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REVERSES OF JENSEN’S INTEGRAL INEQUALITY VIA A
WEIGHTED OSTROWSKI RESULT WITH APPLICATIONS FOR
CONTINUOUS f-DIVERGENCE MEASURES

SILVESTRU SEVER DRAGOMIR1!:2

ABSTRACT. In this paper we obtain some reverses of Jensen’s integral inequal-
ity by employing a refinement of the weighted integral inequality of Ostrowski.
Applications for continuous f-divergence measures with an example for the
Kullback-Leibler divergence are also given.

1. INTRODUCTION

For two Lebesgue integrable functions f, g : [a,b] — R, consider the Cebysev
functional:

O =gy [ e = [ [ gt

In 1935, Griiss [7] showed that

(M_m)(N_n)v

>~ =

(1.1) IC(f.9)] <
provided that there exists the real numbers m, M, n, N such that

(1.2) m<f#) <M and n<g(t)<N forae. t€la,b.

The constant i is best possible in (1.1) in the sense that it cannot be replaced by

a smaller quantity.
The following inequality was obtained by Ostrowski in 1970, [10]:

(1.3) IC(fol << b—a)(M-m)ld,

ool —

provided that f is Lebesgue integrable and satisfies (1.2) while g is absolutely con-
tinuous and ¢’ € Lo [a,b]. The constant % is best possible in (1.3).
In [5] we obtained the following refinement of Ostrowski’s inequality (1.3):
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2 S.S. DRAGOMIR

Theorem 1. Let f, g : [a,b] — R be such that g is absolutely continuous on [a, b]
with g’ € Lo [a,b] and f is Lebesgue integrable and satisfies (1.2), then

(1.4) |C(f9)l

< el 3 ( s )(M—/f ﬁ)

1
< 19l (6= a) (M = m).
The constants % and % are best possible.

In this paper we obtain some reverses of Jensen’s integral inequality by employ-
ing a refinement of the weighted integral inequality of Ostrowski. Applications for
continuous f-divergence measures with an example for the Kullback-Leibler diver-
gence are also given.

2. OSTROWSKI WEIGHTED INEQUALITY
Consider now the weighted Cebysev functional

1 b
(2.1) aﬂﬁQFwawﬁllwwﬂwwwﬁ
1 1

b b
_ffw(t)dt/a w(t)f(t)dtw/a w(t) g (t)dt

where f, g, w : [a,b] — R and w (t) > 0 for a.e. t € [a,b] are measurable functions

such that the involved integrals exist and f; w (t) dt > 0.
We can also define, as above,

1 b
@2>ca«ﬁgwhaﬁ_hm)/.ﬂwgmh%oﬁ

1 b , 1 b ,
- i | O O [ o

where h is absolutely continuous and f, g are Lebesgue measurable on [a,b] and
such that the above integrals exist.

Lemma 1. Let h: [a,b] — [h(a),h (b)] be a continuous strictly increasing function
that is differentiable on (a,b) . If f is Lebesgue integrable and satisfies the condition
m < f@) <M fort € [a,b] and g : [a bl — R is absolutely continuous on [a,b] and

W is essentially bounded, namely &; € L [a,b], then we have

h(b) — h(a)
( / FN (t dt)
L
gl .

23) [Cw (f.0)] < 2O
~ h(a)] (M - mﬂg

x( /f ) B (t)dt —
1

/

g

I

oo
<

la,b],00

The constants % and % are best possible.
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Proof. Since z—l, € L [c,d], hence (go h_l)l € Lo [R(€),h(d)]. Also

g/
n

J(gony

h(e)h(@d)oo ‘ o0

Now, if we use the refinement of Ostrowski’s inequality (1.4) for the functions
fohtand goh~! on the interval [h(a),h (b)], then we get

h(b)
(2.4) m /h foh Y (u)goh ™ (u)du

(a)
1 h(b) h(b)
- / fo hil(u)du/ goh  (u)du
h

[h(b) = (a)]* Jh(a) ha)
< 1h(b) —h(a) H(go h_l)/
2 M [h(c),h(d)] o0

1 h(b) ) 1 h(b)
" (h(b) @ ey " Wt"”) (M‘ = f““)

