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WEIGHTED INTEGRAL INEQUALITIES RELATED TO
WIRTINGER’S RESULT FOR p-NORMS WITH APPLICATIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish several natural consequences of some
Wirtinger type integral inequalities for p-norms. The corresponding weighted
versions and applications related to the weighted trapezoid inequalities, to
weighted Griiss’ type inequalities and reverses of Jensen’s inequality are also
provided.

1. INTRODUCTION

The following Wirtinger type inequalities are well known

b —a)? )
(1.1) /uz(t)dtg(b 2) /[u’(t)] dt

™

provided u € C* ([a,b],R) and u (a) = u (b) = 0 with equality holding if and only
if u(t) = Ksin [ Ef 2 ] for some constant K, and, similarly, if u € C* ([a,b],R)

satisfies u (a) = 0, then

(1.2) / b W2 (t)dt < L‘;‘y / b W (£)]° dt.

™

The equality holds in (1.2) if and only if u (t) = K sin {”((z a” for some constant
K.

Forp > 1put mp_q := 2? sin ( ) In [11], J. Jaros obtained, as a particular case

of a more general inequality, the followmg generalization of (1.1)

(1.3) /|u |pdt< /|u (t)|" dt
p 1

provided v € C* ([a,b],R) and u(a) = u(b) = 0, with equality if and only if

u(t) = Ksin,_; W”%(ta_a) for some K € R, where sin,_; is the 2m,_;-periodic

generalized sine function, see [18] or [5].
If u(a) =0 and u € C* ([a,b], R) then

(1.4) /|u |pdt< ‘2 /| )" dt

with equality iff u (¢) = K sin,_; [%(_t;)a)] for some K € R.
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The inequalities (1.3) and (1.4) were obtained for a =0, b=1and ¢g=p > 1 in
[17] by the use of an elementary proof.

For some related Wirtinger type integral inequalities see [1], [2], [4], [9], [12], [11]
and [15]-[17].

In this paper we establish several natural consequences of the Wirtinger type in-
tegral inequalities for p-norms from (1.3) and in (1.4). The corresponding weighted
versions and applications related to the weighted trapezoid inequalities, to weighted
Griiss’ type inequalities and reverses of Jensen’s inequality are also provided.

2. SOME WEIGHTED INEQUALITIES
We have:

Theorem 1. Let g : [a,b] — [g(a), g (b)] be a continuous strictly increasing func-
tion that is of class C' on (a,b) and p > 1.

(i) If f € C'([a,b],R) is such f(a) = f(b) =0, then
(

WP g lg(0) —g @]’ [* [f O
(2.1) /|f P < R [

The equality holds in (2.1) iff

f (t) _ Ksinp,l |:7r101 (g (t) — g(a)):| , K eR.

(b) —g(a)
(i) If f € CY([a,b],R) is such that f(a) =0, then
’ b 2°[g(b) —g@]” [* |f' @)
(2.2) /a lf (@) g (t)dt < w0, |y (t)|p71dt'

The equality holds in (2.2) iff
e [mee®)—g(@)
P = Ksiny [T EO I W] g e

Proof. (i) We write the inequality (1.3) for the function u = fog~! on the interval
[9(a),g(b)] to get

g(b) 1 » b) — a))? g(b) N D
(2.3) /g(a fog(2)] dZSW/g(G) (Fos™ ()

If f : [c,d] — R is absolutely continuous on [c,d], then fog=!:[g(c),g(d)] — C
is absolutely continuous on [g (¢), g (d)] and using the chain rule and the derivative
of inverse functions we have

(2.4) (fog™) @) =(feog ) (g7") (2) =

dz.

(f'eg™") (2)
(g o9 (2)
for almost every (a.e.) z € [g(c),g (d)].

