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WEIGHTED GENERALIZATIONS OF OPIAL’S INEQUALITIES
FOR TWO FUNCTIONS AND APPLICATIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some weighted generalizations of Opial’s
inequalities for two functions. Applications related to Griiss’ type weighted
inequalities are also given.

1. INTRODUCTION
We recall the following Opial type inequalities:

Theorem 1. Assume that u : [a,b] C R — R is an absolutely continuous function
on the interval [a,b] and such that v’ € Lo [a,b].

(i) If u(a) =u(b) =0, then

(1.1) /|u |dt< _a/\u )2 dt,

with equality if and only if

c(t—a) ifa<t< el
u(t) =
c(b—t) if £ <t <,

where ¢ 18 an arbitrary constant.
(ii) Ifu(a) =0, then

(1.2) /|u |dt< _a/\u )2 dt,

with equality if and only if u (t) = ¢ (t — a) for some constant c.

The inequality (1.1) was obtained by Olech in [11] in which he gave a simplified
proof of an inequality originally due in a slightly less general form to Zdzislaw Opial
[12].

Embedded in Olech’s proof is the half-interval form of Opial’s inequality, also
discovered by Beesack [1], which is satisfied by those u vanishing only at a.

For various proofs of the above inequalities, see [7]-[10] and [14].

In the recent paper [4] we obtained the following generalization of Opial’s in-
equalities for two functions:

Theorem 2. Assume that f, g : [a,b] — C are absolutely continuous on [a,b] with
f', 9" € Lafa,b].
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(i) If g (a) =0, then

b 1/2 b
(1.3) /|f’ |dt<( (t—a)|f (t |dt> (/ (b—t)g’(t)|2dt>

<3 [ [e-alr F + ool o] @

1/2

l\')\)—l

(ii) If g (b) =0, then

b V2
v [ 17w |dt<(/ (b—t)lf’(t)l2dt> (/ <t—a>g'<t>|2dt)

<3 [ [o-01r F + - alg @F] a

(i) If g (a) = g (b) =0, then

(1.5) / I (8) g (£)] dt
b 1/2
:S(Q(b—aX/fWﬂgdt— |f(ﬂ2ﬁ>
1/2
x(/b tg%02ﬁ>

b b a
<q-a [1rwlfars [ 52— (g OF - 17 OF)

2
By taking g = f we obtain the following refinement of Opial’s inequalities from
Theorem 1:

1/2

b
b
ta—l—

a+b
2

—t

Corollary 1. Assume that f : [a,b] — C is absolutely continuous on [a,b] with
flelsy [CL7 b] .
(i) If either f(a) =0 or f (b) =0, then

1/2
(1.6) /|f dt<(/ (t—a)|f (t |dt> ( —t|f<>|2dt>
<5 —a/lf )2 dt.

(ii) If f (a) = [ (b) = 0, then

(1.7) /|f ()] dt

b b a+b 2
/ 2
g<2<b—a>/ rora- -5 |dt>

1/2
x(/ a+bt‘f dt) Si(bfa)/lf’(t)Ith-
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In this paper we establish some weighted generalizations of Opial’s inequalities

for two functions. Applications related to Griiss’ type weighted inequalities are
given as well.

2. THE MAIN RESULTS
‘We have:

Theorem 3. Assume that f, g : [a,b] — C are absolutely continuous on [a,b] and
w : [a,b] — [0,00) is integrable with f'\/w, ¢’ € L2 [a,b].

(i) If g (a) =0, then

1/2

< (/ab(b—t)lf’ (t)fw(t)dt)m (/b ([ weras)w <t>|2dt>
<2 [(b—t) Frorew+ ([ wes)s oF)

Proof. (i) Since g (a) = 0, then g (¢ f g’ (s)ds for t € [a,b] . We have

[ 17 ws0wwas [ 17 wls@e o
b

= [=a" 1 Ol -0 g o) w 0 de
b t
[0 ole-a™| [ g

Using the weighted Cauchy-Bunyakovsky-Schwarz (CBS) inequality, we have

) 1/2
(2.3) A< (/ab [(t — o)) (t)|] w(t) dt)

(L)
- (/ab(ta)|f/(t)|2w(t)dt>l/2 (/ab(ta)—l

w(t)dt =: A.

