WEIGHTED GENERALIZATIONS OF OPIAL'S INEQUALITIES FOR p-NORMS AND TWO FUNCTIONS WITH APPLICATIONS

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. In this paper we establish some weighted generalizations of Opial's inequalities in terms of *p*-norms and for two functions. Applications related to Grüss' type weighted inequalities are also given.

1. Introduction

We recall the following Opial type inequalities:

Theorem 1. Assume that $u : [a, b] \subset \mathbb{R} \to \mathbb{R}$ is an absolutely continuous function on the interval [a, b] and such that $u' \in L_2[a, b]$.

(i) If
$$u(a) = u(b) = 0$$
, then

(1.1)
$$\int_{a}^{b} |u(t)u'(t)| dt \leq \frac{1}{4} (b-a) \int_{a}^{b} |u'(t)|^{2} dt,$$

with equality if and only if

$$u\left(t\right) = \left\{ \begin{array}{l} c\left(t-a\right) & \text{if } a \leq t \leq \frac{a+b}{2}, \\ \\ c\left(b-t\right) & \text{if } \frac{a+b}{2} < t \leq b, \end{array} \right.$$

where c is an arbitrary constant.

(ii) If u(a) = 0, then

(1.2)
$$\int_{a}^{b} |u(t) u'(t)| dt \leq \frac{1}{2} (b-a) \int_{a}^{b} |u'(t)|^{2} dt,$$

with equality if and only if u(t) = c(t-a) for some constant c.

The inequality (1.1) was obtained by Olech in [12] in which he gave a simplified proof of an inequality originally due in a slightly less general form to Zdzislaw Opial [13].

Embedded in Olech's proof is the half-interval form of Opial's inequality, also discovered by Beesack [1], which is satisfied by those u vanishing only at a.

For various proofs of the above inequalities, see [8]-[11] and [15].

In [5] we obtained the following generalizations of Opial inequalities for p-norms of two functions:

Theorem 2. Assume that $f, g: [a,b] \to \mathbb{C}$ are absolutely continuous on [a,b] with $f' \in L_p[a,b]$ and $g' \in L_q[a,b]$ for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$.

¹⁹⁹¹ Mathematics Subject Classification. 26D15; 26D10.

Key words and phrases. Opial's inequality. Grüss' inequality.

(i) If g(a) = 0, then

$$(1.3) \int_{a}^{b} |f'(t) g(t)| dt \leq \left(\int_{a}^{b} (t-a) |f'(t)|^{p} dt \right)^{1/p} \left(\int_{a}^{b} (b-t) |g'(t)|^{q} dt \right)^{1/q}$$

$$\leq \int_{a}^{b} \left[\frac{1}{p} (t-a) |f'(t)|^{p} + \frac{1}{q} (b-t) |g'(t)|^{q} \right] dt.$$

(ii) If g(b) = 0, then

$$(1.4) \int_{a}^{b} |f'(t) g(t)| dt \leq \left(\int_{a}^{b} (b-t) |f'(t)|^{p} dt \right)^{1/p} \left(\int_{a}^{b} (t-a) |g'(t)|^{q} dt \right)^{1/q}$$

$$\leq \int_{a}^{b} \left[\frac{1}{p} (b-t) |f'(t)|^{p} dt + \frac{1}{q} (t-a) |g'(t)|^{q} \right] dt.$$

(iii) If
$$g(a) = g(b) = 0$$
, then

$$(1.5) \int_{a}^{b} |f'(t) g(t)| dt$$

$$\leq \left(\frac{1}{2} (b-a) \int_{a}^{b} |f'(t)|^{p} dt - \int_{a}^{b} \left| \frac{a+b}{2} - t \right| |f'(t)|^{p} dt \right)^{1/p}$$

$$\times \left(\int_{a}^{b} \left| \frac{a+b}{2} - t \right| |g'(t)|^{q} dt \right)^{1/q}$$

$$\leq \frac{1}{2p} (b-a) \int_{a}^{b} |f'(t)|^{p} dt + \int_{a}^{b} \left| \frac{a+b}{2} - t \right| \left[\frac{1}{q} |g'(t)|^{q} - \frac{1}{p} |f'(t)|^{p} \right] dt.$$

In particular, we have:

Corollary 1. Assume that $f:[a,b] \to \mathbb{C}$ is absolutely continuous on [a,b] and $f' \in L_p[a,b] \cap L_q[a,b]$ for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$.