Using the inequality (2.3) we then get

gt o de < WO =9 @) O (Feg ) (@)
/g(a |f g )| dz = ( _1) Tp—1 /g(a) (glog_l)(z)
provided (f o.g™1) (g(@) =/ (a) = 0 and (fog7") (9(5) = £ () = 0.

dz
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Observe also that, by the change of variable t = g7 (2), z € [g(a), g (b)], we
have z = ¢ (t) that gives dz = ¢’ (¢) dt and

g(b) b
[ ireat @ = [ 1w @
g(a) a

We also have

9®) | (f1 o =1 P by () |P 1 (4)|P
g(a) (g °g )(Z) a |9 (t) |g ( )|
By making use of (2.5) we get (2.1).
The case of equality follows by the case of equality in (1.3).
(ii) Follows in a similar way by (1.4). O

Remark 1. For p = 2 we get from Theorem 1 the weighted integral inequalities
from [7].

Assume that p > 1. Some examples are as follows:
a). If we take g : [a,b] C (0,00) — R, ¢g(t) = Int and assume that f €
C1([a,b],R) is such that f(a) = f(b) = 0, then by (2.1) we get

b P n(2)1? b
(26) R (p“ %3} | irape

The equality holds in (2.6) iff

. Tp—1 In (i)
t)= Ksin, 1 | 2——<% | KecR.
f@) Sty 1[ ln(g)
b). If we take g : [a,b] C R — (0,00), g(t) = expt and assume that f €
C1([a,b],C) is a function with complex values and f(a) = f(b) = 0, then by (2.1)
we get

(27) /|f P exp (1) di s(“pb*e}‘p“ /\f P exp (1 - p) ) dt.

The equality holds in (2.6) iff

mp—1 (expt —expa)

f(t):Ksinpl{ },KER.

expb—expa

c). If we take g : [a,b] C (0,00) — R, g(t) = t", r > 0 and assume that
f € C([a,b],R) is such that f(a) = f(b) = 0, then by (2.1) we get

’ r— O —a)” P
(2.8) /a|f(t)|pt e 1/a A LTS

The equality holds in (2.8) iff
_ tT _ T
f(t) = Ksin,_; {Wpl(a)} , KeR
br —a”
If w : [a,b] — R is continuous and positive on the interval [a, b] , then the function

W :[a,b] — [0,00), W (z) := [ w(s)ds is strictly increasing and differentiable on
(a,b). We have W' (z) = w (z) for any z € (a,b).
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Corollary 1. Assume that w : [a,b] — (0,00) is continuous on [a,b] and f €
C1([a,b],C) is a function with complex values and f(a) = f(b) = 0, then

b L )
(2.9) / I (¢ dt<(p_11)ﬂfj_1< / w(s)ds) / Lf; _(f)(|t)dt.

The equality holds in (2.9) iff

Wftw(s)ds

a

f{t)=Ksin, 4
l f; w(s)ds

],Kec

If f(a) =0, then

» b Pob o pr P
(2.10) /|f dt<(pf)7ri'il</a w(s)ds> /GLJ;(f)(It)dt

with equality iff

Wf;w(s)ds
2 [} w

Remark 2. If f is a function such that f(a) = 0, then the inequality (2.10) can
be stated on the infinite interval [a,o0) as follows

e [Troreows o ([Teea) [T L0

provided f € C'([a,0),C), w : [a,00) — (0,00) is continuous on [a,c0) and the
integrals above exist. The equality holds iff

71' fi w(s)ds
2 [Fw(s)ds

f(t):Ksinpll ],KE(C.

f(t)szinp_ll , KeC.

3. SOME WEIGHTED INEQUALITIES OF TRAPEZOID TYPE
‘We have:

Theorem 2. Assume that w : |a, ] (0,00) is continuous on [a,b] and g €

C'([a,b],R), then for p, ¢ > 1 with * —|— =

1 Y (t) +w(a+b—t) @t
ffw(t)dt/ 9 g(t)dt :

1 b g’ (t (a+b—1t)] e
217, </ ) </ wpl() dt)

1
max |g' (t) — g' (a+b—t)|
2(p— 1)1/1’ Tp_1 t€lab]

v (wa(s)ds>1/q </abuﬂj_11(t)dt>l/p.