/: g (s)ds

2 1/2
w (t) dt) =: B.
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By (CBS) inequality we also have

t 2 t
a)”! / g (s)ds| < / g’ ()] ds,
which gives

24) Bs(/ﬂ (t—a)lf ¢ ) (/ ([ 10 @ras)u ) N

Using integration by parts, we have

/ab(/:|g'<s>|2ds)w<t>dt

[ ([wora)a([ voa)

= ([wora) ([ v - [ ([ vow)wora
=([wota) ([ vow) - [ ([ vow)wora
—/(/ (5)d >|g<>dt

and by (2.3) we get the first inequality in (2.1).
The last part follows by the elementary inequality

(2.5) \/73<1(a+6) o, B >0.

(ii) Since g (b) = 0, then g (t) = — ft s)ds for t € [a,b]. We have

[ 1 wswwwas [ 5@l

= [ o= 1 @le -0 g0l w @ d

- [o=0irmie-o7" [ g @ as

Using the weighted (CBS) inequality we also have

) 1/2
(2.6) C< (/ab [(b_ t)1/2 Vi (t)q w (t) dt)
x (/b [(bt)l/Q /tbg’(s)ds
1/2
=</:(b—t)f’(t)l2w(t)dt> (/:a)—t)l /tbg%s)ds

(-

w (t)dt =: C.

9 1/2
w (t) dt)

9 1/2
w (¢) dt) =:D.

| E—
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By (CBS) inequality we also have

b b
[ g < [1g el
t t
which gives

b 1/2 b b 1/2
(2.7) Dg(/ (bt)|f’(t)|2w(t)dt> (/ (/t g’(5)|2ds)w(t)dt> .

Using integration by parts, we have

Lb</tb|g'(s>|2ds>w<t>dt

—/ab (/tb|g’<s>2ds>d(/:w<s>ds)

- (/bm’(s)fds) (/atms)ds) "
four(fene)s

and by (2.6) and (2.7) we obtain (2.2). O

-t~

/ab g (&) (/:ms) is )

‘We have:

Corollary 2. Assume that f, g : [a,b] — C are absolutely continuous on [a,b] and
w : [a,b] — [0,00) is integrable with f'\/w, ¢' € Lz [a,b].

(i) If g (a) = 0 and w is nonincreasing on |a,b] , then

b
(2.8) / (0 g (0w (£) dt
b 1/2 b 1/2
g(/ <ta>|f’<t>|2w<t>dt> (/ <bt>|g’<t>|2w<t>dt)

b
<5 [ [e—alror+e-ow e

(i) If g (b) =0 and w is nondecreasing on [a,b], then

b
29) [ 1 Oslvia
b 1/2 b
s(/ <b—t>|f’<t>|2w<t>dt> (/ <t—a>|g’<t>|2w<t>dt)

b
<3 [ [o-01ror + - O woa

1/2

Remark 1. Assume that f : [a,b] — C is absolutely continuous on [a,b] and
w : [a,b] — [0,00) is integrable with f'\/w, f" € Lala,b].



6 S.S. DRAGOMIR

(i) If f(a) =0 and w is nonincreasing on [a,b], then
b
1) [ oo

b 1/2 b 1/2
g(/ (t—a)|f’<t>|2w<t>dt> (/ (b—t)lf’(t)l2w(t)dt)

b
(b—a) / () w (1) d.

<

DO =

(ii) If f (b) = 0 and w is nondecreasing on [a,b], then
b
e [ oo
b

1/2 b 1/2
s(/ (bt>|f'<t>|2w<t>dt> (/ <ta>|f’<t>|2w<t>dt>

b
(b—a) / () w (1) dt.

<

DO | =

Forw =1 we get from (2.10) and (2.11) the first two inequalities in Theorem 2.