(i) If
$$f(a) = 0$$
, then

$$(1.6) \int_{a}^{b} |f'(t) f(t)| dt \leq \left(\int_{a}^{b} (t-a) |f'(t)|^{p} dt \right)^{1/p} \left(\int_{a}^{b} (b-t) |f'(t)|^{q} dt \right)^{1/q}$$

$$\leq \int_{a}^{b} \left[\frac{1}{p} (t-a) |f'(t)|^{p} + \frac{1}{q} (b-t) |f'(t)|^{q} \right] dt.$$

(ii) If
$$f(b) = 0$$
, then

$$(1.7) \int_{a}^{b} |f'(t) f(t)| dt \leq \left(\int_{a}^{b} (b-t) |f'(t)|^{p} dt \right)^{1/p} \left(\int_{a}^{b} (t-a) |f'(t)|^{q} dt \right)^{1/q}$$

$$\leq \int_{a}^{b} \left[\frac{1}{p} (b-t) |f'(t)|^{p} dt + \frac{1}{q} (t-a) |f'(t)|^{q} \right] dt.$$

(iii) If
$$f(a) = f(b) = 0$$
, then

$$(1.8) \int_{a}^{b} |f'(t) f(t)| dt$$

$$\leq \left(\frac{1}{2} (b-a) \int_{a}^{b} |f'(t)|^{p} dt - \int_{a}^{b} \left| \frac{a+b}{2} - t \right| |f'(t)|^{p} dt \right)^{1/p}$$

$$\times \left(\int_{a}^{b} \left| \frac{a+b}{2} - t \right| |f'(t)|^{q} dt \right)^{1/q}$$

$$\leq \frac{1}{2p} (b-a) \int_{a}^{b} |f'(t)|^{p} dt + \int_{a}^{b} \left| \frac{a+b}{2} - t \right| \left[\frac{1}{q} |f'(t)|^{q} - \frac{1}{p} |f'(t)|^{p} \right] dt.$$

In this paper we establish some weighted generalizations of Opial's inequalities in terms of p-norms and for two functions. Applications related to Grüss' type weighted inequalities are also given.

2. The Main Results

We have:

Theorem 3. Assume that $f, g : [a,b] \to \mathbb{C}$ are absolutely continuous on [a,b], $w:[a,b] \rightarrow [0,\infty)$ is integrable, $f'w^{1/p} \in L_p[a,b]$ and $g' \in L_q[a,b]$ for p, q > 1with $\frac{1}{p} + \frac{1}{q} = 1$.

(i) If
$$g(a) = 0$$
, then

$$(2.1) \int_{a}^{b} |f'(t) g(t)| w(t) dt$$

$$\leq \left(\int_{a}^{b} (t-a) |f'(t)|^{p} w(t) dt \right)^{1/p} \left(\int_{a}^{b} \left(\int_{t}^{b} w(s) ds \right) |g'(t)|^{q} dt \right)^{1/q}$$

$$\leq \int_{a}^{b} \left[\frac{1}{p} (t-a) |f'(t)|^{p} w(t) + \frac{1}{q} \left(\int_{t}^{b} w(s) ds \right) |g'(t)|^{q} \right] dt.$$

(ii) If
$$g(b) = 0$$
, then

$$(2.2) \int_{a}^{b} |f'(t) g(t)| w(t) dt$$

$$\leq \left(\int_{a}^{b} (b-t) |f'(t)|^{p} w(t) dt \right)^{1/p} \left(\int_{a}^{b} \left(\int_{a}^{t} w(s) ds \right) |g'(t)|^{q} dt \right)^{1/q}$$

$$\leq \int_{a}^{b} \left[\frac{1}{p} (b-t) |f'(t)|^{p} w(t) + \frac{1}{q} \left(\int_{a}^{t} w(s) ds \right) |g'(t)|^{q} \right] dt.$$

Proof. (i) Since $g\left(a\right)=0$, then $g\left(t\right)=\int_{a}^{t}g'\left(s\right)ds$ for $t\in\left[a,b\right].$ We have

$$\int_{a}^{b} |f'(t)g(t)| w(t) dt = \int_{a}^{b} |f'(t)| |g(t)| w(t) dt$$

$$= \int_{a}^{b} (t-a)^{1/p} |f'(t)| (t-a)^{-1/p} |g(t)| w(t) dt$$

$$= \int_{a}^{b} (t-a)^{1/p} |f'(t)| (t-a)^{-1/p} \left| \int_{a}^{t} g'(s) ds \right| w(t) dt =: A.$$

Using the weighted Hölder's inequality for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$(2.3) \quad A \leq \left(\int_{a}^{b} \left[(t-a)^{1/p} |f'(t)| \right]^{p} w(t) dt \right)^{1/p}$$

$$\times \left(\int_{a}^{b} \left[(t-a)^{-1/p} \left| \int_{a}^{t} g'(s) ds \right| \right]^{q} w(t) dt \right)^{1/q}$$

$$= \left(\int_{a}^{b} (t-a) |f'(t)|^{p} w(t) dt \right)^{1/p} \left(\int_{a}^{b} \left[(t-a)^{-1/p} \left| \int_{a}^{t} g'(s) ds \right| \right]^{q} w(t) dt \right)^{1/q}$$

$$=: B$$

By Hölder's inequality for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$ we also have