1,

(3.1)

<
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In particular, if w is symmetrical, i.e. w(a+b—1t) =w (t) for any t € [a,b], then
we have

g(a)+g(b)
(3.2) £a9%

1 b
ffw(t)dt/a w () g (t)dt —

1 ’ 0O —g @rb-tF \"
: 2(p—1)""m, </a ) (/ wp () dt)

1 ,
max a+b—t
ST el 0= (@ b=t)

(feo) ([ i)

£ ::g(t)+g(2a+b—t) 79(@);9(6)’ Le fab],

<

Proof. Consider the function

we have f (a) = f(b) =0 and by (2.9) we have

r

1 lg' () — g (a+b—1)|"
gw(/ )f e

1/p
1 lg’ (¢ "(a+b—1t)°
S 9 (p _ 1)1/p ﬂ_p71 </ ) </ ’U)p 1 t) dt) .

By the weighted Holder’s integral inequality for p, ¢ > 1, % +1 =1 we have

(3.4) ( / '

g(t)+gla+b—1t) g(a)+g(b)
2 2

» 1/p b 1/q
w(t) dt) </ w(s) ds)

/b [g(t)+g(a+b—t) g(a)+9(b)

> 5 - 5 ]w(t)dt

b _ a b
/a g(t)+g(2a+b t)w(t)dtfw/ w (t)dt| .

a
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By making use of (3.3) and (3.4) we get

b a . a b
(3.5) /ag(t)+g(2+b t) ()dtig( );g(b)/ () dt
1 b o g @re-nr N
<2@—4ﬂ”wp1<1;w( ) </ - (®) ﬁ) '

Observe that, by the change of variable s = a + b — ¢, t € [a, b] we have that

b b
/g(a—l—b—t)w(t)dt:/g(s)w(a—l—b—s)ds

and then
b b
t b—t t b—t
[ By T RS ACES S
a 2 a 2
Utilising (3.5) we get the first part of (3.1). The second inequality in (3.1) is
obvious. O

In 1906, Fejér [8], while studying trigonometric polynomials, obtained the fol-
lowing inequalities which generalize that of Hermite & Hadamard:

Theorem 3 (Fejér’s Inequality). Consider the integral f: h(z)w () dz, where h
is a convex function in the interval (a,b) and w is a positive function in the same
interval such that

w(z)=w(a+b—21), for any x € [a,b)

,Y=w (x) is a symmetric curve with respect to the straight line which contains
the point ( (a+0b), O) and is normal to the x-axis. Under those conditions the
following inequalities are valid:

a b a
(3.6) h( ;b)gf;wzx)dx/a h(m)w(x)dmgw'

If h is concave on (a,b), then the inequalities reverse in (3.6).

Remark 3. If g : [a,b] — R is differentiable convex and g’ (b) and ¢, (a) are finite
and w : [a,b] — (0,00) is continuous on [a,b] and symmetrical, then by (3.2) we
get the following reverse of the second inequality in (3.6)

g(a)+g(b) 1 ’
(37) 0< : —f;w(t)dt/a w(t) g (1) dt

1 , , b 1/q b L 1/p
< 9 (p _ 1)1/;0 Tp_1 [g, (b) — 9+ (a)] <‘/a w (5) dS) <L wpl(t)dt> R

provided p, ¢ > 1 with 5 + 7 =1 and f

= 1(t)dt < 0.

Remark 4. Assume that w : [a,b] — (0,00) is continuous on [a,b] and g €
C1([a,b],C) is a function with complex values and such that g’ is K-Lipschitzian
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on [a,b], i.e. |g'(t) — g ()| < K|t — s| for any [a,b], then by (3.1) we get

b
(3.8)

w(t) +w(a+b—1) g(a)+g(b)
g(t)dtff

1
ffw(t)dt/a 2

1 b 1/q b |t— aT-H)}p 1/p
G (o) ([
b—a b 1/q b 1 1/p
RET T </ v ds) </ Wl(ﬂdt)

provided p, g > 1 with % + % =1 and f; w,,%(t)dt < 0.
If g : [a,b] — R is twice differentiable and convex with [|g"||, 4 . < oo and
w : [a,b] — (0,00) is continuous on [a,b] and symmetrical, then by (3.8) we get the

following reverse of the second inequality in (3.6)

gla)+g®) 1 bw
2 [P (t) dt/a (t)g () dt

) b 1/q b |t— aib|p 1/p
< ——————— 19" liubtoo / w(s)ds / —2Z dt
o= 177y 19 s ( (#) L W ()
1/q 1/p
b—a b b 1
< 19" o o / w(s) ds / S —
Q(p—l)l/pﬂ'p_l [a.b], a a wP 1(t)

. g 11 b1
provided p, ¢ > 1 with ste= 1 and fa mdt < 00.