We have:

Theorem 4. Assume that f, g : [a,b] — C are absolutely continuous on [a,b] and
w : [a,b] — [0,00) is integrable with f'\/w, ¢' € La[a,b]. If g (b) = g (a) =0, then

(2.12) / (0 g (0w (t) dt

b 1/2 b 1/2 b 1/
(b— ) ( / w(s)ds> ( / |f'<t>2w<t>dt> ( / |g’<t>|2dt>

2

N | —

where
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Proof. If we add the first inequalities in (2.1) and (2.2), then we get

b
(2.14) 2 / 1 (8) g (8)]w (8) dt

b 1/2 b b
< ( / <t—a>|f’<t>|2w<t>dt> ( / ( / w(s)ds> |g'<t>|2dt>
; (/b (b—1)f <t>2w<t>dt> b (/b (/:ww) ds) o <t>|2dt>

By the elementary (CBS) inequality

1/2

1/2

(2.15) aB+76 < (o +'y2)1/2 (B> + 62)1/2, a, B, v, § >0,

we have

(2.16) ( / - alf OF w ) dt) " ( / b ( / e ds> ¢ <t>2dt>
T (/ (b=t ) w(t) dt) " (/ (/:w<s>ds) ¢ <t>2dt>

b b 1/2
s(/ (t—a>|f'<t>|2w<t>dt+/ <bt>f’<t>|2w<t>dt>

X </ab </tbw(8) ds) 7 (t)|2dt+/ab (/:W(S) ds) g’ (t)|2dt> .

1/2 2

b 1/2 b b 1/
= (b—a)"? (/ f’(t)fw(t)dt) (/ w(s)ds> (/ |g'<t>|2dt) .

By making use of (2.14) and (2.16) we get (2.12).
Now, if we write the inequality (2.1) on the interval [a, a7+b} and the inequality
(2.2) on the interval [%Ft], then we have

1/2

1/2

a+b

(2.17) / T W) w () dt
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If we add the inequalities (2.17) and (2.18) and use (2.15), then we get

b
[ 17 @e@lwa

1/2 atd atb 1/2
< ( [ e-araree dt) ( / ( | we ds> o <t>|2dt>
b 1/2 b . 1/2
' ( [, e=o1r @ dt) ( L. ( [Lwe ds> o <t>|2dt>
b 1/2 bl ot 1/2
< (/ K(t)|f’(t)2w(t)dt> (/ /mw(s)ds g (t)|2dt> .
By the (2.5) inequality we also have
b 1/2 bl ot 1/2
( [ Eo1rorve dt) < [ 1L, v <t>|2dt)
b

1 t
<3 / (K (D1 () w () + / L, w(s)ds|lg <t>|2> dt,
and the inequality (2.13) is proved. O

Corollary 3. Assume that f : [a,b] — C are absolutely continuous on [a,b] and
w : [a,b] — [0,00) is integrable with f'\/w, f" € Lala,b]. If f(b) = f(a) =0, then

b
(2.19) / 1 (8) £ (0)]w (1) dt

b 1/2 b 1/2 b 1/
(- ( / w(s)ds> ( / |f'<t>|2w<t>dt> ( / f’<t>|2dt>

2

DN =

1/2
I () dt)

) ()] dt.

Remark 2. Since
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then by (2.20) we get
b
e (oo

b b a 1/2
< (; oo [ OPv@a- [e- "2 i o (t)dt)

x (/ab /aibw(s)ds |f/(t)|2dt>1/2

2
¢
/ w(s)ds
aT+b

b b
<q=a [wwlfoF e (

(b—a)/abw(t)lf’ ([ dt
t [ (Wl v ®) |- 4517 0 a

a+b

\w(t)) O

_‘t_

<

= =

provided w € Lo [a,b].
We observe that, if we take w =1 in (2.20), then we get the inequality (1.7).

3. SOME INEQUALITIES FOR THE WEIGHTED CEBYSEV FUNCTIONAL

Consider now the weighted Cebysev functional

b
/ w(t) £ (t)g (1) dt

@Dcmmm:ﬁqaaa

S w(t)f(t)dti/ w(t)g () dt
[Pw(t)dt Ja [Pw(t)dt Ja
where f, g, w: [a,b] — R and w (t) > 0 for a.e. t € [a,b] are measurable functions
such that the involved integrals exist and f t)dt > 0.
In [3], Cerone and Dragomir obtained, among othera7 the following inequalities:
(32) [Cu(f,9)]
<y m o o0 - [ o) ds|
< - -m w(t) |g(t) — w(s)g(s)ds
2 [P w (t) dt [Pw(s)ds Ja
<1(M—m) 1 /b (t)|g(t) — ! /bw(s)g(s)dspdt :
2 fabw(t)dt a f;w(s)ds a

