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NEW INEQUALITIES FOR THE CEBYSEV FUNCTIONAL

SILVESTRU SEVER DRAGOMIR!+2

ABSTRACT. In this paper, by employing some classical results due to Os-
trowski, Cebysev and Lupag, we establish some new inequalities for the Cebysev
functional

b b b
Chg) =y, [ s0ema— o= s [ gwa,

of two Lebesgue integrable functions f, g : [a,b] — R.

1. INTRODUCTION

For two Lebesgue integrable functions f, g : [a,b] — R, consider the Cebysev
functional:

1 b 1 b b
1) Clhg) =y [ fOgwit - —— [ i [ g0
b—a a (b — a) a a
In 1935, Griiss [18] showed that
1
(12) C(f.9)| < 3 (M —m) (N =n),
provided that there exists the real numbers m, M, n, N such that

(1.3) m<f({t)<M and n<g()<N forae. t€]la,b.

The constant i is best possible in (1.1) in the sense that it cannot be replaced by
a smaller quantity.

Another, however less known result, even though it was obtained by Cebysev in
1882, [4], states that

(1.4) IC(f.9)l < %\\f’llm\lg/llw(b*a)z,
provided that f’, g’ exist and are continuous on [a, b] and || f'||, = sup,ejq4 [f' ()]
The constant 1—12 cannot be improved in the general case.

The Cebysev inequality (1.4) also holds if f, g : [a,b] — R are assumed to be
absolutely continuous and f', g’ € Lo [a,b] while || f']|, = essupye(q ) | ()]

A mixture between Griiss’ result (1.2) and Cebysev’s one (1.4) is the following
inequality obtained by Ostrowski in 1970, [25]:

1
(1.5) C (£l < g b —a)(M=m)|g],
provided that f is Lebesgue integrable and satisfies (1.3) while g is absolutely con-
tinuous and ¢’ € L [a,b]. The constant % is best possible in (1.5).
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The case of euclidean norms of the derivative was considered by A. Lupasg in [22]
in which he proved that

(16) CUa) < 25 11 gl (b a),

provided that f, g are absolutely continuous and f, ¢’ € Ly [a, b] . The constant 5
is the best possible. 5
Consider now the weighted Cebysev functional

1 b
1D Culfs)i= g / w(t) f(£)g (1) dt

1 b 1 b
el IOt [ewswa

where f, g, w: [a,b] — R and w (t) > 0 for a.e. t € [a, b] are measurable functions

such that the involved integrals exist and f; w (t)dt > 0.
In [6], Cerone and Dragomir obtained, among others, the following inequalities:

(1.8)  |Cu (f,9)]

1 1 b 1 b
S2(M_m)f;w(t)dt/a w(t) g“)‘f;w<s>ds/a w(s) g (s) ds| dt
1 1 b 1 b k

<3 (M —m) [f:w<t)dtL (”g(t)‘f;w@ds/aw(s)g@d‘s dt]
1 1 b
§2(M—m)§:[sggg(t)—w/a w(s)g(s)ds

for p > 1, provided —co < m < f(t) < M < oo for a.e. t € [a,b] and the
corresponding integrals are finite. The constant % is sharp in all the inequalities in
(1.8) in the sense that it cannot be replaced by a smaller constant.

In addition, if —oco <n < g(t) < N < oo for a.e. t € [a,b], then the following
refinement of the celebrated Griiss inequality is obtained:

(1.9) |Cw (£, 9)l

1 1 b 1 b
Si(M—m) f:w(t)dt/a w (¢) g(t)_f:w(s)ds/a w(s)g(s)ds|dt
1 1 b 1 b k
< 5 (M —m) fbw(t)dt/a w (t g(t)—f,,w(s)dg/a w(s)g(s)ds| dt

1
< 5 (M —m) (N —n).
Here, the constants % and i are also sharp in the sense mentioned above.
For other inequality of Griiss’ type see [1]-[5], [7]-[17], [19]-[24] and [26]-[29].

