). If we take g : [a,b] C (0,00) = R, g(t) = —t~", r > 0 in (2.5), then we get

r T |7 r T\ T T b
(z" —a")b f(a)—l—(b —2")a f(b)_b:b_aar/a FO) Tt

" (b —a") " (b —a")

(2.24)

T _a") b ‘ T " a" b
< EFTEV 0+ SV o)

—r_a"T4b""
1 e E—
5+

() (20) T s ()]

T —aTl
where p, q>1and —|— =

a x

KRG

IN

2 [VZ (f)+

VAGEYAGH

for any z € [a,b] C (0,00).
In particular, we have

T AT b
(2.25) ‘f(a);f(b)_ rb'a /f et < L ().
If p € (a,b) is such that \/% (f) = \/? (f), then
(p"—a")b" (b" —p")a” _orbranf° 1
(2.26) G ar)f(a)—kpr G aT)f() b,‘_a,./a f)yt " tat
1 b
< 5\!(1‘)
The particular case r = 1 gives
(x—a)b (b—z)a ba [ f(t)
e TS s f o) b_a/a O
(x—a)b\" (b—x)ab
Sa:(b—a)\a/(f)—'_1‘(()—(1)\£/(f)
b= v

IN

[(r22)"+ ()] [ove o+ (ve )]

where p, q>1and —|—f 1,

L Ve +

Vi ()= V)]

for any z € [a,b] C (0,00).
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In particular, we have

a a b b
(229 f();f(b)—bb_a/ TOul <2V
If p € (a,b) is such that \/% (f) = \/? (f), then
b
(2.29) Mf(@_,_% _ ba f %\/

3. WEIGHTED INTEGRAL INEQUALITIES AND PROBABILITY DISTRIBUTIONS

If w : [a,b] — R is continuous and positive on the interval [a, b] , then the function
W :[a,b] — [0,00), W () := [ w(s)ds is strictly increasing and differentiable on
(a,b). We have W' (z) = w (z) for any z € (a,b).

The following refinement of (1.3) holds:

Proposition 1. Assume that w : [a,b] — (0,00) is continuous on [a,b] and f :
[a,b] — C is of bounded variation on [a,b], then we have

Fa) [ w(s)ds+ £ (b) [y w(s)ds
f;w(s)ds f ds/f
[Fw(s)ds " fbw()
<da NS () 40 f
w s\/() fb ()ds\w/()
ST w(s)ds— fbw(s)ds
fbws)ds

(Gt s (G [z + ()] ™

where p, q>1and1+7:

(3.1)

[ Ve,

IA

VAOEAGENAGH
for all x € [a,b].
In particular, we have

f@ti®) 1
! ﬁw@%lf® oL

Moreover, if p € (a,b) is such that \/” (f) = \/; (f), then

a) [/ w (s)ds + f (b) [, w(s) ds 1 b
3.3 - £ (6w (t) dt
(33) f; (s)ds fabw(s)ds/a (t)w{f)

(3.2)

b
The proof follows by Theorem 2 for g (z) := [ w(s)ds, x € [a, b].

The above result can be extended for infinite intervals I by assuming that the
function f : I — C is locally of bounded variation on I.

w\»—n
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For instance, if I = [a,00), f : [a,00) — C is locally of bounded variation on
[a, 00) with

[e's) b

\/(f) = lim \/(f)<oo

b—o0
a

and w (s) > 0 for s € [a,00) with [ w(s) ds = 1, namely w is a probability density
function on [a, 00), then by (3.1) for f(oc0) := limy_, f (b) finite, we get

B r@w@sren-wa- [ o \

<W(x )\/(f) 2\ (f)
[ +IW -3V,

WP () + (1 - W ()
where p, ¢ > 1 and%

Y

s Ve (D + Ve (H =V WDl

for any « € [a,00), where W (z) := [ w (s) ds is the cumulative distribution func-
tion.

If m € (a,00) is the median point for w, namely W (m) = 1, then by (3.4) for
T =m we get

(3.5) ’f / ft dt' < %\/ (f).
Also, if p € (a,00) such that \/}, (f) = V" (f), then

39 |[r@wmsren-wol- [T o dt’s;\/m.

