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p-NORMS GENERALIZATIONS OF OPIAL’S INEQUALITIES
FOR TWO FUNCTIONS AND APPLICATIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some p-norms generalizations of Opial’s
inequalities for two functions. Applications related to the trapezoid weighted
inequalities and to Fejér’s inequality for convex functions are also provided.
Some Griiss’ type inequalities for p-norms are given as well.

1. INTRODUCTION
We recall the following Opial type inequalities:

Theorem 1. Assume that u : [a,b] C R — R is an absolutely continuous function
on the interval [a,b] and such that v’ € Lo [a,b].

(i) If u(a) =u(b) =0, then

(1.1) /|u |dt< _a/\u )2 dt,

with equality if and only if
; +b
c(t—a) ifa<t< 2,
u(t) =
c(b—t) if 2 <t <,
where ¢ 1s an arbitrary constant;
(ii) Ifu(a) =0, then

(1.2) /|u ()] dt < * b_a/\u )2 dt,

with equality if and only if u (t) = ¢ (¢t — a) for some constant c.

The inequality (1.1) was obtained by Olech in [10] in which he gave a simplified
proof of an inequality originally due in a slightly less general form to Zdzislaw Opial
[11].

Embedded in Olech’s proof is the half-interval form of Opial’s inequality, also
discovered by Beesack [1], which is satisfied by those u vanishing only at a.

For various proofs of the above inequalities, see [6]-[9] and [13].

In the recent paper [3] we obtained the following generalization of Opial’s in-
equalities for two functions:

Theorem 2. Assume that f, g : [a,b] — C are absolutely continuous on [a,b] with
fla g/ € L2 [avb} .
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1/2

b b 1/2 b
(1.4) If’(t)g(t)ldt§</ (b—t)lf’(t)l2dt> (/ <t—a>g'<t>|2dt>
1
3

b 2 b 2
V (b—)1f ®) dt+/ (t—a)lg (®) dt].

) 1/2
a-+
1y <t>|2dt)

b 1/2 b
< ( K(t)|f (t)fdt) (/

b b
<;L£Kﬁﬂfwfﬁ+l

{ t—aifagtS“T'H’,

b—tif ¢ <t <.

a+
2

b 2
i o) dt] |
where

K(t):=

In this paper we establish some p-norms generalizations of Opial’s inequalities
for two functions. Applications related to the trapezoid weighted inequalities and
to Fejér’s inequality for convex functions are also provided. Some Griiss’ type

inequalities for p-norms are given as well.

2. THE MAIN RESULTS

We have the following natural generalization of Theorem 2:

Theorem 3. Assume that f, g : [a,b] — C are absolutely continuous on [a,b] with
€ Lyla,b] and g’ € Ly [a,b] for p, ¢ > 1 with % + % =1.

(i) If g(a) =0, then

b b 1/p b
(2.1) / If’(t)g(t)ldt§< / (t—a)lf’(t)lpdt> ( / <b—t>|g’<t>|"dt>

1 b / P 1 b / q
< [ e-airerac [o-oiora.

1/q
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(ii) If g (b) = 0, then

b 1/1) b 1/‘1
(2.2) /|f |dt<</ <b—t>f'<t>|”dt> (/ (t—a>|g'<t>|th>

b b

g})/ <b—t>\f’<t>\f’dt+$/a (t—a)lg (&) dt.
(iii) If g (a) = g (b) =0, then
(2.3) /|f (t)] dt
1/p bla+b 1/q
<</ K(t)lf’(t)l”dt> (/ o g'<t>|th>
b
/K O dt + - /a a;b—t|g’(t)\th,

where K is defined in Theorem 2.
Proof. (i) Since g (a) =0, then g (¢ f g (s)ds for t € [a,b]. We have

b
/If’(t)g(t)ldt=/ If’(t)l\g(t)\dt=/ (t— )/ | ()] (¢ — )"/ |g (1) dt
b

- / (t— )7 |7 ()]t — )~ / g (s)ds

Using Holder’s inequality for p, ¢ > 1 with % + % =1, we have

(24) A< (/: [(t —a)'|f (t)I}pdt> ”
(Lol s )"
_ </b (t—a)lf (O dt) ’ </b CRRTELE

By Hoélder’s inequality for p, ¢ > 1 with % + % = 1 we also have

/:g' (s)ds| < (/ o (s)qczs)l/q

q t
-0 i < [ as
which gives

(25) B<</ab(t—a)|f( |dt> (/ ([ |qu)dt>

dt =: A.

q 1/(1
] dt) =: B.