$$(t-a)^{-1/p} \left| \int_{a}^{t} g'(s) ds \right| \le \left(\int_{a}^{t} \left| g'(s) \right|^{q} ds \right)^{1/q}$$

that implies

$$\left[\left(t - a \right)^{-1/p} \left| \int_{a}^{t} g'(s) \, ds \right| \right]^{q} \leq \int_{a}^{t} \left| g'(s) \right|^{q} ds,$$

which gives

$$(2.4) \quad B \leq \left(\int_a^b \left(t-a\right) \left|f'\left(t\right)\right|^p w\left(t\right) dt\right)^{1/p} \left(\int_a^b \left(\int_a^t \left|g'\left(s\right)\right|^q ds\right) w\left(t\right) dt\right)^{1/q}.$$

Using integration by parts, we have

$$\begin{split} &\int_{a}^{b} \left(\int_{a}^{t} \left| g'\left(s\right) \right|^{q} ds \right) w\left(t\right) dt \\ &= \int_{a}^{b} \left(\int_{a}^{t} \left| g'\left(s\right) \right|^{q} ds \right) d \left(\int_{a}^{t} w\left(s\right) ds \right) \\ &= \left(\int_{a}^{t} \left| g'\left(s\right) \right|^{q} ds \right) \left(\int_{a}^{t} w\left(s\right) ds \right) \bigg|_{a}^{b} - \int_{a}^{b} \left(\int_{a}^{t} w\left(s\right) ds \right) \left| g'\left(t\right) \right|^{q} dt \\ &= \left(\int_{a}^{b} \left| g'\left(s\right) \right|^{q} ds \right) \left(\int_{a}^{b} w\left(s\right) ds \right) - \int_{a}^{b} \left(\int_{a}^{t} w\left(s\right) ds \right) \left| g'\left(t\right) \right|^{q} dt \\ &= \int_{a}^{b} \left(\int_{t}^{b} w\left(s\right) ds \right) \left| g'\left(t\right) \right|^{q} dt \end{split}$$

and by (2.3) we get the first inequality in (2.1).

The last part follows by the elementary Young's inequality

(2.5)
$$\alpha^{1/p}\beta^{1/q} \le \frac{1}{p}\alpha + \frac{1}{q}\beta, \ \alpha, \ \beta \ge 0.$$

(ii) Since $g\left(b\right)=0$, then $g\left(t\right)=-\int_{t}^{b}g'\left(s\right)ds$ for $t\in\left[a,b\right].$ We have

$$\begin{split} \int_{a}^{b} |f'(t) g(t)| \, w(t) \, dt &= \int_{a}^{b} |f'(t)| \, |g(t)| \, w(t) \, dt \\ &= \int_{a}^{b} (b-t)^{1/p} \, |f'(t)| \, (b-t)^{-1/p} \, |g(t)| \, w(t) \, dt \\ &= \int_{a}^{b} (b-t)^{1/p} \, |f'(t)| \, (b-t)^{-1/p} \, \left| \int_{t}^{b} g'(s) \, ds \right| w(t) \, dt =: C. \end{split}$$

Using Hölder's inequality for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$ we also have

$$(2.6) \quad C \leq \left(\int_{a}^{b} \left[(b-t)^{1/p} |f'(t)| \right]^{p} w(t) dt \right)^{1/p}$$

$$\times \left(\int_{a}^{b} \left[(b-t)^{-1/p} \left| \int_{t}^{b} g'(s) ds \right| \right]^{q} w(t) dt \right)^{1/q}$$

$$= \left(\int_{a}^{b} (b-t) |f'(t)|^{p} w(t) dt \right)^{1/p} \left(\left[(b-t)^{-1/p} \left| \int_{t}^{b} g'(s) ds \right| \right]^{q} w(t) dt \right)^{1/q}$$

$$=: D$$

By Hölder's inequality for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$ we also have

$$(b-t)^{-1/p} \left| \int_{t}^{b} g'(s) ds \right| \le \left(\int_{t}^{b} \left| g'(s) \right|^{q} ds \right)^{1/q},$$

which gives

$$(2.7) \quad D \leq \left(\int_{a}^{b} \left(b-t\right) \left|f'\left(t\right)\right|^{p} w\left(t\right) dt\right)^{1/p} \left(\int_{a}^{b} \left(\int_{t}^{b} \left|g'\left(s\right)\right|^{q} ds\right) w\left(t\right) dt\right)^{1/2}.$$

$$\begin{split} &\int_{a}^{b} \left(\int_{t}^{b} \left| g'\left(s\right) \right|^{q} ds \right) w\left(t\right) dt \\ &= \int_{a}^{b} \left(\int_{t}^{b} \left| g'\left(s\right) \right|^{q} ds \right) d\left(\int_{a}^{t} w\left(s\right) ds \right) \\ &= \left(\int_{t}^{b} \left| g'\left(s\right) \right|^{q} ds \right) \left(\int_{a}^{t} w\left(s\right) ds \right) \bigg|_{a}^{b} + \int_{a}^{b} \left| g'\left(t\right) \right|^{q} \left(\int_{a}^{t} w\left(s\right) ds \right) dt \\ &= \int_{a}^{b} \left(\int_{a}^{t} w\left(s\right) ds \right) \left| g'\left(t\right) \right|^{q} dt \end{split}$$

and by (2.6) and (2.7) we obtain (2.2).