1 (6) = h (@) (M = m) || (g0 71

[h(a);h(b)],00

since m < foh ™ (u) < M for all u € [h(a),h (b)].
Observe also that, by the change of variable t = h™! (u), u € [g(a),g(b)], we
have u = h (t) that gives du = A/ (t) dt and

h(b) b
/ (foh™) (u)du= / f )R (t)dt,
h(a) a

b

h(b)
/ g0 h™(w)du = / g (t) 1 (1) d,
h(a) a

h(b) b
/ fohil(u)gohfl(u)du = / f@Wg@)n (t)dt
h(a) a

and

/

g

h/

o1 |

[A(a),h(b)],00

la,b],00

By making use of (2.4) we then get the desired result (2.3).
The best constant follows by the refinement of Ostrowski’s inequality (1.4). O

If w : [a,b] — R is continuous and positive on the interval [a, b] , then the function
W : [a,b] — [0,00), W (z) := [ w(s)ds is strictly increasing and differentiable on
(a,b). We have W' (z) = w (z) for any z € (a,b).

Theorem 2. Assume that w : [a,b] — (0,00) is continuous on [a,b], f is Lebesgue
integrable and satisfies the condition m < f(t) < M for t € [a,b] and g : [a,b] —

’

R is absolutely continuous on [a,b] with % is essentially bounded, namely % €
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Lo [a,b], then we have

/

9
w

1
(25) |Cu(f,9) < 2(]\/[—771)’

s ff() ¢ b
(fa <>ds m><M [ )Lw(s)ds

! b
/ w(s)ds.
[a,b],00 Y a

oo

g

(M - m)\

1
8
The constant % 18 best possible.

The proof follows by Lemma 1 by taking h (z) := [ w (t) dt, = € [a,b].

Remark 1. Under the assumptions of Theorem 2 and if there exists a constant
K > 0 such that |¢' (t)] < Kw (t) for a.e. t € [a,b], then by (2.5) we get

K
(26) |Cw(f,9)] < 20 —m)

I AOTIOLTS WSV 9 SO IO N A

f:w(s)ds
b
S%(M—W)K/ w(s)ds

a). For w (t) = ﬁ =071 (t), t €a,b] C (0,00), where £(t) = t, define

b b
(27) Crs (f.9) = / e —mzb) /! it)dtlnzb) [ “a

Ifm < f(t) < M for t € [a,b] and g : [a,b] — R is absolutely continuous on [a, b]
with £g’ is essentially bounded, namely g’ € L [a,b], then we have

(2.8)  |Cer (£, 9)]
—m) HEQ/H[a,bLOO

%) In (”)
.
< 501 =m) 'l tn (2).
b). For w (t) = expt, t € [a,b], define
1 b
29) Cog(f.0) = simee [ F g () exp e

1 b 1 b
- / f () exp tdt————— / g (t) exp tdt.
expb—expa J, expb—expa J,
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Ifm < f(t) < M for t € [a,b] and g : [a,b] — R is absolutely continuous on [a, b]
with ng is essentially bounded, namely ei—p € L [a,b], then we have

(2.10)  [Cexp (£, 9)]

R S ) (fi’f@)emtdt_m> (M_W>
~ 2(M —m) ||exp (a,],00 expb—expa expb—expa
X (expb — expa)
< 1(M—m) g (expb—expa).
8 €XP [|(4,4],00

¢). For w(t) =P (t), t € [a,b] C (0,00), where £(t) =t and p # —1, define

1 b
Q1) Con(£,9)i= it | 0 @90

p+1 ’ p+1 b
T opptl — gptl /a ) dtbp+1 —artl J, tg (¢) dt.