(3.9) 0<

Another trapezoid type weighted inequality is as follows:

Theorem 4. Assume that w : [a,b] — (0,00) is continuous on [a,b] and g €
C1([a,b],R) then

g(a)[b— E (w;[a,b])] + g (b) [E (w;[a,b]) — a]

(3.10) T
b
—fwl()d/ g (t)w (1) dt
1/q P 1/p

q (t) _ g(b)—g(a)

—a

L] ([0e) " ([ tae)

provided p, ¢ > 1 with 117 + % =1 and fab ﬁdt < 00, where

g(b) —g(a)

b—a

g ) —

1 b
E (w: [, 1)) '_wa(s)ds/a o (£) dt.
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Proof. 1If g € C*([a,b],R), then by taking
_ g(@)(b—t)+g(b)(t—a)
F(0)=a(t) - S
we have f (a) = f(b) =0 and by (2.9) we have

b - —a
/ag(t)_g(a)(b tzﬂ:(gl(b)(t )

, t€la,b]

P

w (t) dt

g (1) — 10=a(@) P

< oo (fab“’@ d8>p/: IR

Ly o - s\
<(p_1)1/p7rpl</a w(S)d8> /a w1 (@) dt .

By the weighted Holder’s integral inequality for p, ¢ > 1, % + % = 1 we have

b P 1/p b 1/a
(3.12) (/ w(t) dt) (/ w (s) ds>

- /bg(t)w(t)dt_/bgw)(b—t)+g<b><t—a>w(t)dt

- b—a

gla)(b—1)+g(b)(t—a)
b—a

g(t)—

b

[o0u®it- =@ [ 6-vuw@i-gb) [ ¢-au@

a

b b b
[o0uwi- =@ [ 6-vue@i-gb) [ - au@d

X ’

1
fab w(s)ds
By making use of (3.11) and (3.12) we have

“wias) | [ wma
“ [P w(s)ds Ja

_g(a)[b— E (w;[a,b])] + g (b) [E (w;a,b]) — a]
b—a

i b g ) - etz
< w(s)ds / dt )
PR VS o
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which is equivalent to the first inequality in (3.10).
The second inequality in (3.10) is obvious. O
The case of convex function is as follows:

Corollary 2. If g: [a,b] — R is continuously differentiable convex and w : [a,b] —
(0,00) is continuous on [a,b], then
g(a)[b—E (w;[a,b]))] + g (b) [E (w; [a,b]) — a]

b—a

(3.13) 0<

g/ (t) _ g(b)—g(a) P 1/p

b b
dt
/a wP=t(t)

< {0 - 2520 (/ab“’ ) d5> ) (/f Mf@ w’

provided p, q > 1 with 1% + % =1 and f: wp%(t)dt < 0.

The positivity follows by the fact that, for a convex function ¢ on [a,b] we have
gla)(b—1t)+g(b)(t—a)

b—a
for any t € [a,b]. The rest is obvious by Theorem 4.

>g(t)

4. SOME INEQUALITIES FOR THE WEIGHTED CEBYSEV FUNCTIONAL

Consider now the weighted Cebysev functional
1

[Pw (t) dt
1 1

b b
_fabw(t)dt/a w(t)f(t)dtw/a w (t) g (t)dt

where f, g, w: [a,b] — R and w (¢) > 0 for a.e. ¢ € [a,b] are measurable functions

such that the involved integrals exist and f: w(t)dt > 0.
In [?], Cerone and Dragomir obtained, among others, the following inequalities:

(4.2) |Cw (£ 9)]

b
(41) Cu(fog) = / w(t) £ (t) g (t) dt

1 1 b 1 b
s2<M—m>W/a w(t) g(t)_fbw(s)ds/a w(s)g (s) ds| dt
1 1 b 1 b at

<3 (M —m) [f:w(t)dt/a (t)g(t)—f:w(s)ds/aw(s)g(s)ds dt]
1 1 b
§§(M—m)§2[sgg g(t)_fbw(s)ds/a w(s)g(s)ds
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for p > 1, provided —co < m < f(t) < M < oo for a.e. t € [a,b] and the
corresponding integrals are finite. The constant % is sharp in all the inequalities in
(4.2) in the sense that it cannot be replaced by a smaller constant.

In addition, if —co <n < g(t) < N < oo for a.e. t € [a,b], then the following
refinement of the celebrated Griiss inequality is obtained:

1 1 b 1 b
<3 (M —m) f:w(t)dt/u w (1) g(t)—f:w(s)ds/a w(s) g (s) ds| dt
1 1 b 1 b .
<5 (1 —m) f;w(t)dt/a w () g(t)—f;w(s)ds/a w(s)g (s)ds| dt
< 3 (M —m) (N ).

Here, the constants 1 and i are also sharp in the sense mentioned above.

2
We have:

Theorem 5. Assume that w : [a,b] — (0,00) is continuous on [a,b], p, ¢ > 1 with
L+ i=1,f€Ly([a,b],R) and g € C'([a,b],R), then

—a b 1/q
(4.4) |Cy(f.9)| < _boa </ |g/(t)|th>

(p— 1)1/p Tp—1

P 1/p
1 b b )
bew(s)ds </a f(t)_fbw(s)ds/a f(s)w(s)ds| w (t)dt)
In particular, if p = q = 2, then we have [7]
b—a b Yz
(45) |Cuw (fi9)l = — (/ |g/(t)2dt>
b b 2 1/2
1 1 )
X f;w(s)ds /a f(t)_fjw(s)ds/a f(s)w(s)ds| w* (t)dt
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Proof. Integrating by parts, we have

b ® Tw(s)ds [P
(/ f“)w@)df—?bwfsii/ f(S)w(s)ds> o' (@) d
mw S S b
- [(/ F@w)d ?bw(())j/ f(s)w(s)ds>g(x)

[ w7
/a g (@) (f(:v)w(w) f;w o / f(S)w(s)ds> de

w
1

b
" fbw(s)ds/ f(S)w(S)dsfbwl(s)ds/ 9 (@) w(z)dz,

which gives that

1
f; w(s)ds

PSS w(s)ds [P .
X/a <fabw(8)d8/a f(S)w(s)ds_/a f(t)w(t)dt)g/(m)dx

Using the Holder integral inequality for p, ¢ > 1 with % + % =1, then

(4.6) Cu(f,9) =

4.7) |Cw (£ 9)l <

b
X/
a

1
Sy w(s)ds

(M/ f(S)w(S)dS—/If(t)w(t)dt> gl (z)

xw S S b x
202 v [ 1w

dx

If we take

u(z) = },ZE:Z:’/ ds—/ FO)w(t)dt, € [a,)

we observe that u (a) = u (b) = 0 and u € C*([a, b],C).
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Using the inequality (1.3) we then have

b fa w(s)ds B .
/a fab ()ds/ s)ds /f t)dt d
(b—a)? w(x B w(x : .
S(_1);;1/a wsds/f s)ds = f(z)w (@) d
= (b—a) s — pw”z T
_(p_l)pl/ ds/f 5)d @) (@)d
that is equivalent to
. 1/p
P[P w(s)ds [ . . .
(5) ( a f:w(s)ds/a fe)w(s)d / f &) w () dt d )
P 1/p
b—a »
T - (/ ds/ f($)w(s)ds - f(@)| w (w)d:c> .
By using (4.7) and (4.8) we get the desired result (4.4). O

By taking w = 1, we get the following unweighted inequality:

Corollary 3. Let p, ¢ > 1 with % + % =1, fe€ L,(la,b],R) and g € C*([a,b],R),
then

