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SOME INEQUALITIES FOR THE CEBYSEV FUNCTIONAL
SILVESTRU SEVER DRAGOMIR!2

ABSTRACT. In this paper we establish some inequalities for the Cebysev func-
tional

b b b
Chg) =y [ s0sa— o= i [ gwa

of two Lebesgue integrable functions f, g : [a,b] — R.

1. INTRODUCTION

For two Lebesgue integrable functions f, g : [a,b] — R, consider the Cebysev
functional:

1 b 1 b b
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In 1935, Griiss [17] showed that
1
provided that there exists the real numbers m, M, n, N such that

(1.3) m< ft)<M and n<g(t)<N forae. t€lalb].

The constant i is best possible in (1.1) in the sense that it cannot be replaced by
a smaller quantity. .

Another, however less known result, even though it was obtained by Cebysev in
1882, [4], states that
(1.4) 1C(f:9)| < %\\f’llw\lg’llw(b*a)z,
provided that f’, ¢’ exist and are continuous on [a, b] and || f'||, = sup,ejq4 [f' ()]
The constant % cannot be improved in the general case.

The Cebysev inequality (1.4) also holds if f, g : [a,b] — R are assumed to be
absolutely continuous and f', g € Lo [a,b] while || £/, = essupyer ) | ()]

A mixture between Griiss’ result (1.2) and Cebysev’s one (1.4) is the following
inequality obtained by Ostrowski in 1970, [24]:

(15) CU9)] < 5 (b—a) (M —m) ...

provided that f is Lebesgue integrable and satisfies (1.3) while g is absolutely con-
tinuous and ¢’ € L [a,b]. The constant % is best possible in (1.5).
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The case of euclidean norms of the derivative was considered by A. Lupasg in [21]
in which he proved that

(16) CUa) < 25 11 gl (b a),

provided that f, g are absolutely continuous and f, ¢’ € Ly [a, b] . The constant 5
is the best possible. 5
Consider now the weighted Cebysev functional

1 b
1D Culfs)i= g / w(t) f(£)g (1) dt

1 b 1 b
el IOt [ewswa

where f, g, w: [a,b] — R and w (t) > 0 for a.e. t € [a, b] are measurable functions

such that the involved integrals exist and f; w (t)dt > 0.
In [6], Cerone and Dragomir obtained, among others, the following inequalities:

(1.8)  |Cu (f,9)]

1 1 b 1 b
S2(M_m)f;w(t)dt/a w(t) g“)‘f;w<s>ds/a w(s) g (s) ds| dt
1 1 b 1 b k

<3 (M —m) [f:w<t)dtL (”g(t)‘f;w@ds/aw(s)g@d‘s dt]
1 1 b
§2(M—m)§:[sggg(t)—w/a w(s)g(s)ds

for p > 1, provided —co < m < f(t) < M < oo for a.e. t € [a,b] and the
corresponding integrals are finite. The constant % is sharp in all the inequalities in
(1.8) in the sense that it cannot be replaced by a smaller constant.

In addition, if —oco <n < g(t) < N < oo for a.e. t € [a,b], then the following
refinement of the celebrated Griiss inequality is obtained:

(1.9) |Cw (£, 9)l

1 1 b 1 b
Si(M—m) f:w(t)dt/a w (¢) g(t)_f:w(s)ds/a w(s)g(s)ds|dt
1 1 b 1 b k
< 5 (M —m) fbw(t)dt/a w (t g(t)—f,,w(s)dg/a w(s)g(s)ds| dt

1
< 5 (M —m) (N —n).
Here, the constants % and i are also sharp in the sense mentioned above.
For other inequality of Griiss’ type see [1]-[5], [7]-[16], [18]-[23] and [25]-[28].