Corollary 2. Assume that $f, g: [a,b] \to \mathbb{C}$ are absolutely continuous on [a,b], $w: [a,b] \to [0,\infty)$ is integrable, $f'w^{1/p} \in L_p[a,b]$ and $g' \in L_q[a,b]$ for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$.

(i) If g(a) = 0 and w is nonincreasing on [a, b], then

$$(2.8) \quad \int_{a}^{b} |f'(t)g(t)| w(t) dt$$

$$\leq \left(\int_{a}^{b} (t-a) |f'(t)|^{p} w(t) dt \right)^{1/p} \left(\int_{a}^{b} (b-t) |g'(t)|^{q} w(t) dt \right)^{1/q}$$

$$\leq \int_{a}^{b} \left[\frac{1}{p} (t-a) |f'(t)|^{p} + \frac{1}{q} (b-t) |g'(t)|^{q} \right] w(t) dt.$$

(ii) If g(b) = 0 and w is nondecreasing on [a, b], then

$$(2.9) \int_{a}^{b} |f'(t) g(t)| w(t) dt$$

$$\leq \left(\int_{a}^{b} (b-t) |f'(t)|^{p} w(t) dt \right)^{1/p} \left(\int_{a}^{b} (t-a) |g'(t)|^{q} w(t) dt \right)^{1/q}$$

$$\leq \int_{a}^{b} \left[\frac{1}{p} (b-t) |f'(t)|^{p} + \frac{1}{q} (t-a) |g'(t)|^{q} \right] w(t) dt.$$

Remark 1. Assume that $f:[a,b] \to \mathbb{C}$ are absolutely continuous on [a,b], $w:[a,b] \to [0,\infty)$ is integrable, $f'w^{1/p} \in L_p[a,b]$ and $f' \in L_q[a,b]$ for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$.

(i) If f(a) = 0 and w is nonincreasing on [a, b], then

$$(2.10) \int_{a}^{b} |f'(t) f(t)| w(t) dt$$

$$\leq \left(\int_{a}^{b} (t-a) |f'(t)|^{p} w(t) dt \right)^{1/p} \left(\int_{a}^{b} (b-t) |f'(t)|^{q} w(t) dt \right)^{1/q}$$

$$\leq \int_{a}^{b} \left[\frac{1}{p} (t-a) |f'(t)|^{p} + \frac{1}{q} (b-t) |f'(t)|^{q} \right] w(t) dt.$$

(ii) If f(b) = 0 and w is nondecreasing on [a, b], then

$$(2.11) \int_{a}^{b} |f'(t) f(t)| w(t) dt$$

$$\leq \left(\int_{a}^{b} (b-t) |f'(t)|^{p} w(t) dt \right)^{1/p} \left(\int_{a}^{b} (t-a) |f'(t)|^{q} w(t) dt \right)^{1/q}$$

$$\leq \int_{a}^{b} \left[\frac{1}{p} (b-t) |f'(t)|^{p} + \frac{1}{q} (t-a) |f'(t)|^{q} \right] w(t) dt.$$

We have:

Theorem 4. Assume that $f, g : [a,b] \to \mathbb{C}$ are absolutely continuous on [a,b], $w:[a,b] \rightarrow [0,\infty)$ is integrable, $f'w^{1/p} \in L_p[a,b]$ and $g' \in L_q[a,b]$ for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. If g(a) = g(b) = 0, then

$$(2.12) \int_{a}^{b} |f'(t) g(t)| w(t) dt$$

$$\leq \frac{1}{2} (b-a)^{1/p} \left(\int_{a}^{b} w(s) ds \right)^{1/q} \left(\int_{a}^{b} |f'(t)|^{p} w(t) dt \right)^{1/p} \left(\int_{a}^{b} |g'(t)|^{q} dt \right)^{1/q}$$

and

$$(2.13) \int_{a}^{b} |f'(t) g(t)| w(t) dt$$

$$\leq \left(\frac{1}{2} (b-a) \int_{a}^{b} |f'(t)|^{p} w(t) dt - \int_{a}^{b} \left| t - \frac{a+b}{2} \right| |f'(t)|^{p} w(t) dt \right)^{1/p}$$

$$\times \left(\int_{a}^{b} \left| \int_{t}^{\frac{a+b}{2}} w(s) ds \right| |g'(t)|^{q} dt \right)^{1/q}.$$