Ifm< f(t) <M fort € [a,b] and g : [a,b] — R is absolutely continuous on [a, ]
with ¢’¢7P is essentially bounded, namely ¢’¢™? € L, [a,b], then we have

pptl _ gptl
< s ror—m 1o

p+1 p+1
X(bp+1 ap+1/ f tpdt_ )( bp+1 ap+1/ f tpdt>

ppt1 _ gptl
g -

8(p+1)
In probability theory and statistics, the beta prime distribution (also known as
inverted beta distribution or beta distribution of the second kind) is an absolutely

continuous probability distribution defined for > 0 with two parameters a and
B, having the probability density function:

- o (14 x)_a_ﬁ
Wt (7) = e B)

(2.12)  |Cer (f,9)

(M —m) |||y 4 o

where B is Beta function

1
B(a,B) ::/0 to‘_l(l—t)’ﬁ_l, a, B>0.

The cumulative distribution function is

WD@B (.’E) = 1iL (avﬁ) )
where I is the regularized incomplete beta function defined by
B (z;a, )
L (a,B) i = ———=.
2= Blap)

Here B (+; , 8) is the incomplete beta function defined by

B (z;a,0) ::/ ot (1—t)571, a, B, z>0.
0
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Define
1 > a—1 —a—p
(2.13) Cu,, (f.9) == B(aﬂ)/o 19 (L 1) F (1) g (1) de
1 © Cap 1 o s
B(a,ﬂ)/o T (1+1) f(t)dtB(a,B)/O 7 (141¢) g (t)dt,

provided the integrals exist.
If f is Lebesgue measurable and there exists the constants m < f(t) < M for
t € (0,00) and g : (0,00) — R is locally absolutely continuous on (0, co) with

(2.14) g ()] < Lt* Y (1+1)"*F for ace. t € (0,00),
then by (2.6) we get

215) |Cuy (f9)| < g0
1 a1 —a—f3 —m
y (B(a’ﬂ)/o 21 (14 4)7°0 £ (1) dt )
_ 1 > a—1 —a—f
« (M B - (a,ﬂ)/o 2 (141 f(t)dt>

gé(M—m)LB(a,,B).

The probability density of the normal distribution on (—oo,00) is

1 (x — )
w02 () = T exp| =55 | @ € R,

where p is the mean or expectation of the distribution (and also its median and
mode), o is the standard deviation, and o2 is the variance.
The cumulative distribution function is

1 1 T— U
T/Vu,(,z(:c):2-1-2erf(0\/§)7

where the error function erf is defined by

erf (z) = % /01’ exp (—t%) dt.

217r0 /o:o P <_ ¢ 2_05) ) f)g(t)dt

- le;/_z exp (- (t;Jl;) > f(t) dt\/2170 /_Z exp (— (tz_al;) ) g (t)dt,

provided the integrals exist.

If f is Lebesgue measurable and there exists the constants m < f (t) < M for
t € (—o0,00) and g : (—o0,00) — R is locally absolutely continuous on (—oo, 00)
with

(2.17) 19/ (8)] < Lexp (—

Consider

(216) Cuy . (f.9) =

(t—p)’*
202

) for a.e. ¢t € (0,00),
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then by (2.6) we get

V2roL
(2.18) |Cw (f,9) < 2(M —m)

X (\/21?0/_00 exp (—(t;(j'l;) )f(t)dt—m)
X (M— \/21?0 /_00 exp (—(t;Ul;) )f(t)dt)

(M —m)V2noL.

<

0| =

3. REVERSES OF JENSEN’S INEQUALITY

Let (2, A, 1) be a measurable space consisting of a set 2, a o-algebra A of parts
of  and a countably additive and positive measure p on A with values in RU{oo} .
For a p-measurable function w :  — R, with w (z) > 0 for p-a.e. (almost every)
x € Q, consider the Lebesgue space

Ly, (Q,u) :={f:Q—R, fis p-measurable and / w(x) |f (z)|dp (x) < oo}
Q

For simplicity of notation we write everywhere in the sequel fQ wdp instead of

Jow () dp(x).
In order to provide a reverse of the celebrated Jensen’s integral inequality for
convex functions, S. S. Dragomir obtained in 2002 [4] the following result:

Theorem 3. Let @ : [m, M] C R — R be a differentiable convex function on (m, M)
and f : Q — [m, M] so that o f, f, & o f, (D' of)f € Ly, (Q,pun), where w >0
p-a.e. (almost everywhere) on Q with fQ wdp = 1. Then we have the inequality:

(3.1) OS/Qw@Of)du—@(/ﬂwfdu)
< [w@os) fan= [ w@o)dn [ wtin.

