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INTEGRAL INEQUALITIES RELATED TO WIRTINGER’S
RESULT

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some natural consequences of the Wirtinger
integral inequality. Applications related to the trapezoid unweighted and
weighted inequalities, of Fejér’s inequality for convex functions and of Griiss’
type inequalities are also provided.

1. INTRODUCTION

It is well known that, see for instance [4], or [7], if u € C([a,b],R) satisfies
u(a) = u(b) = 0, then

(1.1) /bu2 (t)dt < (b;f)z/b [ (4)]° dt

with the equality holding if and only if u (t) = K sin [ ud G ] for some constant

b—
K eR.
If u € C*([a,b],R) satisfies the condition u(a) = 0, then also

b PRI ,
(1.2) / W2 (1) dt < 4(1’7T72) / [’ () dt

and the equality holds if and only if u (¢) = Lsin [g((; g } for some constant L € R.

If h € C([a,b],C) is a function with complex values and h(a) = h(b) = 0, then
Reh(a) = Reh(b) = 0 and Im h(a) = Im h(b) = 0 and by writing (1.1) for Reh and
Im h and adding the obtained inequalities, we get

(1.3) /|h J2ar < =9 /|h’ )2 dt

with the equality holding if and only if

1) = s [0

—a

for some complex constant K € C.
Similarly, if h € C1([a,b],C) with h( ) =0, then by (1.2) we have

(1.4) /|h JPar < Ho=a)S /|h’ 2 dt
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and the equality holds if and only if
. [r(t—a)
h(t)=1L — =
0= s T4

for some complex constant L € R.

For some related Wirtinger type integral inequalities see [1], [2], [4] and [6]-[10].

Motivated by the above results, in this paper we establish some natural con-
sequences of the Wirtinger integral inequality above. Applications related to the

trapezoid unweighted and weighted inequalities, of Fejér’s inequality for convex
functions and of Griiss’ type inequalities are also provided.

2. SOME APPLICATIONS
If g € C'([a,b],C), then by taking

h(t) ::g(t)+g(2a+b—t) 79(@);9@)7 e [a, )

we have h (a) = h(b) = 0 and by (1.3) we have

(2.1) /ab

2

gt)+glatb—t) gla)+g®) ,

2 2

b_a)? b
< [0 -garo-of a

By Cauchy-Bunyakovsky-Schwarz integral inequality we have

-2 /ab

[ 20 +atess=0) _gle) o) 4

g®)+gla+db—1) g(a)+g®)|

2 2

>

which implies that

(2.2)

2

g +glatb-t) gla)+g®)"

1 b
< —
“b—-a /a 2
By utilising (2.1) and (2.2) we can state the following result:
Proposition 1. Let g € C'([a,b],C). Then

TGETIC R Ry P

(2.3) 5 b —a

( : |
< /
“\b—a/,

g(t)+gla+b—t) g(a)+g(d)
2 2

5 N\ 1/2
)

— b 1/2
Vb% (/ g’(t)g’(a+bt)|2dt> .

<
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If g € C1([a,b],C), then by taking
_ g(a)(b—t)+g(b)(t—a)
hit) =g (t) - )t
we have h (a) = h(b) = 0 and by (1.3) we have

’ ga)(b—t)+g(®)(t—a)
(2.4) / -

, t€la,b]
2

dt
—a2 b - a
B0 [y - 20000

By Cauchy-Bunyakovsky-Schwarz integral inequality we also have

a)+ b
g()Qg(b)/a (t)’t 7 -
g (t) gla)(b—t)+g(b)(t—a) ’

1 b
<
_b—a/a b—a

By utilising (2.4) and (2.5) we can state the following result:
Proposition 2. Let g € C'([a,b],C). Then

b
TURSTONN Y

g(t)—

2
dt.

2

(2.5)

dt.