1/17
(4.9) IC(f,g)I_(p w (/ g7 (t |th>
1
“\b—a a

In particular, if p = q = 2, then we have [7]
(4.10) |C(f,9)l

b 1/2 b
”’ (/ g/<t>|2dt> (bi/ 7 (0 dt

The following result also holds:

/q

b
_bia/ f(s)ds

P 1/p
dt> |

) b 2 1/2

Theorem 6. Assume that w : [a,b] — (0,00) is continuous on [a,b], p, ¢ > 1 with
% + % =1, f €L, ([a,b],R) and g € C'([a,b],C), then

2 b g
(4.11) |Cy (f,9)| < m (/a w (s) dS) (/{l wi—1 (t)dt>

1 b 1 b p 1/p
X(ffw(s)ds/a f(t)—ffw(s)ds/af(s)w(s)ds w(t)dt) :
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In particular, if p = q = 2, then we have [7]

1/2 1/2
2 ([ " g (1)
(1.12) ICw(f,g)§W</a w(s)ds) (/ ey dt)
1 b 1 b ’
X | ——— thwtdt—bi f(s)w(s)ds

Proof. We use the following Sonin type identity

1/2

(4.13) Cu(f.9)

1 b 1 b
_f(fw(s)ds/a (f(t)ffw(s)ds/a f(s)w(s)ds) (g(t) —g(a)w(t)dt,

which can be proved directly on calculating the integral from the right hand side.
Using the weighted Holder’s integral inequality p, ¢ > 1 with % + % =1, we have

(4.14) |Cy (f,9)|

: fbw1<s>ds /ab

1

) —
1) fbw(s)ds

/abf(S)w(S)ds

9 (t) — g (a)|w(t)dt

D 1/p
1 b
f(t)m(s)ds/a F(s)w(s)ds w(t)dt)

b 1/q
(/ |g<t>—g<a>|qw<t>dt> |

Using (2.10) for f = g — g (a), we have

X q b q b / q
(4.15) / g<t>g<a>|‘1w<t>dts(q_fw_l (/ w@dS) / J&C{z—(?('t)dt

that is equivalent to
b 1/‘1
(4.16) ( / 19.(t) — 9.(@)"w (1) dt)

2 b g e
< R, </u w (s) ds) (/a s, (t)dt> :

By making use of (4.14) and (4.16) we get
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b

D 1/p
1
f(t)—W/a f(s)w(s)ds w(t)dt)
b

2 gl )
TETECE </ v ds) </ wg‘1<t>dt>
2 b 1/17
CENE </ w(%)

1 b 1 b P 1/p
X <fabw(s)ds/a f@)— fbw(s)ds/a f(s)w(s)ds w(t)dt)
g\
X (/a w1 (1) dt)
hence by (4.17) we get the desired result (4.10). 0

Remark 5. If we take w =1, then by (4.11) we get

b 1/q
A1) 109 S i =) ( / |g’<t>|"dt>

1 b
X b—a/a

5. REVERSES OF JENSEN’S INEQUALITY

f(6) -

P 1/p
dt> |

Let (2, A, 1) be a measurable space consisting of a set 2, a o-algebra A of parts
of  and a countably additive and positive measure p on A with values in RU{oo} .
For a p-measurable function w :  — R, with w (z) > 0 for p-a.e. (almost every)
x € €, consider the Lebesgue space

b
bia/ f(s)w(s)ds

Ly (Qp):={f:Q—R, fis u-measurable and / w(x) |f (z)|dp (x) < oo}
Q

For simplicity of notation we write everywhere in the sequel fQ wdp instead of
Sy (@) dps ().

In order to provide a reverse of the celebrated Jensen’s integral inequality for
convex functions, S. S. Dragomir obtained in 2002 [6] the following result:

Theorem 7. Let @ : [m, M] C R — R be a differentiable convex function on (m, M)
and f: Q — [m, M] so that o f, f, & o f, (D' of)f € Ly (Q,pun), where w >0
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p-a.e. (almost everywhere) on Q with fQ wdp = 1. Then we have the inequality:

(5.1) 0§l¥ﬂ¢oﬂdu—@(£wﬂm>
< [w@os) fin= [ w@op)dn [ wtin.