In this paper we establish some new inequalities for the Cebysev functional
C (f, g) under several conditions for the integrable functions f, g : [a,b] — R.
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2. THE RESULTS
We have:

Lemma 1. Let [ : [a,b] — R be a Lebesgue integrable function and so that F (b) =
0, where F (x) := [ f (t)dt. Then we have

(2.1) /ab F?(z)dr = ) (/:F(s) ds) dz

J21f () |dmf |F (s)|ds,

< <fab\f(x)|pdm) p[f (7 |F (s)| ds)" d }/q,p,q>1,%+;:1,

essuPye o, |f (@)] [ (f7 |F (s)|ds) do

Proof. Using integration by parts we have

/F2 dat—/ Fla dm—/:F(x)d(/:F(s)ds)
P )/a F(s)dsb—/bF’(ac) (/xF(s)ds>d:c
R
——/abf(w)</;F()d8>dx / ro) ([ Feis)ad.
We also have

/:f(@(/;F(s)ds)dx
i dx</b|f<x>|(/wF<s>|ds)dx
< e ([T1F s |ds>/ e \dx—/ P (s \ds/ 1 (@) da.

Using Holder’s integral inequality we also have

/ablf(:v)l ([ 1relas)ar < (/abf<x>|pdx>l/p [/b (/jF<s>|ds)qur/q

for p, ¢ > 1 with % + % = 1, which proves the second branch of (2.1)
Finally,

/ablf(fﬂ)I(LZIF(S)Ids>dx<§§;15]|f \/ ([ 1)

and the lemma is proved. O

s)ds

The following result is due to Ostrowski [24]:
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Lemma 2. Let [ : [a,b] — R be a Lebesque integrable function so that F (b) =0
and there exists o € [0, 1] such that

—a< f(z) <1—a forae x€la,b].

Then we have
’ 1 2 _ 1 2
(2.2) / IF@)ldr < Sa(1—a) (b o) < 5 (b—a)*.
Corollary 1. With the assumptions of Lemma 2 we have
b b b
(2.3) / F? () dx < %a(l—a) (b—a)z/ |f (z)|dz < é(b—a)Q/ \f (x)| da.

The proof follows by the first branch of (2.1) and by (2.2), namely

b b b b
1
[ P@de [1r@lds [ 1F]ds < ja-a) -0 [ 1f@]ds
Lemma 3. Let h: [a,b] — R be a Lebesgue integrable function on [a,b] such that

(2.4) —00<y<h(z)<T < oo for a.e. on [a,b],

then we have the inequality

(2.5) /: /;h(t)dt—zj_Z/:h(s)dSde

1 b 1 b
Sl(b_a)2<bafah(s)ds_’y> <F_bafah(8)d8>
2 I'—~ I'—~
b b
x(F—'y)/ h(t)—ﬁ h(s) ds| dt

dt.

b
h(t)—b1 /h(s)ds

—a

Proof. Let

£ = lh(t)—bla/ h(s)ds] telat].

T b
F(I):Fii7 (h(t)bia/ h(s)ds)dt

:r%y </jh(t)dt—§:2/abh(s)ds>

F(b) = F (a) =0.
Since vy < h(z) <T < oo for a.e. on [a,b], hence

1 b
(2.6) f(t)<1<F—b1 /abh(s)ds>:1—b“f“h(8)d8_’y

—a

Then

for z € [a,b] and




SOME INEQUALITIES FOR THE CEBYSEV FUNCTIONAL 5

and

2.7)

b
7ﬁf:h(s)ds—'y 'y—b%fah(s)ds
I'— Y

for a.e. t € [a,b].
By denoting

we have a € [0,1] and —a < f(t) <1 — « for a.e. t € [a,b].
By employing the inequality (2.3) we get

M/ﬂb /:h(t)dt—:;_Z/abh(s)ds2

i (b_lafjh(s)dsv) (F = ff;l(s)d5> (b—a)?

dx

2 L —~ r—
X ! /b h(t) — ! /bh(s)ds dt
F=~/Ja —aj,
< Lo e - [ he)ds ar,
8 I'—=~vJa b—a J,
which is equivalent to (2.5). O

‘We have:

Corollary 2. Let g : [a,b] — R be an absolutely continuous function on [a,b] such
that

(2.8) —00<v<g (z) <T < oo for a.e. on [a,b],

then we have the inequality

(2.9) / b

1 ) g(b;:g(a) — T — g(bl)):.(ql(a)
<-(b-a)
2 I'—~ I'—~

b —gl(a
X(F—v{/ g9 () g@;_z()dt
b —gl(a
<gO-at - [g@- 02
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Remark 1. Using the Cauchy-Bunyakouvsky-Schwarz (CBS) inequality we get

1 /bg(x)dx_g(a)Jrg(b)