Proof. If we add the inequalities (2.1) and (2.2) we get

$$(2.14) \quad 2\int_{a}^{b} |f'(t) g(t)| w(t) dt$$

$$\leq \left(\int_{a}^{b} (t-a) |f'(t)|^{p} w(t) dt\right)^{1/p} \left(\int_{a}^{b} \left(\int_{t}^{b} w(s) ds\right) |g'(t)|^{q} dt\right)^{1/q}$$

$$+ \left(\int_{a}^{b} (b-t) |f'(t)|^{p} w(t) dt\right)^{1/p} \left(\int_{a}^{b} \left(\int_{a}^{t} w(s) ds\right) |g'(t)|^{q} dt\right)^{1/q}.$$

If we use the elementary Hölder inequality for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$

(2.15)
$$\alpha\beta + \gamma\delta \le (\alpha^p + \gamma^p)^{1/p} (\beta^q + \delta^q)^{1/q}, \ \alpha, \ \beta, \ \gamma, \ \delta \ge 0,$$

we have

$$(2.16) \quad \left(\int_{a}^{b} (t-a) |f'(t)|^{p} w(t) dt\right)^{1/p} \left(\int_{a}^{b} \left(\int_{t}^{b} w(s) ds\right) |g'(t)|^{q} dt\right)^{1/q} + \left(\int_{a}^{b} (b-t) |f'(t)|^{p} w(t) dt\right)^{1/p} \left(\int_{a}^{b} \left(\int_{a}^{t} w(s) ds\right) |g'(t)|^{q} dt\right)^{1/q}$$

$$\leq \left(\int_{a}^{b} (t-a) |f'(t)|^{p} w(t) dt + \int_{a}^{b} (b-t) |f'(t)|^{p} w(t) dt \right)^{1/p} \\
\times \left(\int_{a}^{b} \left(\int_{t}^{b} w(s) ds \right) |g'(t)|^{q} dt + \int_{a}^{b} \left(\int_{a}^{t} w(s) ds \right) |g'(t)|^{q} dt \right)^{1/q} \\
= (b-a)^{1/p} \left(\int_{a}^{b} |f'(t)|^{p} w(t) dt \right)^{1/p} \left(\int_{a}^{b} w(s) ds \right)^{1/q} \left(\int_{a}^{b} |g'(t)|^{q} dt \right)^{1/q}.$$

By making use of (2.14) and (2.16) we get (2.12).

If we use the inequality (2.1) on the interval $\left[a, \frac{a+b}{2}\right]$, then we have

$$(2.17) \int_{a}^{\frac{a+b}{2}} |f'(t) g(t)| w(t) dt$$

$$\leq \left(\int_{a}^{\frac{a+b}{2}} (t-a) |f'(t)|^{p} w(t) dt \right)^{1/p} \left(\int_{a}^{\frac{a+b}{2}} \left(\int_{t}^{\frac{a+b}{2}} w(s) ds \right) |g'(t)|^{q} dt \right)^{1/q}$$

while if we use the inequality (2.2) on the interval $\left[\frac{a+b}{2}, b\right]$, then we have

$$(2.18) \int_{\frac{a+b}{2}}^{b} |f'(t) g(t)| w(t) dt$$

$$\leq \left(\int_{\frac{a+b}{2}}^{b} (b-t) |f'(t)|^{p} w(t) dt \right)^{1/p} \left(\int_{\frac{a+b}{2}}^{b} \left(\int_{\frac{a+b}{2}}^{t} w(s) ds \right) |g'(t)|^{q} dt \right)^{1/q}.$$

If we add these two inequalities, then we get by (2.15) that

$$\int_{a}^{b} |f'(t) g(t)| w(t) dt
\leq \left(\int_{a}^{\frac{a+b}{2}} (t-a) |f'(t)|^{p} w(t) dt \right)^{1/p} \left(\int_{a}^{\frac{a+b}{2}} \left(\int_{t}^{\frac{a+b}{2}} w(s) ds \right) |g'(t)|^{q} dt \right)^{1/q}
+ \left(\int_{\frac{a+b}{2}}^{b} (b-t) |f'(t)|^{p} w(t) dt \right)^{1/p} \left(\int_{\frac{a+b}{2}}^{b} \left(\int_{\frac{a+b}{2}}^{t} w(s) ds \right) |g'(t)|^{q} dt \right)^{1/q}
\leq \left(\int_{a}^{b} K(t) |f'(t)|^{p} w(t) dt \right)^{1/p} \left(\int_{a}^{b} \left| \int_{t}^{\frac{a+b}{2}} w(s) ds \right| |g'(t)|^{q} dt \right)^{1/q}$$

where

$$K\left(t\right):=\left\{\begin{array}{ll} t-a, \text{ if } t\in\left[a,\frac{a+b}{2}\right]\\ b-t, \text{ if } t\in\left[\frac{a+b}{2},b\right] \end{array}\right.=\frac{1}{2}\left(b-a\right)-\left|t-\frac{a+b}{2}\right|.$$

This proves (2.13).