We have the following reverse of Jensen’s inequality:

Theorem 8. Let ® : [m,M] C R— R be a differentiable convexr function on
(m,M), w : [a,b] — (0,00) be continuous on [a,b] and f : [a,b] — [m, M] is
absolutely continuous so that ®o f, f, ® o f, (®' o f) f € Ly [a,b]. Assume that p,
q>1with L +1=1

(i) If (2" o f) f' € Ly[a,b] and f € Ly[a,b] , then

. b f¢7ﬂ(t)f(t)dt>
5.2) 0< o (0) (@0 f) () dt - 0 [ a0 DT Dt
52 05 g [vo@enwae (500
—a b 1/q
< (p_lb)l/p,]_r (/ |((I)//Of) (t)‘q|f/ (t)th>

P 1/p
wP (t) dt) .

b b
bewts)ds (/ f(t)—fbwl(s)ds/ f(s)w(s)ds

(ii) If f' € Ly a,b] and ® o f € L, [a,b], then

1 b ﬁw@f@ﬁ>
53) 0< wt)(Pof)t)dt—& | 2"
(5:3) f;w(s)ds/a @)1 ) () < fabw(s)ds
b—a b Ve
T . ( / 1 (0) dt)

1 b 1 b P 1/p
STy (/ @'of)(t)fbw(s)ds/ (80 1) (5)w (s)ds ww)dt) .
Proof. (i). From (5.1) we have

b ﬁw@f@ﬁ)
(54) 0< w(t)(®of)(H)dt — @ | Lo
f;w(s)ds/a ( f:w(s)ds
b
< fbwl(s) — [eo@enoro
b ¢ b
—fbwl(s)ds/ w(t)@'of)(t)dtfbwl(s)ds/ wt) f (8 dt = Co (£, 2 o ).
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From the inequality (4.4) we have

b—a b
Cyu (f,® o <
o D= oy </

b b
bewl(sms (/ f(t)Ibwl(s)ds/ f(s)w(s)ds

. 1/q
(@0 f) () dt)

p 1/p
w? (t) dx)

_ b—a ’ " / q v
—W(/ @0 F)(0) £ (1) dt)
1 b 1 b p 1/p
— d P (t)d
S (/ F() f;,w(s)ds/a £ (s)ws)ds| wP (0) :c> ,
which together with (5.4) proves (5.2).
(ii). From (4.4) we also have
Cw (f, @0 f)] = |Cw (2" 0 f, f)]
b—a i
S ( / It th)
1 b 1 b p 1/p
d' o - & o f(s)w(s)ds| w?P(t)dx
S (/ 10 f;w<s)ds/a F(s)w(s)ds| w? (1 ) ,
which together with (5.4) proves (5.3). O

Corollary 4. Let ® : [m,M] C R — R be a differentiable convex function on
(m,M) and f : [a,b] — [m,M] is absolutely continuous so that ® o f, f, &' o
fy (o f)fe€Lla,b]l. Assume that p, ¢ > 1 with % + % =

(i) If (2" o f) f' € Ly[a,b] and f € L, [a,b], then

b
(5.5) ogbia/(qu) P dt— @ ( /f )
U </|<1>" NP |f<>th>l/q
C(p—-1 )1/,0

x (bia/a f(%%a/a £ (s)ds

P 1/p
dt> |
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(ii) If f' € Lyla,b] and @' o f € L, [a,b], then

60 vy [fwenwa-s (L, [rwa)
<ot 1/;/,, (/ it th)

1 b P 1/p

X(ba/a dt) .