(2.6)

gla)(b—1t)+g(b)(t—a)
b—a

g(t)—

9 1/2
dt>

Assume that g : [a,b] — C is continuous, then by taking

t—a

t b
h(t) :z/ g(s)ds—b_a/ g(s)ds, t € [a,b]

we have h (a) = h(b) =0, h € C*([a,b],C) and by (1.3) we get

b| gt b 2
en [\ awas—i=2 [ g

dt

dt.

b
9) - [ a(o)ds

Observe that, integrating by parts, we have

/ab (Ltg(s)ds_z_zlbg(s)ds> dtzfab (/:g@)ds)dt—bf/abg(s)ds
_ /abg(s)ds/abtg(t)dtbza/abg(s)ds_b;ra/abg(s)ds/abtg(t)dt.
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By Cauchy-Bunyakovsky-Schwarz integral inequality we have

AE@M»{‘ZLZ@MJ

[ ([row-izz frow)af 132 [row [

Proposition 3. Let g € C([a,b],C). Then

b—ga/abg(s)ds—/abtg(t)dt
gQ%@Aﬁ[ﬂ@@—jﬁLﬂ@wQ
_(bia [ /Ig [Pt — |

dt

2

(2.9)

1 b , 1 b 2
— i [lsPa- ;= [ g@)as

3. COMPOSITE INEQUALITIES

‘We have:

Theorem 1. Let g : [a,b] — [g(a),g (b)] be a continuous strictly increasing func-
tion that is of class C on (a,b).

(i) If f € C*([a,b],C) is a function with complex values and f(a) = f(b) = 0,
then

— (a2 [P (2
) {wf| par<lO—g@lt (UOF,

The equality holds in (3.1) iff

B mlw@w—gm»
fo) =K [www@}’Kec

(i) If f € C*([a,b],C) is a function with complex values and f(a) = 0, then

(3.2) /|f 1P g ( ﬁ< /'ﬂ dt.

The equality holds in (3.2) iff

m(g(t) —g(a))
2(g(b) —g(a))

f(t):Ksin[ },KG(C.
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Proof. (i) We write the inequality (1.3) for the function h = fog~! on the interval
g (@), g (b)] to get

g(b) —a(a))? 9® ,
(3.3) (ém)}Uog_g(dﬁdzﬁ(gw)wf())(Am)’gog_w @ﬂ2d;

If f: [e,d] — C is absolutely continuous on [¢,d], then fog=t:[g(c),g(d)] — C
is absolutely continuous on [g (¢), g (d)] and using the chain rule and the derivative
of inverse functions we have

(3-4) (fog™) @ =(fog )2 (97") (2) =

for almost every (a.e.) z € [g(c),g(d)].
Using the inequality (3.3) we then get

9(b) ) —g(a)? (9O
(35) / }(fogfl) (Z)’ dz S (g(b) 29( )) /

(a) m

(fleg™) (2)
(g og71)(2)

provided (fog™") (g(a)) = f(a) =0and (fog")(g(b)) = f(b) =0.
Observe also that, by the change of variable t = g71 (2), 2
have z = ¢ (t) that gives dz = ¢’ (¢) dt and

9(b) b
_ 2
(3:0) [ ea @ d= [Ir@Pd @
g(a) a
We also have
0] 2 b
/ =)
g(a) a
By making use of (3.5) we get (3.1).
The equality holds in (3.5) provided

MOl
g (t)

(f'eg™") (2)
(9 og71)(2)

"1 @)

(fog™)(2) = Ksm[( (“))} KeC

(b) — g (a)
for z € [g(a), g (b)]. If we take t € [a, b] and z = ¢ (t), we then get
f(t)ZKSiH|: 9(0)) , K eC.
g(a)
(i) Follows in a similar way by (1 .4). O

Some examples are as follows:

a). If we take g : [a,0] C (0,00) — R, g(t) = Int and assume that f €
C1([a,b],C) is a function with complex values and f(a) = f(b) = 0, then by (3.1)
we get

b 2 In(2)1% b
(37) /a ‘f (tt)| dt < [ 7(1-;)] ‘/a |f/ (t)|2tdt
The equality holds in (3.7) iff

7r1n( )

In (3)

SIC

f(t)szin[ ],KG(C.
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If f(a) =0, then

(3.8)

o t - T

with equality iff

b). If we take g : [a,b] C R — (0,00), g(t) = expt and assume that f €
C1([a,b],C) is a function with complex values and f(a) = f(b) = 0, then by (3.1)
we get

b _ 2 b
69 [ rOF e s E2EPD R e o
The equality holds in (3.9) iff
. [7m(expt —expa)
t)=K _ .
f @ sm[ oxpb—oxpa ],KEC
If f(a) = 0, then
b 2 4(expb—expa)® [° ., .2
(3.10) / |f ()] exptdt < - / [f (#)]" exp (—t) dt

with equality iff

7 (expt — expa)

f(t):Ksin[ ],KGC.