In this paper we establish some new inequalities for the Cebysev functional
C (f, g) under several conditions for the integrable functions f, g : [a,b] — R.
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2. PRELIMINARY RESULTS
We have:

Lemma 1. Let f : [a,b] — R be a Lebesgue integrable function such that there
exists m < M with

(2.1) m < f(t) <M for ae. t € Ja,b]

and so that F (b) = 0, where F (z) := [ f (t)dt. Then we have
2 1 2

(2.2) 1 .2 < g (0= a)" (M = m) [ Fllg 4,00

Proof. Using integration by parts we have

o3 [ ws= [ rreinsc feuns( [ rio)
] roul - [ o[ s
:F“’)/a F()ds—/a ro ([ Fds)do
= [ ([ Fea)a=| [ 1w ([ Feas)a
Using Ostrowski's inequality (1.5) we have
[ ([ o) =‘ e ([ o)
b—a/f ©)deg— a/b( Fle )m

< 5 (0= @) (O =) [y

which implies (2.2). O

Corollary 1. Let h : [a,b] — R be a Lebesgue integrable function on [a,b] such that
(2.4) v < h(z) <T for a.e. on [a,b],

then we have the inequality

(2.5) /ab /;h(t)dt—"z:;l/abh(s)ds2

< /jh(t)dtz_s/abh(s)ds.

dx

1 2
Z(b— T —
8( a)” (I' =) Jmax,
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Proof. Follows from Lemma 1 by taking f (¢) = h (t) — 7~ f; h (s) ds and observing
that [ f (t)dt =0,

b b
m:fyib1 /ah(s)dsgh(t)—bia/Gh(s)ds

—a

b
§I‘—b_a/a h(s)ds=M

and
r—a

F(m):/mh(t)dt—bia/ h(s)ds, © € [a,}].

We also have by Ostrowski’s inequality (1.5) that

Lemma 2. Let f : [a,b] — R be an absolutely continuous function with f' €
L [a,b] and such that there exists n < 0 < N with

(2.6) n < F(x) <N for a.e. x € [a,b]
and so that F (b) = 0, where F (z) := [ f (t)dt. Then we have

1
(2.7) IR,z < 5 0= 0 (V= 0) 1 0 -

Corollary 2. Let h: [a,b] — R be an absolutely continuous function and such that
there exists ¢ < 0 < ® with

Tr—a

(2.8) qég/wh(t)dtfb

then we have the inequality

(2.9) /ub /;h(t)dt—uz_Z/abh(s)dsQ

We also have:

b
/ h(s)ds < ® for a.e. on [a,b],

—a

1
do < 5 (b= )" (@ = 6) |1l -

Lemma 3. Let f : [a,b] — R be an absolutely continuous function on [a,b] such
that f' € Ly [a,b]. Then

1
2
(2.10) 1 la01,2 < 15

2
=192 (b_ a’) ||f/H[a,b],oo HFH[a,b],OO '

Proof. Using Cebysev’s inequality for the functions f and fa F (s) ds we have

bia/abf(:z:)</axF(S)d8>dx b—la/abf(x)</;F(S)dS>dx
bia/abf(x)dzbia/ab (/:F(s)ds)dx

1 201 o
< E (b - a) ||f ||[a,b},oo ||FH[a,b],OO '

Using the equality (2.3) we get the inequality (2.10). |
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Corollary 3. Let h: [a,b] — R be an absolutely continuous function on [a,b] with
h' € L [a,b], then we have the inequality

(2.11) /ab Lzh(t)dt—i_Z/lbh(s)ds

1 2117
< 1y (0= Wl o | [ G

Lemma 4. Let f : [a,b] — R be an absolutely continuous function on [a,b] such
that f' € Lo [a,b]. Then

1 2
(2.12) 1l o2 < = 6= @) 1 0.2

Proof. Using Lupag’s inequality for the functions f and fa F (s) ds we have

[ ([ o) bia/bf(x)</aIF(s)ds>dx
b_a/f dzb_a ( )dx

2
dx

‘We have

1
< 7(b_a) I Hab 2” ||[ab]2
Using the equality (2.3) we get
2 1 2
||F||[a,b],2 < ﬁ (b - a) ||f/||[a,b],2 HFH[a,b],Q’
which is equivalent to (2.12). O

Corollary 4. Let h: [a,b] — R be an absolutely continuous function on [a,b] with
K € Ly la,b], then we have the inequality

(2.13) /ab /;h(t)dtz:;l/abh(s)dsg

Consider a function g : [a,b] — R and assume that it is bounded on [a,b]. The
chord that connects its end points A = (a, g (a)) and B = (b, g (b)) has the equation

b—t t— b
dy s [,b] = R, dy (1) = & )g(ag—i—( 29 ()
—a
We consider the error in approximation the function g by d, denoted by E, and

defined by
B, (1) = 9(t) — dy () = g 1) - LD 0)

Sharp bounds for ®, under various assumptions for g and including absolute con-
tinuity, convexity, bounded variation, and monotonicity, were given in [14]. Some
applications for weighted means and f-divergence measures in information theory
were also provided.