Corollary 5. Let ® : [a,b] C R — R be a differentiable convex function on (a,b),
w : [a,b] — (0,00) be continuous on [a,b] so that ®, &', &'l € Ly [a,b], where
£(t) =t. Assume that p, ¢ > 1 with % + % =1

/a

1

—a

/: (@ o f) (5)ds

(@0 f)(0)-;

(i) If ®" € L, [a,b], then

fbtw(t)dt>
P (t)dt— [ e —L—
Hew (ffw(s)ds

1/q
b—a b
< — ([ e
(p—=1)""mp1 \Ja

/\
ot
=
S~—
o
IN
o
—_
m\
o
g

p 1/p
1 b , p
bew(S)ds </a tifb ()dS/a sw(s)ds| w (t)dt)
(ii) If ®' € Ly [a,b], then
L w1 >
(58) 0< w (t) P (t)dt —
f:w(s)dS/a <f (s) ds
b—a
<
T (p— )1/p e
1 ’ ’ 1 b , P 1/p
ijw(s)dS </a P (t) fbw(s)dg/a d (S)’w(s)ds ()dt)

We also have:

Theorem 9. Let & : [m,M] C R— R be a differentiable convexr function on
(m,M), w : [a,b] — (0,00) be continuous on [a,b] and f : [a,b] — [m, M] is
absolutely continuous so that ®o f, f, &' o f, (®' o f) f € Ly [a,b] . Assume that p,
q>1 with £+ % =
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(i) If |®" o f|*|f|"w' =% € L{a,b] and f € L, [a,b], then

1 b [Pw(t) f(t) dt)
59) 0< wt) (@of)(t)dt — @ [ Lol T
o ffw(s)ds/a e n < Jw(s)ds

1/q
2 (9" 0 f) ( W()\
5 (q— 1Y </ ) </ wi= ( dt)

p 1/p
1 b 1 b
X (ffw(s)ds/a f(t)—f;w(s)ds/a f(s)w(s)ds w(t)dt) .
(i) If|f'|*w'=? € L{a,b] and ® o f € L, [a,b], then

1 b f”w(t)f(t)dt>
5.10) 0< w(t) (Do f)(t)dt — & | Lo
o f:w<s>ds/a Wi ( [ w(s)ds

2 b e N
< (q—l)l/qwq,l </a w(s)ds) < =y )dt>
1 b
[ @en@ueds

P 1/p
1 b
X(f:w(s)ds/a fabw(s)ds a w(t)dt) '

The proof follows in a similar way by utilising the inequality (4.11). The details
are not provided here.

(@0 f)(t) -

Corollary 6. Let ® : [m,M] C R— R be a differentiable convex function on
(m,M) and f : [a,b] — [m,M] is absolutely continuous so that ® o f, f, ' o
fy (@' o f)f € Lla,b]. Assume that p, ¢ > 1 with zl) + % =1.

(i) If (2" o f) f' € Ly[a,b] and f € L, [a,b], then

v oo (e f o)
1/q
L2 e e
SV, Y </a (@0 £) (1" |f () dt)

' Lo Lo Y
x(b_a/a R RO dt) .

(i) If f' € Ly]a,b] and @' o f € L, [a,b], then

(5.12) 0<7/ (Do f)(t)dt — (b /f dt)
2 7a1/p b ! q

< e 0= ( |17l dt)

1 b

. (z)_/

1/q

1

b
@O~ 5= | @) ()ds

P 1/p
dt> |
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Finally, we have:

Corollary 7. Let @ : [a,b] C R — R be a differentiable convex function on (a,b),
w : [a,b] — (0,00) be continuous on [a,b] so that &, ®', ®'¢ € Ly, [a,b], where
£(t) =t. Assume that p, ¢ > 1 with % + é =1.

(i) If |®"|w'=7 € L[a,b], then

1 b [P tw (1) dt
513) 0< —— | wt)d@)dt—o LT
(5.13) fabw(s) ds/a ®)2 @) f:w(s) ds
2 b 1/p b |<I)” (t) q 1/a
RIS [eee) ([ e
1/b t—l/bf(s)sdspw(t)dt "
ff'w(s)ds a f(fw(s)ds a
(ii) Ifw'=7 € Lla,b] and ®' € Ly [a,b], then
1 b [ tw (1) dt
514) 0<—— [ w@)d@)dt— | 2T
(514 fabw(s) ds/a ®)2 @) f:w(s) ds
9 b 1/p b 1 1/q
SRV [ewe) ([ g
p 1/p

- g S S b "(s)w(s)ds| w
) fabw(s)ds/a e fabw(s)ds/aq)() (e)d (6)d
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