(2.10)

b r—a — T a 2
_bl /g(m)_( )g(b;irC(Lb )9 (@
1 g(b):g(a) — r— g(b):z(a)
oo (S ()

b — a
X(P—W)/a 9’(t)—g(b2_z()’dt

b — a

Si0-am- [lyw- 200,

Theorem 1. Let f : [a,b] — R be a Lebesgue integrable function on [a,b] such that
there exists the real numbers m < M with the property

(2.11) —co<m< f(xz) <M < oo for a.e. on [a,b],

and g : [a,b] — R is absolutely continuous with ¢’ € Ly [a,b], then we have the
inequality

1 %af;f(s)ds—m M—%af:f(s)ds
(2.12) [C(f.9)f < 2||g||[ab]2<b e >< =L )

x(M—m)/ab

b
< GO0 =m) 191, [

a

1 2 2
<76 (M =m)~(b=a)ll9'l[ja 4,2

Proof. Integrating by parts, we have

ol ([ ros

ia[(/jf@)
- / o) (f (2) - ds> da
—a/f dm—l—i/f ds ! /abg(x)dax,

which gives that

(2.13) C(f79)=bia/u (x_a/f ds—/ f dt)g/ ) dx
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Using (CBS) integral inequality and the inequality (2.5), we have

L(m_“/f as— [ s dt)g/ 2) do
g(bla / "ﬁ'“’*a/f dsf/f t) dt
1 .2 ff )ds —m M—Efafsds
) lg ||[a,,b],2 ( ) ( M—m )
(Mm)/ab /f )ds|d
! —7/]0 )ds|d

Lt —m) g Ha,b,z/

which proves the first and second inequality in (2.12).
By (CBS) integral inequality we also have

(/abf(t)b_lafabf(S)ds dt)zswa)/ab /f
b—a/f2 t)dt — (/ f(s)ds)

< (b= a) (M —m)?,

1

Clof ==

19 s,

X

IN

where for the last inequality we used Griiss’ inequality (1.2) for g = f.
This proves the last part of (2.12).

3. RELATED RESULTS

If we use the unweighted version of (1.7), we have

b_a/¢ dtf—/qﬁ dt—/z/; t) dt

b
<yor-m s Moo - [

where ¢ is integrable and m < ¢ (t) < M for a.e. t € [a,b] and 1 integrable.

(3.1)

Lemma 4. Let h: [a b] — R be a Lebesgue integrable function and so that H (b) =
0, where H (z f h(t)dt. If there exists the constants k < K such that

(3.2) kg/ H(t)dt < K for a.e. x € [a,b],
then we have

b b
(3.3) / H? (z)dx < %(K - k)/ |h ()] dt.
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Proof. If we use the equality in (2.1) and (3.1), then we get

1 I
-5 =Ry [l
d

Lemma 5. Let f : [a,b] — R be a Lebesgue integrable function such that there
exists the constants n, N with the property

which is equivalent to (3.3).

x b
(3.4) n(b—a)g/ F(t)dt—%(b—a)/ F(s)ds < N(b—a),
for a.e. x € [a,b], then

r

s)ds

1 b
Si(N—n)(b—a)/a

/f )ds|d

The proof follows by Lemma 4 for the function h(t) = f(t) — ;= fab f(s)ds,
t€la,b].

Theorem 2. Let f : [a,b] — R be a Lebesgue integrable function on [a,b] such that
there exists the real numbers n < N with the property (3.4) and g : [a,b] — R is
absolutely continuous with g’ € Lo [a,b], then we have the inequality

1P 10
A Ry IV OLAL

Proof. As in the proof of Theorem 1 we have

(322 va o)

<t L]ie [ [[ o

By making use of the inequality (3.5) we deduce the desired result (3.6). O

(3:6) 1C(f9) <

l\DM—‘

1

2
CUoF ==

2
H9/||[a,b],2 :
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Corollary 3. Let f : [a,b] — R be a Lebesgue integrable function on [a,b] such that

T b
(3.7) bia/ F(t)dtf%/ f(s)ds < 00

[a,b],00
and g : [a,b] — R is absolutely continuous with ¢ € Ly [a,b], then we have the
inequality

I I
68 0GP <o e = [ Frat—3 [ 1)as
a a [

b b
Xbia/a f(t)—bia/a £ (s)ds| dt.
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