2 (expb —expa)

c). If we take g : [a,b] C (0,00) — R, g(t) = t", r > 0 and assume that
f € C*([a,b],C) is a function with complex values and f(a) = f(b) = 0, then by
(3.1) we get

b T 2 b
(311) [irorea< S0 Fipop e
The equality holds in (3.11) iff
F(t) = K sin rgt_a“)] L KeC.
If f(a) =0, then
(3.12) /blf(t)Izt"‘ldt < W/bu' @)t "dt

with equality iff
L [m (" —a")
t)=K — |, K .
f@® Sln|:2(br_gr):|, eC
If w : [a,b] — Ris continuous and positive on the interval [a, b] , then the function
W :[a,b] — [0,00), W (z) := [ w(s)ds is strictly increasing and differentiable on
(a,b). We have W' (z) = w (z) for any z € (a,b).
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Corollary 1. Assume that w : [a,b] — (0,00) is continuous on [a,b] and f €
CY([a,b],C) is a function with complex values and f(a) = f(b) = 0, then

b b 2 b2
U f<t>|2w<t>dtg732< / w(s)ds> / 'fw<(’ft>)' dt.

The equality holds in (3.13) iff

ks Wf(fw(s)ds
ft) =K l:w(s)ds]7 K eC.

If f(a) =0, then

b b 2 b | pr 2
(3.14) / |f<t>|2w<t>dt<;§< / w(S)ds) / L <(’ft>) at

with equality iff

f(t) = Ksin lW

w(s)ds

],Kec

We observe that if in (3.14) we replace f by g — g (a) we get the inequality

b b 2 b 2
(3.15) /Ig(t)—g(a)zw(t)dt<7i</ w(s)d8> / |gw<(tt))| at

for w : [a,b] — (0,00) that is continuous on [a, b] and g € C*([a, b], C).

Remark 1. If f is a function with complezx values and f(a) = 0, then the inequality
(8.14) can be stated on the infinite interval [a,c0) as follows

a1 [Trorvas ([ Tee ds)2 | 'Z((i’)'th

provided f € C'([a,0),C), w : [a,00) — (0,00) is continuous on [a,c0) and the
integrals above exist. The equality holds iff

7r fat w(s)ds
2 [Fw(s)ds

f(t):Ksin[ 1,K€(C.

In probability theory and statistics, the beta prime distribution (also known as
inverted beta distribution or beta distribution of the second kind) is an absolutely
continuous probability distribution defined for x > 0 with two parameters a and 3,
having the probability density function:

(1 + m)_a_ﬁ
Wa,p (J?) = )

B (a,p)

where B is Beta function

1
B (a, B) ::/ 1= a, B> 1.
0
The cumulative distribution function is

Wap () = Iz (a, 5),

14z
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where I is the reqularized incomplete beta function defined by

I (o) = 2

Here B (-;a, B) is the incomplete beta function defined by

B(z;a,p8) = /Ztafl(l—t)ﬁ_l, a, B, z>0.

0

Now, if we replace w by wq.g in (3.16) we get

(3.17) /OOO F@OP e () Pt
4 e 2,
< SB@s) [ 1 F et @y
™ 0

for a, B > 1 provided f € C*([0,00),C), f(0) =0 and the integrals above exist.