In probability theory and statistics, the beta prime distribution (also known as
inverted beta distribution or beta distribution of the second kind) is an absolutely
continuous probability distribution defined for > 0 with two parameters a and
[, having the probability density function:

o (1 + x)fa*ﬁ

Wa,g (x) 1= B{a.p) ,

where B is Beta function

1
B(a, B) ;:/0 L1 =1 a B0,

The cumulative distribution function is

Wap (z) =12 (o, ),
where I is the regularized incomplete beta function defined by
B(za,p
I, (o, 8) := ( )

B(a,B)
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Here B (+; , 8) is the incomplete beta function defined by

B(z;a, ) ::/ ot (1—t)571, a, B, z>0.
0

Assume that f : [0,00) — C is locally of bounded variation on [0,00) with
Vo (f) < oc. Using the inequality (3.4) we have for z > 0 that

(3.7) £ (@) Iz, (@,8) + £ (o0) [1 = Tz (@, 8)]
M/()Oof(t)ta_l(lﬂ)_a_ﬁdt’

3 B)\Z/(f)+ 1= Ie (@ 8)] V()

= (aB) - 3] Ve ), $

(1 )+ (1= 1 o)) ]
[V () + (V ()1

where p, q>1and%+%:1

SV (N + Vo () =V (O,

I

1
i+

IN

for a, 5 > 0.
In particular,

(3.8) ‘f(a)zf@‘))— aﬁ/ O+ aﬁdt‘<;? f).

Also, if p € (a,00) such that \/}, (f) =/, (f), then

89) |f@1,g, (@) + Fo0) [1- 1, @) - [ s wiod] < V).

Similar results may be stated for the probability distributions that are supported
on the whole axis R. Namely, if I = R, f : R — C is locally of bounded variation
on R with

[e%S) b

\/(f):: lim \/(f)<oo

— 00 a

and w(s) > 0 for s € R with ffooow(s) ds = 1, namely w is a probability
density function on R, then by (3.1) for f(c0) := limp_oo f(b) and f(—o0) :=
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lim,_._ f (a) finite, we get

310)  |row@+seon-wwi- [ \

gW(x)\/(fMl—W(m)J\/(f)

— 00 x

[3+ W (2) = 3|] VEL (),

IN

WP (z) + (1— W [(1\/ )"+ (Ve ()]

where p, ¢ > 1 and

TV D)+ IV () =V (D]

for any « € R, where W (z) := [*_ w (s)ds is the cumulative distribution function.
If m € R is the median point for w, namely W (m) = 3, then by (3.4) we get

(3.11) eI [ pwmal < 3V (0.

Also, if p € (—00,00) such that \/” _(f) =V, (f), then
312 |fW @+ - Wol- [ fouow <V 0,

In what follows we give an example.
The probability density of the normal distribution on (—oo,00) is

1 (z—p>
- R
9o exp ( 952 , T € K,

where p is the mean or expectation of the distribution (and also its median and
mode), o is the standard deviation, and o2 is the variance.
The cumulative distribution function is

W02 (z) = ;+erf(0_\[“)

w02 () =

where the error function erf is defined by

erf (z / exp t2 dt.
f
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If f:R — R is locally of bounded variation with \/*_(f) < oo, then from
(3.10) for f (00) :=limy_.o f (b) and f(—o0) :=limg_ oo f (a) finite we have

wi [g{re et (T 4o f1-ar (2]}
)

} \7 (/) + {1 et <i\_/§>} ?(f)
}

IN
I

1

—

+

@D

=

=
7N

=

2

V)

(et () (et ()]

< [V () + (v ()

where p, q>1and%—|—%:1,

3 [V N+ VI () = Ve (D]

IN

for any z € R.
In particular, we have

(3.14) f(_oo)2+f( 2m/ f(t)exp —% dt S;\/(f)-

Also, if p € R such that \/* _ (f) =V, (f), then

1) [5{rcoo et (28] 4 rix ﬂlerf( f)“

1 > 1\
e [ e (A <3V 0.
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