We have the following reverse of Jensen’s inequality:

Theorem 4. Let ® : [m,M] C R— R be a differentiable convexr function on
(m,M), w : [a,b] — (0,00) be continuous on [a,b] and f : [a,b] — [m,M] is
absolutely continuous so that o f, f, &' o f, ("o f) f € Ly [a,b].

(i) If fE/ € Ly [a,b], then we have the inequality
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1

3.2) 0L
(32 f; w(s)ds

b [Pw(t) f(t) dt)

w(t) (@of) (t)dt — | 2ol
[ew@ene ( s
f/

a

w

1
oL (M) — @, (m)

la,b],00 ¥ —
, , f%@qﬂww@m>
— ', (m (M) — =2
X >)( on - LS D0

x/abw(s)ds

< L@ ()~ ¥, ()]

1
< =
-2

X(ﬁﬁ@oﬁ@wuwm
b
S, w(s)ds

f

w

b
/ w(s)ds.
la,b],00 Y a
(‘b”of)

(ii) If @ is twice differentiable on (m, M) and ~— T e Ly [a,b], then

1 b fbw(t)f(t)dt>
33) 0< w(t) (®of)(t)dt—d [ 2217
o (ﬁmawl (e 1 ( S w(s)ds
§1H(<I>”Of)f’ 1
2 w [avb]mM—m

% M_m M_M /bw(s)ds
[ (s) ds Jiw(s)ds ) Ja
[a7b]700/a w () ds.

< L ar | B20S

Proof. (i) By (3.1) we have

1
(34) 0<
f;) w(s)ds
1

b
/°waﬂaofﬂwf@dt

b
/ﬁ“ﬂ@oﬁmw—¢<ﬁw@f®ﬁ)

f: w(s)ds

S
J, w(s)ds
1 1

b , b
/a w(t) (¥ o f) (t)dtffw(s)ds/a w(t) f (t) dt.

Since ® is differentiable convex on (m, M), hence

f; w(s)ds

oy (m) < (2o f)(t) < (M)

for t € [a,b].
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If we use the inequality (2.5), then we get

1 b
ffw(s)ds/a w(t) (®o f) (1) f(t)dt

b b
- L /w(t)(CD’of)(t)dt - : /w(t)f(t)dt

J, w(s)ds Ja J, w(s)ds Ja
1 y
((I) + (m)) w [a,b],00
f: <I>’of Dt o ) L@ o f) (Hw(t)dt
— 2 ( )) (‘I’ (M) Pls) ds )

! b
I / w(s)ds,
w la,b],00 Ja

which, together with (3.4), proves the required inequality (3.2).
(ii) If @ is twice differentiable on (a,b), then

(@ o f) (t)= ("0 f) () f (t)

2
b
x/w
<1
8

(@7 (M) — @', (m)]

for t € (a,b).
Since m < f (t) < M for t € [a,b] and
1 !/
@7 NHf € Lo [a, ],
w

then by using the inequality (2.5) we also have

b
fbwl(S)ds/a w () (@ o f)(8) f (1)t
1 b / X )
_f:U’(S)dS/a noe Of)(t)dtf;w(s)ds/a w(t) f(t)dt
1 (q)//of)f,

(M - m) ‘ la,b],00

2
2@ w(t)dt ><M 1Pr ) b
—m dac 7 w(s)ds
><< f:w(s)ds fa ()ds /a
Lo @D F * () ds

8 M )H w [a,b],oo/a ()d’

which, together with (3.4), proves (3.3). O

w

Corollary 1. Let ® : [m,M] C R— R be a differentiable convex function on
(m,M) and f : [a,b] — [m,M] be absolutely continuous so that ® o f, f, &' o
f, (®'of)fe€Llab].
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(i) If f' € Ly [a,b], then we have the inequality