4. SOME WEIGHTED INEQUALITIES OF TRAPEZOID TYPE
‘We have:

Theorem 2. Assume that w : [a,b] — (0,00) is continuous on [a,b] and g €
C1([a,b],C) is a function with complex values, then
Yw(t)+wla+b—t)

1
[Pw (t) dt/a 2

L g —g@ro—nP "
SE (/a w(s)ds) (/a o @) dt
1 , ) b VR 12
< 5 max [g'()— g (at b 1) (/ w(s)ds) (/ w(t)dt> |

In particular, if w is symmetrical, i.e. w(a+b—1t) =w (t) for any t € [a,b], then
we have

(4.1) g(t)dt— 2

b

(4.2) w(t) g (t)dt — M

[Pw (t) dt/a

L g m—g@ro—nP "
S% (/a w(s)ds) (/a 0 @) dt
1 ) ) b VR 12
< 5 max [g' ()~ g (a b 1) (/ w(s)ds> (/ w(t)dt> |

Proof. Consider the function

£ ::g(t)+g(2a+b*t) 79(@);9(6)’ Lefab],
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we have f (a) = f(b) = 0 and by (3.13) we have
W [ RS IES R RCEIC

( B
L P () - (@t b—t)
§4772</a w(s)ds) /a o (@) dt.

By the weighted Cauchy-Bunyakovsky-Schwarz integral inequality we have

(4.4) /bw(s)ds/b g +gla+b—1t) g@)+g®)|

_ w(t)dt
b a _ a b
/ g(t)+g<2 +b t)w(t)dt—g()+g(b)/a w (t) dt

2
w(t)dt

2

2 2
>
- 2

a

Observe that, by the change of variable s =a+ b —t, t € [a,b] we have that
b

b
/g(a—l—b—t)w(t)dt:/g(s)w(a—i—b—s)ds

a

and then
b b
t b—t 4 b—t
/ SURSIL )w(t)dt:/ e L
By making use of (4.3) and (4.4) we get the first inequality in (4.1). The second
inequality in (4.1) is obvious. O

In 1906, Fejér [5], while studying trigonometric polynomials, obtained the fol-
lowing inequalities which generalize that of Hermite & Hadamard:

Theorem 3 (Fejér’s Inequality). Consider the integral f; h(x)w () dz, where h
is a convex function in the interval (a,b) and w is a positive function in the same
interval such that

w(z)=w(a+b—21), for any x € [a,]]

i.e., y =w(x) is a symmetric curve with respect to the straight line which contains
the point (% (a+0b) ,0) and is normal to the x-axis. Under those conditions the
following inequalities are valid:

a b a
(4.5) h< ;b)gf;wzm)dx/a h(w)w(m)dwgw'

If h is concave on (a,b), then the inequalities reverse in (4.5).

Remark 2. If g : [a,b] — R is differentiable convex and g’ (b) and g, (a) are finite
and w : [a,b] — (0,00) is continuous on [a,b] and symmetrical, then by (4.2) we
get the following reverse of the second inequality in (4.5)

g(a)+9(b) 1

(4.6) 0< 5 - /bw(t)g(t)dt
[, w(t)dt Ja

provided f; ﬁdt < 0.
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Remark 3. Assume that w : [a,b] — (0,00) is continuous on [a,b] and g €
C1([a,b],C) is a function with complex values and such that g’ is K-Lipschitzian
on [a,b], i.e. |g (t) — g (s)| < K |t — s| for any [a,b], then by (4.1) we get

TR — /bw(t)+w(a+b_t)g(t)dt—w

[Pw (t)dt 2

a

. b 2 o, . 1/2
< —K({b- d ——dt
< K )(/ w(s) ) (/ e ) ,
provided f: ﬁdt < oo.

If g : [a,b] — R is twice differentiable and convex with [|g"||, 4 . < oo and
w : [a,b] — (0,00) is continuous on [a,b] and symmetrical, then by (4.7) we get the
following reverse of the second inequality in (4.5)

a b 1 b
(48) o<l );g()f:w(t)dt/a w(8) g (1) d

1/2 2\ 1/2
1 ’ " (t- )
L V=)
< 119" 01,00 (/a w (s) dS) (/ﬂ wi) @
' b 1/2 by 1/2
"
<l 00 ([orn) ([ )

provided f; ﬁdt < oo.