1/2

dx <

(b—a) s ||[a b2

1
w2

, t € [a,b].
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We observe that if ¢ : [a,b] — R is aboslutely continuous on [a,b], then

z zt—a [° r—a
[ oma-i= [ g @ as=g@ g - =2 s0)~ g (a)

S U U HL)

for z € [a, b]
Using the above results we can state the following propositions:

Proposition 1. Assume that g : [a,b] — R is aboslutely continuous on [a,b] and
there exists the constants v, I' so that

(2.14) v < g (x) <T for a.e. on [a,b],
then we have the inequality
Lo (@ +90)]
gla g

2.15 e t)dt — ¥—————=
e = [0 :

1 b 9 1

<o [ 1B @R s < L 6-0) (T =) max |E, (@)

Proof. If we use the inequality (2.5) for h = ¢’ then we get the second inequality in
(2.15). For the first inequality, we use the Cauchy-Bunyakovsky-Schwarz integral
inequality to get

2
1

b 1 b

O

Proposition 2. Assume that g : [a,b] — R is differentiable and the derivative g’

is aboslutely continuous on [a,b], g € Lo [a,b], and there exists the constants ¢,
d so that

(2.16) ¢ < E,(x) < ® fora.e z€Ja,b],

then
2

(2.17) /abg War— D9 ;g (®)

b—a

I 2 1 ”
<y [ B @ A< $ -0 @ =0) 1 o

The proof follows by Corollary 2.
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Proposition 3. Assume that g : [a,b] — R is differentiable and the derivative g
is aboslutely continuous on [a,b] and g" € Ly [a,b], then we have the inequality

/abg(ndt 2(0) 0

2
(2.18)

b—a

1 ’ 2 1
Sb—a/a |Eg (2)]" dz < —Q(b—a)Hg ||[ab] max |E (z)].
The proof follows by Corollary 3.

Proposition 4. Assume that g : [a,b] — R is differentiable and the derivative g’
is absolutely continuous on [a,b] and ¢ € Ly [a,b], then

1 /bg(t)dt_gw);g(b)

2

(2.19) T

]_ b 2 1 3 2
<o [ B @P < -0 1

The proof follows by Corollary 4.

3. Bounps FOR CEBYSEV’S FUNCTIONAL
We have:

Theorem 1. Let f : [a,b] — R be a Lebesgue integrable function on [a,b] such that
there exists the real numbers m < M with the property

(3.1) —co<m< f(z) <M < o for a.e. on [a,b],

and g : [a,b] — R is absolutely continuous with g’ € Lyla,b], then we have the
inequality

t)dt —

/ F)dt—

ds) g/ (z) dz
. b
(/ f@)dt— ds)g(x)

-/ ") (f (x) - ds) do
_a/‘f dz+———/.f

(3.2) |C(f.9) < ( ) 5 g’ ||[ab]2

1
< 31 = m) g, max

jj/abﬂs)ds

Proof. Integrating by parts, we have

([

/bg@c) dr,
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which gives that

(33)  C(hg) = (x“/f ds—/f dt)g/)

Using (CBS) integral inequality and the inequality (2.5), we have

1 T—a
G4) 109 = o [ 0a) g
(b—a)’
1 b T —a b xr 9
< _ /
S / = [t [ rwa ol
Using the inequality (2.5) for the function f we have
(3.5)
1
<50 -m) e | [ 1
Using (3.4) and (3.5) we get (3.2). O

‘We also have:

Theorem 2. Let f : [a,b] — R be an absolutely continuous function on [a,b] and
g : [a,b] — R is absolutely continuous with g’ € Ly [a,b].

(i) If there exists ¢ <0 < & with

(36) o< / 10

s)ds < ® for a.e. on [a,b],

then

t)dt —

1 b
3.7) |C(f.9)f < b—a) ||gl||[2a,b],2

(®—9)

[a,b], oo llg’ ||[ab]2’

oo\>—~

provided [’ € Ly [a,b].
(ii) If f' € Loo|a,b], then we have the inequality

1 > b
38) [C(f9f' < —— 19'1a.1).2 t)dt —
(b—a) a
< Lo |12 “rwa- 0 [ p sy
< ﬁ( = a)" [ Nlja,p],00 l9 ||[a,b],2;é1[%§] j f(t)dt — b—a ), f(s)ds




1 / b| px B b 2
39 0G0 < g Iolne | [ | f@0a-5=2 [ fas] aa
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(iii) If f' € La[a,b], then we have the inequality

1/2

1
72

< 5 0= a) 1 a2 19 a,0).2

The proof follows along the lines of the proof of Theorem 1 by making use of

the inequalities (2.9), (2.11) and (2.13) written for the function f. The details are
however omitted.
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