_a/f )

HfHaboo(I)/ (M) @’ ( )

b b
X (bia/a (cp’of)(t)dt@;(m)> <<I>’_(M)bia/a (cp/of)(t)dt>

(b—a) [22 (M) = & (m)] 1 lj0,51,00

b
(3.5) o<b% (@ o f) (t)dt — D (

1

[\V]

(i) If @ is twice differentiable on (m, M) and (®" o f) f' € L [a,b], then

(36) 0<

(@of)(t)dt—(b(bi/ f(t)dt)
1||(‘1>”0f)f||[abooM1m<b /f £ dt - )(M—/f dt)

< g (b—a)(M —m) (2" o f) f'll (00,00

[\)

Corollary 2. Let ® : [a,b] C R — R be a differentiable convex function on (a,b),
w : [a,b] — (0,00) be continuous on [a,b] and @, &' € L, [a,b].

(i) If L € Lo [a,b], then we have the inequality

1 b ftw >
37) 0<———— [ w(t)®(t)dt— @
7 faw<s>ds/a e (fa (5)ds
1

fa,bl,00 2= ) (m)

(f o' (t ) (@, o) - f <I>’ dt>
fa w ( w (s) ds

' L

b
w(s)ds.
w la,b],00 [l

[® (b) — ¥, (a)]
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(ii) If f @ is twice differentiable on (m, M) and %” € Ly [a,b], then

1 b - 2w (¢) dt
(3.8) 0< oo ds/a w(t)®(t)dt — @ (fabw(s) ds)
1 H ("o f) [

<1 1
2 w [a,b],00 M—m

fftw(t)dt—m) <M—f‘ftw(t)dt) bw s)ds
- (ffws)ds [T (s) ds IRL
1 P’ b
— [a,b],oo/a w (s)ds.

<-(b-
-8 (b—a) w
We observe that, if either in Corollary 1 or 2 we take the weight w = 1, then we
get the known result

(3.9) 0<bia/ab<1>(t)dt—<1><a—2i_b>
b—a <<I>(bl))—<I>(a)(I),+(a)> <(I),_(b)<1>(b)—<1>(a))

1

< =

=3

= 2 (9. (b) — @, (a)) —a

with % as the best possible constant.

Define the function £ (t) :=t, ¢t € R.

a). Let ® : [m,M] C R — R be a differentiable convex function on (m, M)
and f : [a,b] C (0,00) — [m, M] be absolutely continuous and so that ® o f, f,
o f, (of)f € Ly-1]a,b]. If f'l € Lo[a,b], then by the statement (i) of
Theorem 4 we have the inequality

1 [P @of)() Jo B0y
(3.10)  0< )/a dt—@(w

!
18 .00

= 5@ (D)~ @, (m)

DN
(w—¢+(m) @_(M)—W ln(a)

b
)] (2 ) 168 -

X

A
—_
&
s
|
i



12 S.S. DRAGOMIR

If ® is twice differentiable on (m, M) and (9" o f) f'¢ € Ly [a,b], then by the
statement (i7) of Theorem 4 we have the inequality

b ft)
(3.11) 0< 1b) /ab (@oN®) o <fbdt>

In (7)

< m [(@" o f) f’fH[a,b o

],

Jo e Jy fwdt) | (b
<ln<z> ‘m> (M‘ in (%) >l(>

1 1 !/ b
§ 01— m) @0 1) ol (1)

X

IN

b). Let @ : [m, M] C R — R be a differentiable convex function on (m, M) and
fia, b — [m, M] be absolutely continuous and so that ®o f, f, ®'of, (D' o f) f €

Lexp [a, 0] . If 5 € Loo [a, 0], then by the statement (i) of Theorem 4 we have the
inequality

b
(3.12) 0< l/b (®of)(t)exptdt — P (faf(t)exPMt>

expb—expa expb—expa
f/

1
< -
exp

< 3@ )~ % ) || o5
y (ff (@0 f) @ exptdt g, (m)> <q>/ @ e tdt)

expb—expa expb—expa

x (expb — expa)
< % [@ (M) — ®, (m)]

f/

exp

(expb—expa).