Another trapezoid type weighted inequality is as follows:

Theorem 4. Assume that w : [a,b] — (0,00) is continuous on [a,b] and g €
C1([a,b],C) is a function with complex values, then

g(a) [b — E (w;[a,b])] + g (b) [E (w;[a,b]) — a]

(4.9) ‘

b—a
b
_fbwl(s)ds/ g (0w () dt
b 1a/2 b —ola 9 1/2
si(/ w(S)ds) (/ g (1) - =9 1(t)dt>

provided f; ﬁdt < 0o, where

E (w: [, 1)) ::é/ o (£) dt.
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Proof. 1If g € C*([a,b],C), then by taking

_ g(a)(b—t)+g(b)(t—a)
f):=g(t) - — , t€[a,b]
we have f (a) = f (b) = 0 and by (3.13) we have
b B a2
(4.10) / g(t)— LD tzfg(b)“ W o 1)t
b 2 —ala) |2
g;(/ w(s)ds> / g’(t)—g(b[))_z() w(t)dt'

By the weighted Cauchy-Bunyakovsky-Schwarz (CBS) integral inequality we have

(4.11) /abw(s) ds/ab

2

9la) (b=t +o () (E=a)

b—a

g(t)—

>

b—a

b b
[a@uit- e [ o-nuwia—o0) [ ¢-aue

b b b
[a0uwi- e [fo-nuwa—o0) [ ¢-au

1
f: w(s)ds

By using (4.10) and (4.11) we get

1 b
(4.12) ‘f;w(s)ds/a g w(t)dt

_g(a) [b— E(w;[a,b])] + g (b) [E (w;[a,b]) — a]
b—a

(@) [b — B (w;[a, )] + 9 (b) [E (w3 [a,b]) —a] |

b
/ag(t)w(t)dt—g —

>< ‘

2

2

L ’ g() —g(a)|” 1
< = d "(t) - dt
_W2</a w(s) )/ g (- L8280
which is equivalent to the first inequality in (4.9).
The second inequality in (4.9) is obvious. O

The case of convex function is as follows:
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Corollary 2. If g : [a,b] — R is continuously differentiable conver and w : [a,b] —
(0,00) is continuous on [a,b], then

g(a)[b— E(w;[a,b])] + g (b) [E (w;[a,b]) — q
b—a

1 b
— 7[{51{) () ds /a g () w(t)dt

H{[=em) (1 o)
20)-a(0)} (/a"w(sms)w (/al’wl(t)dt)m,

The positivity follows by the fact that, for a convex function g on [a, b] we have
9(@) (b~ 1)+ 9(b)(t ~ a)

b—a
for any ¢ € [a,b]. The rest is obvious by Theorem 4.

(4.13) 0<

1
< — max {
T t€la,b]

provided f; ﬁdt < 0.

> g(t)

5. SOME INEQUALITIES FOR THE WEIGHTED CEBYSEV FUNCTIONAL
Consider now the weighted Cebysev functional

b

(5.1) Cu(f,g):= w(t) f(t)g(t)dt

IN wl(t) dt /a

1 b 1 b
S A RCICL

a

where f, g, w: [a,b] — R and w (t) > 0 for a.e. t € [a, b] are measurable functions
such that the involved integrals exist and f; w (t)dt > 0.
In [3], Cerone and Dragomir obtained, among others, the following inequalities:

(5-2) [Cw (f,9)]

1 1 b 1 b
SQ(M_m)jfw(t)dt/a w (1) g(t)_fbw(s)ds/a w (s) g (s)ds| dt
1 b 1 b E
<2 (M —m) [fbw(t)dt/a w () g(t)—f;w(s)ds/a w () g(s) ds dt]
1 1 b
<2(M—m)fz[sggg(t)—wg/a w(s)g(s)ds

for p > 1, provided —co < m < f(t) < M < oo for a.e. t € [a,b] and the
corresponding integrals are finite. The constant % is sharp in all the inequalities in
(5.2) in the sense that it cannot be replaced by a smaller constant.