1
< 3 (M —m)essup |g (t) —

t€la,b]

b
Ws/ w(s)g(s)ds

for p > 1, provided —co < m < f(t) < M < oo for a.e. t € [a,b] and the
corresponding integrals are finite. The constant % is sharp in all the inequalities in
(3.2) in the sense that it cannot be replaced by a smaller constant.
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In addition, if —co <n < g(t) < N < oo for a.e. t € [a,b], then the following
refinement of the celebrated Griiss inequality is obtained:

(3:3) |Cw (£, 9)

1 1 b 1 b
<2(M—m)f:w(t)dt/aw(t)g(t)—w/aw(s)g(s)ds dt
1 1 b 1 b 2k

< 5 (M —m) [W/ w(t)g(t)—f:w(s)ds/a w()g(s) ds dt}
< 3 (M —m) (N —n).

Here, the constants % and i are also sharp in the sense mentioned above.
If we write Theorem 3 for the function f = [ h(t)dt, where h : [a,b] — C is
integrable on [a, b], then we have:

Lemma 1. Assume that g : [a,b] — C is absolutely continuous on [a,b], h : [a,b] —
C is integrable on [a,b] and w : [a,b] — [0, 00) is integrable with hy/w, g’ € L [a,b].

(i) If g (a) =0, then

b
(3.4) / () g (8) w (t) dt

b 1/2 b b
g(/ (t—a)|h(t)|2w(t)dt> (/ (/t w(s)ds) |g’(t)|2dt>

(ii) If g (b) =0, then

1/2

b
(3.5) / (0 g (0w (6)dt

b V2 o
s(/ <bt>|f'<t>2w<t>dt> (/ (/aw<s>ds> |g’<t>|2dt>

‘We have:

1/2

Corollary 4. Assume that g : [a,b] — C is absolutely continuous on [a,b], h :
[a,b] — C is integrable on [a,b] and w : [a,b] — [0,00) is integrable with hy/w,
g’ € Ly [a, b] .

(i) If g(a) =0 and w is nonincreasing on |a,b] , then

b
(3.6) / I () g (8) w (t) dit
b

1/2 b 1/2
S(/ (ta)lh(t)lzw(t)dt> (/ (bt)lg’(t)lzw(t)dt> :
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(ii) If g (b) = 0 and w is nondecreasing on [a,b], then
b
a1 [ ol

b 1/2 b 1/2
g(/ (b—t>|h<t>|2w<t>dt) (/ (t—a>|g'<t>|2w<t>dt> .

We have the following inequality for the weighted Cebysev functional.

Theorem 5. Assume that g : [a,b] — C is absolutely continuous on [a,b], f :
[a,b] — C is integrable on [a,b] and w : [a,b] — [0,00) is integrable with f+/w,
g € Lo [CL, b] .

(i) If w is nonincreasing on [a,b], then

(3.8) |Cuw (f9)]

1 b 1 b
: (I;W(S)ds/a (t_a)|f(t)—fab'w(s)ds/a fs)w(s)ds
1 b , 1/2
x (y;w@ds/a (- 0)lg () w<t>dt>
_a)/? 1 b 2., B 1 b () ds
=0 [f;’w@)ds/a P b= | o [

1 b 2
x (fabw(s)ds/a (b—1)g (1) w(t)dt>

(ii) If w is nondecreasing on [a,b], then

) 1/2
w (t) dt)

2] 1/2

1/2

(3.9)  |Cu (£, 9)]

b b
< b-0)|f ()~ — () w (s) ds
S, w(s)ds Ja J, w(s)ds Ja
b 1/2
x (Ibwl(s)ds/ (t—a)lg <t>|2w<t>dt)
b b
<(b—a)” [fbwl(s)ds/ 0P w (b dt - f,,wl(s)dS/ f(s)w (s)ds

1 b 2
x <f;w<s>ds/a (t—a)lg ()] w(t)dt)

) 1/2
w (t) dt)
2] 1/2

1/2
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Proof. We use the following Sonin type identity
(3.10) Cu (f,9)