la,b],00

If ® is twice differentiable on (m, M) and % € Lo [a,b], then by the state-
ment (iz) of Theorem 4 we have the inequality

(313)  0< 1/b (®o f)(t)exptdt — (ffex?tdt>

epr —expa expb—expa

H q)// o f
B 2 [a,b],00
t) exp tdt fb f(t)exptdt
X —m || M—-=2——— | (expb—expa)
epr— exp a expb—expa
1 @// /
<= ﬂ (expb—expa).
8 la,b],00

c¢). Consider the function ¢7 (¢) :=t*, t > 0, p € R\ {—1}. Let ® : [m,M] C
R — R be a differentiable convex function on (m, M) and f : [a,b] C (0,00) —
[m, M] be absolutely continuous and so that ®o f, f, ® o f, (&' o f) f € Ly» [a,b].
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If f'{7P € Ly [a,b], then by the statement (i) of Theorem 4 we have the inequality

bp
(3.14) 0< _pHl /bt” (@of)(t)dt—@ <(p :pljlfa_taﬁf) dt)

— pptl — gp+1
1 p—
CATECAT

y (<p+1>f: (@on)®rd (m)> <¢, o - @FVL (@0 N) @) tpdt>

<
-2

pr+1 _ gp+1 pr+1 _ gp+1

pp+1l _ gpt+1
p+1
1 _
< SoT D (@ (M) = @y (m)] (077 = a”* ) [ F077]| 00 -

If @ is twice differentiable on (m, M) and (®"” o f) f'¢~P € Ly [a,b], then by the
statement (i3) of Theorem 4 we have the inequality

b p
(315) 0< 2Tl /b 7 (®o f)(t)dt — P <(p ijlflitapf+(lt) dt)

= pptl — gl

1 " ! p—
<sar—my 1@ DI 00
(p+1) [0 f(t)trdt (p+1) [ f (£ trdt) b+t — qr?
X < ppt1l _ gp+1 - m) (M - pp+1 — gp+l p+1
1 ” /1 p—
< S+ 1) (M —m) (07" —a”™) [[(@" 0 f) f'C p“[a,b],oo-

For p = —2, we get from (3.14) that

ab [P (Do f)(b) ab [P f (1)
(3.16)0§b_a/a v dt—(b(b_a/a = dt)

1., 1
< 9 Hf EQH[a,b],oo o' (M) — ', (m)
b (" (@'og)(t)dt b (P (é’of)(t)dt b
" (“fab_ta — @, (m) | [@ () -1 Ju — ( aba>
< gl an -, m) () el
) — + ab la,b],00"
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provided f'¢? € L [a,b], while from (3.15) we obtain

G )< bciba / (@ t{)() ( / ft2 dt)

1
" 2
[(@" o f) fEH[ab] <M _m

abfb L0 gy ab [P I8 at\ (b—a
b—a m) <M b—a ( ab >
b—
§ =) (220 @0 0 1
provided (®” o f) f'¢? € Lo [a,b].

»—\/\M\»—t

oo

4. APPLICATIONS FOR f-DIVERGENCE MEASURE

Assume that [ is a finite or an inﬁnite interval of real numbers. Consider the set of
all probability densities on I to be P (I) := {p lp: I =R, p(x) >0, [;p(x)de= 1},
where [ ; is the usual Lebesgue 1ntegral on the interval I.

The Kullback-Leibler divergence [9] is well known among the information diver-
gences. It is defined as:

(4.1) Dt (p.0) = [ (o)l [{;Ex;] dz. p, qe P D),

where In is to base e.