INTEGRAL INEQUALITIES RELATED TO WIRTINGER’S RESULT 13

In addition, if —co < n < g(t) < N < oo for a.e. t € [a,b], then the following
refinement of the celebrated Griiss inequality is obtained:

(5.3)  [Cw (f,9)]

1 1 b
§2<M‘m>f;w<t>dt/aw“)

Here, the constants % and % are also sharp in the sense mentioned above.

Theorem 5. Assume thatw : [a,b] — (0,00) is continuous on [a,b], f € Lo ([a,b],C)
and g € C([a,b],C) is a function with complex values, then

- b 1/2
(5.4) |Cuw(f.9)| < Ta (/ |g/(:L‘)|2dx>
1 b

Proof. Integrating by parts, we have

1 b b
Jrffw(s)ds/a f(S)w(s)dsf;w(s)dS/a g (z)w (x)dz,

which gives that

(55) Cu(fr0) = ———

[ (ra [romes [ romoa)ac
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Using (CBS) integral inequality we have

(5.6) |Cu (f,9)?
b zw S S b x
[ (522 roreira [ roso)ocss

1
b w(s)ds [° If o % da
f wgsids/ f(s)w(s)ds—/ (t)w (#) dt / 5" (@)l de

2

(ffw (s) ds)2

<

1
_(ﬁw@mQ%L

If we take

x b
h(x):= %:Sds ’ cls—/ f@)w(t)dt, z € la,b]

we observe that h (a) = h(b) = 0 and h € C*([a,b],C).
Then by (1.3) we get

Pl w(s)ds [* . . .
(5:) a f;w(s)ds/r; fle)w(s)d / fO)w(t)di) d
2 b
A nen- 2t fro]
(b_a)Q/bf(t) ! /bf(s)w(s)ds2w2(t)dt.
m? a fabw (s)ds Ja
On making use of (5.6) we get
Cutro < O [N as
1 b 1 b ’
X ————————— ft)— ———— | f(s)w(s)ds| w?(t)dt,
(fabw(s)ds)z/“ f;w(s)ds/a
which is equivalent to (5.4). O

Remark 4. If we take w = 1 in (5.4), then we get the unweighted Griiss’ type

inequality
2) 1/2

b],C)
S

(5.8) 1C(f,9)]

b 1/2 b
- "(/‘m/uaﬁdw> (blth/ O

The following result also holds:

b
ﬁ/ f(s)ds

Theorem 6. Assume thatw : [a,b] — (0,00) is continuous on [a,b], f € La (|a

and g € CY([a,b],C) is a function with complex values and such that |gw|
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L ([a,b],R), then

59) |cw<f,g)|<i</ ) ( e )
( ds/ it dt—’/

Proof. We use the following Sonin type identity

(510) Cu (f.9)
b b
- fbwl(s) — / (f(t)— fbwl(s)ds / f(s)w(s)d8> (9.(t) — g (a))w (t) dt,

which can be proved directly on calculating the integral from the right hand side.
By using the weighted (CBS) integral inequality, we have

(5.11)  |Cu (£, 9)]

< W/b f(t
Sfbwl<s>ds </

b
)=~ [ 1w sl 0) — g @] w(t) i

Jw(s)ds
1/2
ds/ f(s)w(s)ds| w )dt)

</ ha-ne)”

a

Using (3.15) we have

b 1/2 b b 2 1/2
(5.12) ( / |g<t>—g<a>|2w<t>dt> gi( / w(S)ds) ( / 'gw%' dt)

By making use of (5.11) and (5.12) we get

(5.13)  |Cw (£, 9)]

- fjw1<s>ds </b

) 1/2
fab w(s)ds Ja wit) dt)

b g\
(/a w(s)ds) ( e dt)

b
f@) - 1 / f(s)w(s)ds

X

2
m
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b b 2 1/2
X(ﬁw@w/‘ﬂﬂ‘ﬁwgw/f@m@Msw@ﬁ

and since 1 b 1 b 2
fabw(s)ds/a f(t)W/a F(s)w(s)ds| w(t)dt
2
:W/ablf(t)|27ﬂ(t)dt— W/abf(s)w(s)ds ,
hence by (5.13) we get the desired result (5.9).
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