Corollary 3. Assume that $f:[a,b]\to\mathbb{C}$ is absolutely continuous on [a,b], $w:[a,b]\to[0,\infty)$ is integrable, $f'w^{1/p}\in L_p[a,b]$ and $f'\in L_q[a,b]$ for p,q>1 with

$$\frac{1}{p} + \frac{1}{q} = 1$$
. If $f(a) = f(b) = 0$, then

$$(2.19) \int_{a}^{b} |f'(t) f(t)| w(t) dt$$

$$\leq \frac{1}{2} (b-a)^{1/p} \left(\int_{a}^{b} w(s) ds \right)^{1/q} \left(\int_{a}^{b} |f'(t)|^{p} w(t) dt \right)^{1/p} \left(\int_{a}^{b} |f'(t)|^{q} dt \right)^{1/q}$$

and

$$(2.20) \int_{a}^{b} |f'(t) f(t)| w(t) dt$$

$$\leq \left(\frac{1}{2} (b-a) \int_{a}^{b} |f'(t)|^{p} w(t) dt - \int_{a}^{b} \left| t - \frac{a+b}{2} \right| |f'(t)|^{p} w(t) dt \right)^{1/p}$$

$$\times \left(\int_{a}^{b} \left| \int_{t}^{\frac{a+b}{2}} w(s) ds \right| |f'(t)|^{q} dt \right)^{1/q}.$$

3. Some Inequalities for the Weighted Čebyšev Functional Consider now the weighted Čebyšev functional

$$(3.1) \quad C_{w}(f,g) := \frac{1}{\int_{a}^{b} w(t) dt} \int_{a}^{b} w(t) f(t) g(t) dt - \frac{1}{\int_{a}^{b} w(t) dt} \int_{a}^{b} w(t) f(t) dt \frac{1}{\int_{a}^{b} w(t) dt} \int_{a}^{b} w(t) g(t) dt$$

where $f, g, w : [a, b] \to \mathbb{R}$ and $w(t) \ge 0$ for a.e. $t \in [a, b]$ are measurable functions such that the involved integrals exist and $\int_a^b w(t) \, dt > 0$. In [3], Cerone and Dragomir obtained, among others, the following inequalities:

$$(3.2) \quad |C_{w}(f,g)| \\ \leq \frac{1}{2} (M-m) \frac{1}{\int_{a}^{b} w(t) dt} \int_{a}^{b} w(t) \left| g(t) - \frac{1}{\int_{a}^{b} w(s) ds} \int_{a}^{b} w(s) g(s) ds \right| dt \\ \leq \frac{1}{2} (M-m) \left[\frac{1}{\int_{a}^{b} w(t) dt} \int_{a}^{b} w(t) \left| g(t) - \frac{1}{\int_{a}^{b} w(s) ds} \int_{a}^{b} w(s) g(s) ds \right|^{p} dt \right]^{\frac{1}{p}} \\ \leq \frac{1}{2} (M-m) \underset{t \in [a,b]}{\text{essup}} \left| g(t) - \frac{1}{\int_{a}^{b} w(s) ds} \int_{a}^{b} w(s) g(s) ds \right|$$

for p>1, provided $-\infty < m \le f(t) \le M < \infty$ for a.e. $t\in [a,b]$ and the corresponding integrals are finite. The constant $\frac{1}{2}$ is sharp in all the inequalities in (3.2) in the sense that it cannot be replaced by a smaller constant.

In addition, if $-\infty < n \le g(t) \le N < \infty$ for a.e. $t \in [a, b]$, then the following refinement of the celebrated Grüss inequality is obtained:

$$(3.3) \quad |C_{w}(f,g)| \\ \leq \frac{1}{2} (M-m) \frac{1}{\int_{a}^{b} w(t) dt} \int_{a}^{b} w(t) \left| g(t) - \frac{1}{\int_{a}^{b} w(s) ds} \int_{a}^{b} w(s) g(s) ds \right| dt \\ \leq \frac{1}{2} (M-m) \left[\frac{1}{\int_{a}^{b} w(t) dt} \int_{a}^{b} w(t) \left| g(t) - \frac{1}{\int_{a}^{b} w(s) ds} \int_{a}^{b} w(s) g(s) ds \right|^{2} dt \right]^{\frac{1}{2}} \\ \leq \frac{1}{4} (M-m) (N-n).$$

Here, the constants $\frac{1}{2}$ and $\frac{1}{4}$ are also sharp in the sense mentioned above.