In Information Theory and Statistics, various divergences are applied in addition
to the Kullback-Leibler divergence. These are the: variation distance D,,, Hellinger
distance Dy [6], x*-divergence D,2, a-divergence D, Bhattacharyya distance Dp
[1], Harmonic distance Dy, Jeffrey’s distance D; [8], triangular discrimination
Da [11], etc... They are defined as follows:

(4.2) D, (p.q) = / Ip(2) — g (@)|dz, p, g€ P(I);

(13) Di0.0) = [ |[Vola) = Val@|do. p. aeP (D)

(4.4) Dy (prq) = / p(2) [(zgg) —1] dz, p, g€ P(I):

45 Dalpa)i= g |L- / (@)% @] F o). g€ P )

(4.6) D5 (p,q /\/ x)dz, p, g€ P(I);

2p () q (z)

p@) +a(@ " P 1P

(47) DHa (p7 q) = /I\

@y D)= [ -a@in |15 5 aeP@);



REVERSES OF JENSEN’S INTEGRAL INEQUALITY 15

- (@ —a@I
Csiszdr f-divergence is defined as follows [2]
(4.10) 1) = [p@) 7 |55 a5 n aeP ),

where f is convex on (0,00). It is assumed that f (u) is zero and strictly convex
at u = 1. By appropriately defining this convex function, various divergences are
derived. Most of the above distances (4.1)-(4.9), are particular instances of Csiszar
f-divergence. There are also many others which are not in this class. For the basic
properties of Csiszar f-divergence see [2], [3] and [12].

The following result holds:

Proposition 1. Assume that 0 <r <1< R < oo and p, ¢ € P (I) with

Tgngfora.e.IGI.
p(z)

(i) If f : (0,00) — R is differentiable convexr on (0,00) with f (1) =0 and if p,
q are differentiable on the interior of I, then we have the inequalities
(Zy (p.a) = f1 (r) (fL (R) = I (p,q))
100 fL(R) = fi (r)

1 , , Ton 0o/
< g () - p ) | 722

dp—17q
p3

1
(411) 0<I;(p.g) < 2‘

1,00

provided q'p;p/q € Lo (I).
7 (2)(dp—p'q)

(ii) If f is twice differentiable on (0,00) and .

€ Lo (I), then
1 f" (%) (¢'p—1'q) (1-7)(R—1)
=2 p3 R—r
I,00
f" (L) (dp—p'q)
(R—7) (p) 5

(4.12) 0<1Is(p,q)

1
< —
-8

I,00

The proof follows by Theorem 4 for the convex function f.
Consider the convex function f (¢t) = —Int¢,t > 0. We have Iy (p, ¢) = Drr (p,q),

Iy (p7Q>:_/Ip<x) q(lﬂi)dx:_/jlj]((xx))dm

p(z)

D)= [ (@) [(]‘ﬁf;) - 1] iz,

If/ (p7q) =-1 7DX2 (Q7p)

and since

then
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From (4.11) we get
(4.13) 0< DL (p,q)

< 1|dp—pq (1—7—rD,2(q,p)) (RDy2 (¢,p) + R —1)
-2 p3 oo R—r
1R—r|l¢dp—pq
-8 rR p3 LOO’
provided T2220 € L, (I), while from (4.12) we get
1ld'p—rq (I-r)(Rr-1)
4.14) 0<D <=
( ) < Dkr (p,q) < D) ‘ &p e R_r
1 qp—pq
S S(R—r ’
g ( ) .

provided qlzgf/q € Lo (I).
Consider the convex function f (¢t) = tlnt, t > 0. We have
x

If(p,q) = /Ip(w) gEx; In (;g;) dx = Dk, (¢,p),

Iy (pyq) = /Ip(iv) (ln [q(x)} +1> dr =1- Dkr, (p,q)-

p(x
By (4.11) we get

(4.15) 0 < Dgp,(q,p)

_llgp—pa| (nr~ - Dxr(p.q)) (Dxr(p.g) ~InR™Y)
-2 p3 Ioo (InR—1Inr)
1 I ol
<-(InR-Inr) M ,
8 p 1,00
provided qlpp}p’q € Lo (I), while by (4.12)
L|ld'p—p'q (I-r)(R-1)
4.16) 0<D < =
B e e M =
1 ap—7p'q
< (R—p||£P—P4
<3 ) preanl I
provided 220 € L, (I).
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