1 b 1 b
=W/ (f“"f;w(s>ds/a f(s)w(s)ds> (9.(t) —7)w (8) dt,

for v € C, which can be proved directly on calculating the integral from the right
hand side.
Using the inequality (3.6) for v = g (a), we have

[Cw (£, 9)

Sffwl(sms/b R ds/f .

b b
<f,,wts)ds (/ (t—a)‘f(t)—fbwl(s)ds/ 7 (8)w(s)ds

a

19 (t) = g (a)|w(¢)di

9 1/2
w (t) dt)

b 1/2
x ( / (b—1)lg (O w(t) dt)

that proves the first inequality in (3.8).
Since

2
w(t)dt

b b
fbwl(s)ds/a (ta)|f(t) 1 /a f(s)w(s)ds

f;w(s)ds
1 b
<(b-a) f:w(s)ds/a

b
PO [ F v
=((b-a N b 2 — ! b s)w(s)ds
S >[f:w(s)ds/a 7 f;w<s>ds/af” (5)d
hence the second part of (3.8) follows.

Using the inequality (3.7) for v = ¢ (b), we have

|Cw (f59)]
ds/ f(s s)ds

2
w(t)dt

|

1 b
= f:w(s)ds/
b b

[ w(s)ds

g (t) =g (b)]w (t) dt

9 1/2
w (t) dt)

b 1/2
x ( [ @-alg ©F v dt)
that proves the first part of (3.9).

The second part follows in the same way as above
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We also have:
Theorem 6. Assume that g : [a,b] — C is absolutely continuous on [a,b], h :
[a,b] — C is integrable on [a,b] and w : [a,b] — [0,00) is integrable with hy/w,
g € Laa,b]. Then

(3.11) |G (R, f)]

1 1 b ’ 2 b a+b 2 1/2
= TPuls)ds (2(b_a)/a G A @l dt)
[ e - /bh(s)’w(S)dssz(t)dt B

al 2 ffw(s)ds a
1 a+b 1/2
< _ w/?
(Fruwas) Il 2 N

b
ta+

b b 1/2
X (; (bfa)/ | (1) dt — ()|2dt>

b b

V2 (=)l
T2 ffw(s)ds

b
x<;(b—a)/a ropa- |
( ds/ B dt =

2) 1/2
Proof. Integrating by parts, we have

fbwl(S)ds/ (/Ih(t)w(t)dt_m/ h(s)w(s)ds) fr(x)dz

2) 1/2

bt_a+b

1/2
(¢ )mt)

1 b
o )ds/ h(s)w(s)ds

- ' X T)wil xr)— w(l‘) ' S)wi(s S T
/afu(h() (2) ffw(s)ds/ah() <>d>d

b
:_fbwl(s)ds/a h(z) f(z)w(z)dx
1

b 1 b
+ﬁw@$Lh@w®%ﬁM@$wame’
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which gives that

Cuw (h, f) =

&.
o

f“b h(s)w(s) ds — /Ih(t)w(t) dt) I (z)dx.

(@)= fjw(s)ds/bh ds—/ h(t)w(t)dt, z € [a,b].

We observe that g (a) = g (b) = 0 and ¢ is absolutely continuous on [a, b].
If we use the inequality (1.5), we get

|Cw (B, £
1 °l S, w(s)ds .
Sfabw(s)ds/a @) <f;w(s)d5 a 9)d /h >
1/2
bt_a—i-b‘lf |dt>

b
T on (; (b-a) [ 17 O dt -
. 5 1/2
X (/ Hf dt)
b b 1/2
:W@(b_“)/ ol o= i o) dt)
‘ 5 1/2
w? (t)dt) ,

b b
y (/ h(t)—fbwl(s)ds/a h(s)w(s) ds

which proves the first inequality in (3.11).

&+

dt

IN

a+b w (

b
ds/ h(s)w (s) ds — b (£) w (£)

a+b
2

_t‘

Since
2
fbwl(s)ds /ab a;b—t‘ |h(t) fbwl(s) /b h(s)w(s)ds| w?(t)dt
<[5 -]
be 1(s)ds /ab w (t) dt

h(t)—m/jh@w(s)ds
=] el

b b 2
y (W/ Ih (£)2 dt—’f ds/ h(s)w (s) ds )

hence the second part of the inequality (3.11) is proved. The last part is obvious. O
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