If we write Corollary 2 for the function $f = \int_a h(t) dt$, where $h: [a,b] \to \mathbb{C}$ is integrable on [a,b], then we have:

Lemma 1. Assume that $g:[a,b]\to\mathbb{C}$ is absolutely continuous on [a,b], $h:[a,b]\to\mathbb{C}$ is integrable on [a,b] and $w:[a,b]\to[0,\infty)$ is integrable, $hw^{1/p}\in L_p[a,b]$ and $g'\in L_q[a,b]$ for p,q>1 with $\frac{1}{p}+\frac{1}{q}=1$.

(i) If g(a) = 0 and w is nonincreasing on [a, b], then

$$(3.4) \int_{a}^{b} |h(t) g(t)| w(t) dt$$

$$\leq \left(\int_{a}^{b} (t-a) |h(t)|^{p} w(t) dt \right)^{1/p} \left(\int_{a}^{b} (b-t) |g'(t)|^{q} w(t) dt \right)^{1/q}.$$

(1) If g(b) = 0 and w is nondecreasing on [a, b], then

$$(3.5) \int_{a}^{b} |h(t) g(t)| w(t) dt$$

$$\leq \left(\int_{a}^{b} (b-t) |h(t)|^{p} w(t) dt \right)^{1/p} \left(\int_{a}^{b} (t-a) |g'(t)|^{q} w(t) dt \right)^{1/q}.$$

We have the following inequality for the weighted Čebyšev functional.

Theorem 5. Assume that $g:[a,b] \to \mathbb{C}$ is absolutely continuous on [a,b], $f:[a,b] \to \mathbb{C}$ is integrable on [a,b] and $w:[a,b] \to [0,\infty)$ is integrable with $fw^{1/p} \in L_p[a,b]$, $g' \in L_q[a,b]$, where for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$.

(i) If w is nonincreasing on [a, b], then

$$(3.6) \quad |C_{w}(f,g)| \\ \leq \left(\frac{1}{\int_{a}^{b}w(s)\,ds}\int_{a}^{b}(t-a)\left|f(t)-\frac{1}{\int_{a}^{b}w(s)\,ds}\int_{a}^{b}f(s)\,w(s)\,ds\right|^{p}w(t)\,dt\right)^{1/p} \\ \times \left(\frac{1}{\int_{a}^{b}w(s)\,ds}\int_{a}^{b}(b-t)\left|g'(t)\right|^{q}w(t)\,dt\right)^{1/q} \\ \leq (b-a)^{1/p}\left[\frac{1}{\int_{a}^{b}w(s)\,ds}\int_{a}^{b}\left|f(t)-\frac{1}{\int_{a}^{b}w(s)\,ds}\int_{a}^{b}f(s)\,w(s)\,ds\right|^{p}w(t)\,dt\right]^{1/p} \\ \times \left(\frac{1}{\int_{a}^{b}w(s)\,ds}\int_{a}^{b}(b-t)\left|g'(t)\right|^{q}w(t)\,dt\right)^{1/q}.$$

(ii) If w is nondecreasing on [a, b], then

$$(3.7) \quad |C_{w}(f,g)| \\ \leq \left(\frac{1}{\int_{a}^{b}w(s)\,ds}\int_{a}^{b}(b-t)\left|f(t)-\frac{1}{\int_{a}^{b}w(s)\,ds}\int_{a}^{b}f(s)\,w(s)\,ds\right|^{p}w(t)\,dt\right)^{1/p} \\ \times \left(\frac{1}{\int_{a}^{b}w(s)\,ds}\int_{a}^{b}(t-a)\left|g'(t)\right|^{q}w(t)\,dt\right)^{1/q} \\ \leq (b-a)^{1/p}\left[\frac{1}{\int_{a}^{b}w(s)\,ds}\int_{a}^{b}\left|f(t)-\frac{1}{\int_{a}^{b}w(s)\,ds}\int_{a}^{b}f(s)\,w(s)\,ds\right|^{p}w(t)\,dt\right]^{1/p} \\ \times \left(\frac{1}{\int_{a}^{b}w(s)\,ds}\int_{a}^{b}(t-a)\left|g'(t)\right|^{q}w(t)\,dt\right)^{1/q}.$$

Proof. We use the following *Sonin type identity*

$$(3.8) \quad C_{w}\left(f,g\right)$$

$$= \frac{1}{\int_{a}^{b} w\left(s\right) ds} \int_{a}^{b} \left(f\left(t\right) - \frac{1}{\int_{a}^{b} w\left(s\right) ds} \int_{a}^{b} f\left(s\right) w\left(s\right) ds\right) \left(g\left(t\right) - \gamma\right) w\left(t\right) dt,$$

for $\gamma \in \mathbb{C}$, which can be proved directly on calculating the integral from the right hand side.