(t—a)™ /"

that implies

/2



4 S.S. DRAGOMIR

Using integration by parts, we have

[([wors)a=[o-owor

and by (2.4) we get the first inequality in (2.1).
The last part follows by the elementary Young’s inequality

1 1
(2.6) al/Pgl/a < ];a + 76, a, B8>0.

(i) Since g (b) = 0, then g (t) = — ft s)ds for t € [a,b]. We have

/|f (t)\dt:/ If’(t)l\g(t)\dt:/ (b— 07 1 ()] (b — £/ g (1) dt

b
/g' (s)ds|dt
t

Using Holder’s inequality for p, ¢ > 1 with % + % = 1 we also have

b . 1/p
(2.7) cs( | [o=017 ] dt)
b b q 1/q
x</[@—ﬁﬂpfy@m%cﬂ
1/p
- (/ (b—1)f" <t>|”dt> ([(b—tr”]’ /g (s) ds

q 1/2
] dt) =:D.
By Holder’s inequality for p, ¢ > 1 with % + % = 1 we also have
1/q

b b
IECEE (/ |g’<s>|qu> ,
which gives
b
(2.8) Dg(/ (b—t)|f @) dt ( (/ g’ (s |qu>dt>

Using integration by parts, we have

/(/ 19/ (s |qu>dt t—a>|g'<t>\th,
2.2).
)

b
- / (b= (1)] (b — )07 —.c

(b—t)~ "

/2

and by (2.7) and (2.8) we obtain (

(iil) If we write the inequality ( K

on the interval [a, “ ] , we have

a+b

@9 [ ir@ald

< (/a”?b (t—a)lf (t)lpdt>1/p (/au;b <a;b t> o (t)|th>l/q
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and if we write the inequality (2.2) on the interval [“:2 b], we have

b
e [ 1r@eld

< (/b (-1 (t)|pdt> " (/b (-4 (t)|th> "

If we add the inequalities (2.9) and (2.10) we get

[ 15 @awia
atb ) o 1/p ath a+b_ o 1/q
< (/ (t—a)lf (0] dt) (/ (“37 1)1 ) dt)

+ </b e (t)lpdt> : </b (=452 wor dt> i

2

IN

b 1/p
[ t-alr P [ (b—t)lf’(t)lpdt]

2

[ (“F-)woras [ (t—a;b)gfam]”q
[ xorora [ [

) 1/q
a
Sl o dt] ,
where for the last inequality we used the elementary Holder inequality for p, ¢ > 1
with £+ 1 =1

X

aB 478 < (@ + )P (81 + 599, B, 4, §>0.

The last part follows by (2.6). O

Remark 1. If we take p = q = 2 in Theorem 3, then we get Theorem 2.

Corollary 1. Assume that f : [a,b] — C are absolutely continuous on [a,b] and
'€ Lyla,blNLy[a,b] forp, ¢ >1 with%—&—%: 1.

(i) If f (a) =0, then

b 1/p b 1/a
(2.11) /|f |dt<</ (t—a)lf’(t)l”dt> (/ <b—t>|f’<t>|"dt>

1 b / P 1 b ! q
gg/a (t—a)lf ()] dt+5/ (b=t |f @) dt.

a
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(ii) If f (b) =0, then

b 1/p b 1/a
1) [0y |dt<</ g —t)lf’(t)lpdt> (/ (t—a)lf’(t)lth>

1 b , p 1 b / q
gg/a b—1)|f @) dt—i—;/ (t—a)|f @) dt.

(i) If f (a) = f(b) =0, then

(2.13) /|f ()] dt
b 1/ 1/q
<( [ k@ erae N TR
/ L
/K )" dt + = /a

Remark 2. If we take in Corollary 1 p = q = 2, then we get the refinement of
Opial’s inequality (2.1)

b 1/2 b 1/2
(2.14) /|f |dt<</ (t—a>|f'<t>2dt> (/ <b—t>|f’<t>|2dt>
b
<z-a [ 1@

0o f (b)=0
) = 0, then we have the refinement of (1.1)

a+b

t‘If (01" dr.

if either f (a ):
If fla)=f(b

(2.15) /|f ()| dt
< [/ K(t)lf’(t)lzdt] " V

. 1/2
at —t] Iz (t)zdt]

2
b
<q-a [IroPe

Corollary 2. Assume that f : [a,b] — C is absolutely continuous on [a,b] with
f' € Lyla,b] and h € Ly [a,b] with ffh(t)dt:Oforp7 q > 1 with %Jr% = 1. Then

(2.16)

< (/;Kunf'(t)f?dt)l/p (/ e+ —t\ It |th>l/q
S;/abK(t)lf’(t)lpdtJrq/a

a+b

—t‘ |k ()| dt.
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Proof. If we take in (2.3) f h(s)ds, t € [a,b], then we get

(2.17) /a b

f (t)/ h(s)ds|dt

. U 1/a
s(LfaawuVﬁ> (l —4m ww>
S;LZQUWUWﬁ+;L

Also, by the modulus properties and integrating by parts, we have

(2.18) /ab /ab 71 </ath(s) ds) dt
=%wl3@mf—Lﬂ@hmﬁ=

By making use of (2.17) and (2.18) we get the desired result (2.16). O

a+b

t‘ |k ()| dt.

dt >

f@lHQMs

Corollary 3. Ifg(a) =g (b) =0 and h € L,[a,b], ¢ € Ly a,b] for p, ¢ > 1 with
% + % =1, then

(2.19) /|h ()] dt
g(Lzawmwfﬁym<l “”4@ Wﬁym
giézawmwww+;l

The proof follows by the statement (iii) of Theorem 3 for f = [ h(s)ds

a+b

t‘ lg' (t)|" dt.

3. SOME TRAPEZOID TYPE INEQUALITIES
We have:

Proposition 1. Let h : [a,b] — C be absolutely continuous on [a,b] nd p, ¢ > lwith
%—F % =1 Ifh € Lya,b] and w : [a,b] — C with w € L, [a,b], then

b _ a b
/a w(t)+w£a+b Dy ar— 1 )—;h(b)/a w(t)dt

vy 1/p
g2<lzaomaWﬁ> (L

(3.1)

a+b

1/q
t‘ |n' (t) h’(a+bt)|th> .
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Moreover, if w is symmetrical, namely w(a+b—1t) = w(t) for all t € [a,b],

then
b a b
/aw(t)h(t)dth()—;h(b)/ w () dt

1 b , 1/p
<2< K@) dt) (/

Proof. Consider the function g : [a,b] — C defined by
h(t)+h(a+b—t) h(a)+h(b
g (t) = (t)+h( ) h(a)+h(b)

2 2
We have g (a) = g (b) = 0.
If we write the inequality (2.3) for f = [ w(t)dt, then we get

53 [ b wio)|
< ([K(t) |w<t>|"dt>1/p (/
_ % (/abK(t) |w(t)|pdt>1/p (/b

By the modulus property, we have

0 [ oo [H0stier-n s,
/bw [h a+b—t) h(a)+h(b)]dt
;[/abw(t)h(t)dwr/abw(t)h(a+bt)dt]h(a);h(b)/abw(t)dt-

2
By the change of variable u =a + b —t, t € [a,b], we have

(3.2)

a+b

1/q
—t‘ |n' (t) h'(a—l—b—t)|th> :

, t€la,b].

2

h(t)+h(a+b-1) h(a)+h(b)”dt

W () — B (a+b—1t)
2

a+b
—t
71

q 1/q
dt>

1/q
b
ot t‘ |h’(t)h'(a+bt)|th> :

2

>

b b
/ w(t)h(a+b—t)dt:/ w(a+b—t)h(t) dt
and then by (3.3) and (3.4) we get the desired result (3.1). O

Corollary 4. With the assumptions of Proposition 1 and if h' is Lipschitzian with
constant L > 0, namely |h' (t) — b’ (s)| < L|t — s| for any t,s € [a,b], then

b _ a b
/aw(t)+w£a+b Dyt — h();h(b)/ "

(b* 1+2/q
< 1/ /K ) Jw (¢ |pdt
914+1/4 (¢ + 2) q

(3.5)

/p
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In the case of symmetry for w, we have

b b
/aw(t)h(t)dt—h(a);h(b)/a w (1) dt

(b—a) 1+2/q /p
< K(t t)[Pdt )
21+1/q q+2 1/q / \w |

In 1906, Fejér [4], while studying trigonometric polynomials, obtained the fol-
lowing inequalities which generalize that of Hermite & Hadamard:

(3.6)

Theorem 4 (Fejér’s Inequality). Consider the integral f(f h(z)w (z)dz, where h
is a convex function in the interval (a,b) and w is a positive function in the same
interval such that

w(z)=w(a+b—2x), for any = € [a, ]

,Y=w (x) is a symmetric curve with respect to the straight line which contains
the point ( (a+0b), ) and is normal to the x-axis. Under those conditions the
following inequalities are valid:

Qa b a
(3.7) h( ;b)gkﬁu;de[;h@ﬂw(@dm§}M);me'

If h is concave on (a,b), then the inequalities reverse in (3.7).
If w =1, then (3.7) becomes the well known Hermite-Hadamard inequality

(3.8) h(“;b>5;hia42m@dx§h@wgh“f

We have the following reverse of Fejér’s inequality:

Corollary 5. Let h : [a,b] — R be a convex function and w : [a,b] — (0,00) be
continuous, symmetrical on [a,b] and such that h' € L, [a,b], where p, ¢ > 1 with
% + % = 1. Then

h(a) +h(b) 1 b 2w () d
2 f;)w(a?)dx/ah() () d

s Ve s
g2<quwmuWﬁ> (L

Moreover, if h' is L-Lipschitzian, then

(39) 0<

a+b

1/q
—4M%ﬂ—h%a+b—OWﬁ> .

h(a)+h(b) 1 b o () da
(310) o< ﬁw(M%/hm (2)d

(b _ 1+2/q p /p
< STy — L / K (t) |w (¢)|" dt .
q + 2

We also have:
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% 1. Let h : [a,b] — C be

Proposition 2. Assume that p, ¢ > 1 with zl) + = =
| and w : [a,b] — C such that

absolutely continuous on [a,b] with h' € Lga,b
w € Ly [a,b], then

[h (a) (b [Pwydt— [Pw () tdt) +h(b) (fj w () tdt — a [ w (t) dt)]

(3.11) —
b
—/ w (t) b (£) dt
b NP Pl W) —h(@* \
g(/ K(t)w(t)|"dt> (/ —t‘ W) - M= dt) .

Proof. Consider the function g : [a,b] — C defined by

h(a)(b—1t)+h(b)(t—a)
b—a

g9(t):=h(t) -

We have g (a) = g (b) = 0.
If we write the inequality (2.3) for f = [ w(t)dt, then we get

- /b " [h(t) h(a) (bft;ir;l(b) (ta)Hdt

“b Ve s
g( K(t)w(t)|pdt> (/

By the modulus property, we have

, t€la,b].

h(b) — h(a)
b—a

W (t) -

q 1/q
dt> |

a+b
—t
el

b a) (b— —a
[ oo [ - e RO 0],
b a) (b— —a
| [ [h(t)— JOIENELION >] y
= /bw(t)h(t)dt
h(a) (bfjw(t) dt— ["w (t) tdt) +h(b) (fjw(t) tdt —a [*w (t) dt)
a b—a ’
which together with (3.12) produces the desired result (3.11). O

Corollary 6. Assume that p, ¢ > 1 with % + % = 1. Let h: [a,b] — R be a convex
function and w : [a,b] — (0,00) be continuous and such that k' € Ly [a,b]. Then

q 1/q
dt)

Ao B o) 0)[E e 8) _/abw(t)h(t)dt

b Ur s
< fwl(t)dt (/ K () |w<t>Pdt) (/

(3.13) 0<

h(b) — h(a)
b—a

(1) -

b
a+ —t‘
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where

b
B (w,[a,b]) = fbwl(t)dt/ w (t) tdt.

4. SOME GRUSS’ TYPE INEQUALITIES

For two Lebesgue integrable functions f, g : [a,b] — R, consider the Cebysev
functional:

b b b
an o=y [ e o [ [ gw

In 1935, Griiss [5] showed that!

1
(42) C(f.9)| < 3 (M —m) (N =n),
provided that there exists the real numbers m, M, n, N such that
(4.3) m<f#) <M and n<g(t)<N forae. t€lab.

The constant % is best possible in (4.2) in the sense that it cannot be replaced by
a smaller quantity.

Another, however less known result, even though it was obtained by Cebysev in
1882, [2], states that

(1.4) O 9] < 75 1 o Il (0~ )

provided that f’, ¢’ exist and are continuous on [a, b] and || f'||, = sup,ejq4 [f' ()]
The constant 1—12 cannot be improved in the general case.

The Cebysev inequality (4.4) also holds if f, g : [a,b] — R are assumed to be
absolutely continuous and f', g' € Lo [a,b] while || f']| , = essupye(q ) | ()]

A mixture between Griiss’ result (3.7) and Cebysev’s one (4.4) is the following
inequality obtained by Ostrowski in 1970, [12]:

(145) CU9)l < 5 (b—a) (M —m) ...

provided that f is Lebesgue integrable and satisfies (3.8) while g is absolutely con-
tinuous and ¢’ € Lo [a,b]. The constant % is best possible in (4.5).

The case of euclidean norms of the derivative was considered by A. Lupas in [§]
in which he proved that

(16) CUa < 17111 0~ a)

provided that f, g are absolutely continuous and f’, g’ € Ly [a, b]. The constant 5
is the best possible.
Consider

t—aifa<t< gl
K(t):: :7(b_a)_

b—tif b <t <b

a+b_

)

for ¢t € [a,b].
‘We have:
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Theorem 5. Assume that p, ¢ > 1 with %}—|—$ =1.1Iff, g:[a,b — C are such
that f is absolutely continuous with f' € L, [a,b] and g € L, [a,b], then
4.7) 1C(f9)l
1 b q 1/q
90— 5= [ ats)as dt)
1/p

b 1/p b
g(/ K®0)\f () dt) (/
b
< ( / K(t)lf’(t)lpdt> B(g),

g(t)— bia f:g(s)ds)q dt) Ve ,

a+b
2

_t’

where

b
211/<1 (b - a>2/q (ﬁ fn,

B(g) ==

b
g 0= )" |lg = 525 ) o(s)as |

Proof. We have the following Sonin identity

b b
@s) =5 [ U0 (g@bi / g(s)ds> a

[¢ a

. if g € Loo [ayb)] .

a7 )

for any v € C, that can be easily proved by developing the right hand side of (4.8).
Observe that, if we take h (t) = g (t) — ;2 f; g(s)ds, then we have ff h(t)dt=0
and by Corollary 2 we get
q 1/q
dt> |

1C(f,9)l

< (/;K(tnf'(t)f?dt)l/p (/

Observe that

a+b
2

b
9(t) = 5= [ 9le)ds

_t‘

b b q 1/q
a+b
(/a 5 —t‘ g(t)_bfa/a g(s)ds dt)
1/q
CL"‘b 1/q 1/ 1 b b ‘
< — 1 - _
mas (2=t 0= (= [ o =5 [ et @

q 1/q
dt> |

b b
= i (b= (bf [l =52 [ atsras

which proves the first branch in the second inequality in (4.7).

We also have
q 1/q
dt>

b
(/a
1 Y
S%(b—a) a

a+b 1 b
5 t‘ ‘g (t) — g g(s)ds

a

)

1 b
g—b_a/a g(s)ds

la,b],00
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which proves the second branch in the second inequality in (4.7). O
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