Using the inequality (3.4) for $\gamma = g(a)$, we have

$$\begin{aligned}
&C_{w}(f,g)| \\
&\leq \frac{1}{\int_{a}^{b} w(s) \, ds} \int_{a}^{b} \left| f(t) - \frac{1}{\int_{a}^{b} w(s) \, ds} \int_{a}^{b} f(s) w(s) \, ds \right| |g(t) - g(a)| \, w(t) \, dt \\
&\leq \frac{1}{\int_{a}^{b} w(s) \, ds} \left(\int_{a}^{b} (t - a) \left| f(t) - \frac{1}{\int_{a}^{b} w(s) \, ds} \int_{a}^{b} f(s) w(s) \, ds \right|^{p} w(t) \, dt \right)^{1/p} \\
&\times \left(\int_{a}^{b} (b - t) |g'(t)|^{q} w(t) \, dt \right)^{1/q}
\end{aligned}$$

that proves the first inequality in (3.6).

Since

$$\frac{1}{\int_{a}^{b} w(s) ds} \int_{a}^{b} (t-a) \left| f(t) - \frac{1}{\int_{a}^{b} w(s) ds} \int_{a}^{b} f(s) w(s) ds \right|^{p} w(t) dt
\leq (b-a) \frac{1}{\int_{a}^{b} w(s) ds} \int_{a}^{b} \left| f(t) - \frac{1}{\int_{a}^{b} w(s) ds} \int_{a}^{b} f(s) w(s) ds \right|^{p} w(t) dt,$$

hence the second part of (3.6) follows:

Using the inequality (3.5) for $\gamma = g(b)$, we have

$$\begin{aligned} |C_{w}\left(f,g\right)| &\leq \frac{1}{\int_{a}^{b} w\left(s\right) ds} \int_{a}^{b} \left| f\left(t\right) - \frac{1}{\int_{a}^{b} w\left(s\right) ds} \int_{a}^{b} f\left(s\right) w\left(s\right) ds \right| |g\left(t\right) - g\left(b\right)| w\left(t\right) dt \\ &\leq \frac{1}{\int_{a}^{b} w\left(s\right) ds} \left(\int_{a}^{b} \left(b - t\right) \left| f\left(t\right) - \frac{1}{\int_{a}^{b} w\left(s\right) ds} \int_{a}^{b} f\left(s\right) w\left(s\right) ds \right|^{p} w\left(t\right) dt \right)^{1/p} \\ &\times \left(\int_{a}^{b} \left(t - a\right) |g'\left(t\right)|^{q} w\left(t\right) dt \right)^{1/q} \end{aligned}$$

that proves the first part of (3.7).

The second part follows in the same way as above.

References

- P. R. Beesack, On an integral inequality of Z. Opial. Trans. Am. Math. Soc. 104 (1962), 470–475
- [2] P. L. Chebyshev, Sur les expressions approximatives des intègrals définis par les outres prises entre les même limites, Proc. Math. Soc. Charkov, 2 (1882), 93-98.
- [3] P. Cerone and S. S. Dragomir, A refinement of the Grüss inequality and applications, Tamkang J. Math., 38(1) (2007), 37-49. Preprint RGMIA Res. Rep. Coll., 5(2) (2002), Article 14. [Online: http://rgmia.vu.edu.au/v5n2.html].
- [4] S. S. Dragomir, Generalizations of Opial's inequalities for two functions and applications, Preprint RGMIA Res. Rep. Coll. 21 (2018), Art.
- [5] S. S. Dragomir, p-Norms generalizations of Opial's inequalities for two functions and applications, Preprint RGMIA Res. Rep. Coll. 21 (2018), Art.
- [6] L. Fejér, Über die Fourierreihen, II, (In Hungarian) Math. Naturwiss, Anz. Ungar. Akad. Wiss., 24 (1906), 369-390.

- [7] G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a}\int_a^b f(x)g(x)dx \frac{1}{(b-a)^2}\int_a^b f(x)dx \int_a^b g(x)dx$, Math. Z., **39**(1935), 215-226.
- [8] L.-G. Hua, On an inequality of Opial. Sci. Sinica 14 (1965), 789–790.
- [9] N. Levinson, On an inequality of Opial and Beesack. Proc. Amer. Math. Soc. 15 (1964), 565–566.
- [10] A. Lupaş, The best constant in an integral inequality, Mathematica (Cluj, Romania), 15(38)(2) (1973), 219-222.
- [11] C. L. Mallows, An even simpler proof of Opial's inequality. Proc. Amer. Math. Soc. 16 (1965), 173.
- [12] C. Olech, A simple proof of a certain result of Z. Opial. Ann. Polon. Math. 8 (1960), 61–63.
- [13] Z. Opial, Sur une inégalité. Ann. Polon. Math. 8 (1960), 29-32.
- [14] A. M. Ostrowski, On an integral inequality, Aequat. Math., 4 (1970), 358-373.
- [15] R. N. Pederson, On an inequality of Opial, Beesack and Levinson. Proc. Amer. Math. Soc. 16 (1965), 174.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E ext{-}mail\ address: sever.dragomir@vu.edu.au}$

 URL : http://rgmia.org/dragomir

 2 DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, & Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa