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GENERALIZATIONS OF OPIAL’S INEQUALITIES FOR
RIEMANN-STIELTJES INTEGRAL WITH APPLICATIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some generalizations of Opial’s inequal-
ities for Riemann-Stieltjes integral and for two functions. Applications related
to trapezoid and Griiss’ type inequalities are also given.

1. INTRODUCTION
We recall the following Opial type inequalities:

Theorem 1. Assume that u : [a,b] C R — R is an absolutely continuous function
on the interval [a,b] and such that v’ € Lo [a,b].

(i) If u(a) =u(b) =0, then

(1.1) /|u |dt< _a/\u )2 dt,

with equality if and only if

c(t—a) ifa<t< el
u(t) =
c(b—t) if £ <t <,

where ¢ 18 an arbitrary constant.
(ii) Ifu(a) =0, then

(1.2) /|u |dt< _a/\u )2 dt,

with equality if and only if u (t) = ¢ (t — a) for some constant c.

The inequality (1.1) was obtained by Olech in [15] in which he gave a simplified
proof of an inequality originally due in a slightly less general form to Zdzislaw Opial
[16].

Embedded in Olech’s proof is the half-interval form of Opial’s inequality, also
discovered by Beesack [2], which is satisfied by those u vanishing only at a.

For various proofs of the above inequalities, see [11]-[14] and [18].

In the recent paper [7] we obtained the following generalization of Opial’s in-
equalities for two functions:

Theorem 2. Assume that f, g : [a,b] — C are absolutely continuous on [a,b] with
f', 9" € Lafa,b].
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(i) If g (a) =0, then

b 1/2 b
(1.3) /|f’ |dt<( (t—a)|f (t |dt> (/ (b—t)g’(t)|2dt>

<3 [ [e-alr F + ool o] @

1/2

l\')\)—l

(ii) If g (b) =0, then

b V2
v [ 17w |dt<(/ (b—t)lf’(t)l2dt> (/ <t—a>g'<t>|2dt)

<3 [ [o-01r F + - alg @F] a

(i) If g (a) = g (b) =0, then

(1.5) / I (8) g (£)] dt
b 1/2
:S(Q(b—aX/fWﬂgdt— |f(ﬂ2ﬁ>
1/2
x(/b tg%02ﬁ>

b b a
<q-a [1rwlfars [ 52— (g OF - 17 OF)

2
By taking g = f we obtain the following refinement of Opial’s inequalities from
Theorem 1:

1/2

b
b
ta—l—

a+b
2

—t

Corollary 1. Assume that f : [a,b] — C is absolutely continuous on [a,b] with
flelsy [CL7 b] .
(i) If either f(a) =0 or f (b) =0, then

1/2
(1.6) /|f dt<(/ (t—a)|f (t |dt> ( —t|f<>|2dt>
<5 —a/lf )2 dt.

(ii) If f (a) = [ (b) = 0, then

(1.7) /|f ()] dt

b b a+b 2
/ 2
g<2<b—a>/ rora- -5 |dt>

1/2
x(/ a+bt‘f dt) Si(bfa)/lf’(t)Ith-
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Motivated by the above results, in this paper we establish some generalizations
of Opial’s inequalities for Riemann-Stieltjes integral and for two functions. Appli-
cations related to trapezoid and Griiss’ type inequalities are also given.

2. THE MAIN RESULTS
We have:

Theorem 3. Assume that f : [a,b] — C is in C'[a,b], namely is continuous
n [a,b], differentiable on (a,b) with the derivative f' continuous on (a,b), g is
absolutely continuous on [a,b] and u is monotonic nondecreasing on [a,b] , then the

Riemann-Stieltjes integral ff |f'(t) g ()| du(t) exists and
(i) If g (a) = 0, then

ey [ @s@imo
b 1/2
<</ (t =) 7 @) due ) (/ >]|g<>2dt>
b b
<§{/ t=a)lf OF du )+ [ a0 |g<>|2dt}.

(ii) If g (b) =0, then

e [ Os@imo
1/2 b 1/2
< ( JAC —t)f’(t)|2du(t)> ( [ w0 ) |g'<t>2dt>
b b
<3 {/ (b=0)1f <t>|2du<t>+/a [ (8) = u(@)] g’ (t)ﬁdt}.

Proof. (i) Since g (a) = 0, then g (¢ f g’ (s)ds and

/|f (6) du (¢ /|f

=/a< )1/2|f <t>|(t_1a)1/2/ag'<s>ds

By Cauchy-Bunyakovsky-Schwarz integral inequality we have

/atg%s)ds < (/ g'<s>2ds)1/2, L€ (a,b)

/2

(23 fs/aba a2 | (/ 1o (s |ds> du (t).

g (s)ds

du (t)

du(t) =: 1.

I

and then
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We use the following Cauchy-Bunyakovsky-Schwarz integral inequality for the Riemann-
Stieltjes integral for monotonic nondecreasing integrators u : [a,b] — R and contin-

uous integrands h, z : [a,b] — C
b b b

[ rwz@ae| < [Cnerdaw [P a

Therefore,

(25) /abu )21 (8 (/ o (s |ds)1/2du<t>
<</ (t—a) | (6] du( ) (/ (/ o (s |ds)du<>> "

Using the integration by parts formula for the Riemann-Stieltjes integral, we have

/ab </at|gl(5)|2d8> du(t) = (/abg/($)2d3>u(b)/abu(t) Ig'(t)|2dt

b
- / () — u (®)] g’ (&) dt.

By (2.3) and (2.5) we then get (2.1).
The second part follows by the elementary inequality

(2.6) Ms%(wﬁ) for a, §> 0.

g’ (s)ds and

(2.4)

(ii) Since g (a) = 0, then g (t) = — |,

/If ()] du (1) /|f / /() ds

= [o-vir Ol = |[[ 0

By Cauchy-Bunyakovsky-Schwarz integral inequality we have

b b 1/2
/g’(S)ds < (/ 9’(8)2d8> ;L€ (a,0]
t t
and then

b 2
(2.7) Jg/( Y21 (/ g’ (s |ds> du (t).

By (2.4) we then get

(28) /j( Hv2 17 (/ e |ds) o
S([lb(bt)lf()ldU> (/ </| |ds> <>>.

du (t)

du (t) =: J.

ot
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Using the integration by parts formula for the Riemann-Stieltjes integral, we have

/(/ e |ds>du (/ e |ds) / (®)1g' () dt

=/ u®) - u (@]l O &t

and by (2.7) and (2.8) we get (2.2). O

Remark 1. Since u is monotonic nondecreasing on [a, b], then from (2.1) we get

/|f (8)] du (1)
g[u(b)u(anl“(/ab(tanf ) du (¢ ) (/ ¢ (¢ |dt)

gé[uw)u(anw{/ -0l P+ [ 1) dt}

a a

/2

provided g (a) = 0 and from (2.2) we get

b
(2.10) / F () g (8)] du (1)

b
[u<b>u<a>11/2</ (b— 1)1 ()] du (¢ ) (/ o (¢ dt)

b
s;[mb)—u(aﬂl”{/l o-0ls W+ [ 160 dt}

provided g (b) = 0.

/2

IN

Corollary 2. Assume that f : [a,b] — C is in C[a,b] and u is monotonic non-

decreasing on [a,b] . Then the Riemann-Stieltjes integral fab [f' (&) f(t)] du(t) exists
and

(i) If f(a) =0, then

(2.11) / IF/(t) f (1) du (¢

1/2 b
g( / <t—a>|f’<t>2du<t>> ( / [u(b)—U(t)]f’(t)I2dt>
b b
;{/ t=a)lf OF au)+ [ [u(b)u(t)ﬂf’(t)fdt}.

1/2

<
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(ii) If f (b) =0, then

(2.12) / F (8) £ (1)) du (¢

b 1/2 b

s( / (b—t>|f'<t>|2du<t>> ( / [u(t)—u(a)]f’(t)ﬁdt)
b b

sé{/ o=0lr P+ [ [u(t)—u(a)ﬂf’(t)fdt}.

Remark 2. If w: [a,b] — [0,00) is continuous and we take u (t) = f(:w (s)ds in
(2.11) and (2.12), then we get the weighted integral inequalities

b
(2.13) / ) ()

|w (t) dt
g(/ (t—a)lr (¢ ) (/ e (/ )dt)m
g;{/abaa>|f’<t>|2w<t>dt+/a 7P (/ w(s)ds> dt}

provided f (a) =0, and

1/2

b
(2.14) / 1 (8) £ (0)]w (1) dt

provided f (b) =0
If w is nonincreasing on [a,b] and f (a) = 0, then by (2.13) we get

b
e [ o
b 1/2 b 1/2
g(/ (t—a>|f'<t>|2w<t>dt> (/ <b—t>|f’<t>|2w<t>dt>
b
<50 [ Or v
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while if w is nondecreasing on [a,b] and f (b) = 0, then by (2.14) we get

b
(2.16) / 7 (0) £ (0w (1) dt

b 1/2 b 1/2
(/ (bt>|f’<t>|2w<t>dt) (/ <ta>|f’<t>|2w<t>dt>
b
<z-a [1rwr

Furthermore, if w = 1, then by (2.13) and (2.14) we get the inequalities from
the first part of Theorem 2.

IN

Corollary 3. Assume that f : [a,b] — C is in C'[a,b], u is monotonic nonde-
creasing on [a,b] and Lipschitzian with the constant L > 0, namely |u (s) — u (t)] <
L|t—s| for any t, s € [a,b] and g is absolutely continuous on [a,b].

(i) If g(a) =0, then

(2.17) / 1 (6 g (8)] du (1)

1/2 b 1/2
<L</ <t—a>f'<t>|2dt> (/ <b—t>|g'<t>|2dt>

b
<30 [ [e-alr F +0-0lf OF a
(ii) If g (b) =0, then

(2.18) If (&) du (t)

1/2 b 1/2
<L</ (b—t)lf’(t)2dt> (/ <t—a>|g'<t>|2dt>

<3 [ [o-o1r 0f + - ol @F] @

Proof. Using Riemann-Stieltjes integral inequality properties, we have

b 2 b 2
/ (t—a)|f (1) du(t)SL/ (t—a) | ()] d.

Also
’ 2 ’ 2
[ w®) -l @Fa<r [ 6-0lOF e
a a
By using the inequality (2.1) we obtain (2.17).
The inequality (2.18) follows in a similar way from (2.2). O

Remark 3. Assume that f : [a,b] — C is in C! [a,b] and g is absolutely continuous
on [a,b]. If w : [a,b] — [0,00) is continuous, then the function u(t) = f;w (s)ds
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is Lipschitzian with the constant [|w||(, 4 = maXie(a,p) w (t) and by (2.17) we get

b
(2.19) / 1 (£) g (8)]w (8)

b 1/2 b 1/2
001,00 ( / (t—a)lf’(t)|2dt> ( / <b—t>|g’<t>|2dt>

31l [ [€= a7 @F +@=01g OF]at

IN

IN

provided g (a) = 0, while from (2.18) we get
b
ey [ ®s@le

b 1/2 b
0]l fq,87,00 ( / <bt>f’<t>|2dt> ( / (ta>|g’<t>|2dt>

b
ol [ [0-017 @F + € -0)ls ©F) a

1/2

IN

IN

provided g (b) = 0.
In particular, if either f (a) =0 or f(b) = 0, then we have

b
(2.21) / 1 (0) £ (0)]w (1) dt

b 1/2 b
ST (/ <t—a>|f’<t>|2dt> ( / (b—t)f’(t)fdt)

1 b
<500l [ 1 OF i

1/2

3. RELATED RESULTS

We have the following inequalities as well:

Theorem 4. Assume that f : [a,b] — C is in C'[a,b], g is absolutely continuous
on [a,b] with g (a) = g (b) =0 and u is monotonic nondecreasing on [a,b]. Then

b
(3.1) / () g (8)] du (1)

b 1/2 b 1/2
S0 a) 2 u(®) — u () ( / |f’<t>|2du<t>> ( / |g'<t>2dt>

b b
00 u(®) — u () [ [iroran [l <t>|2dt]

IN

IN
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and
(3.2) /\f (t) du (¢
<<2(b‘a)/a |f’<t>|2du<t>—/ O o ())1/2
X(Abu@—u(a;% qudQUQ
a+b

t—

(&) du (1)

Si@_wlﬂfuﬁmmw—;Lb
+;/ab U(t)—“<a;rb>

Proof. If g(a) = g (b) = 0, then by adding the first parts of the inequalities (2.1)
and (2.2), we get

g (1) dt.

(3.3) ,/V ()] du (1)
1/2 b 1/2
< ( / (t—a)|f' () du (t)) ( / [w(b) —u(t)] g (1) dt)
b 1/2 b 1/2
+< / (b—t>|f’(t)l2du(t)> ( / [u(t>_u<a>]|gf<t>|2dt) .

If we use the elementary (CBS) inequality

(3.4) af+76 < (a2 +3)" (B 4612, a, B, 4, 620,

then we get

b 1/2 b 1/2
(3.5) ( / <t—a>|f’<t>|2du<t>) < / [ (b) — (1) |g’<t>|2dt>
b 1/2 b 1/2
+( / (b—t)lf’(t)|2du(t)> ( [ u® - u@) |g’<t>|2dt>
b b 1/2
< (/ (t—a)lf' <t>\2du<t>+/ b —t)|f O du (t))

b b 1/2
(/ [ () — u (B)] g’ (8] dt+/ [u(t)—u()ﬂg’(t)ﬁdt)

— -0 [u /(/ T |du> </b|g |dt>

By making use of (3.3) and (3.5) we get the first part of (3.1). The second part
follows by the inequality (2.6).

/2
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Further on, if we write the first part of the inequality (2.1) on the interval
[a, +b} we get

(3.6) / |f )] du (t)
<</2<t >|f<>d<>>1/2</a;b[ “0) - uo)|ls or )1/2
<(/ a u (7)) |l @F a)

while from the first part of (2.2) written on [“£2,b] we have

(3.7) / ' () g (8)] du (t)
b V2 b 1/2
< (/ﬂgb(b—t)lf () du(>> (/ - )]|g'<t>|2dt> .

If we add (3.6) with (3.7), then we get

(3.8) /|f )] du (t)
<</ (t—a)If' () du())m (/ (55 -] |g’<t>|2dt>1/2

1/2

+ (/; b=t 1f O du (t)) (/a; [u(t) Cu (a;—b)] . (t)|2dt> 1/2-

Moreover, if we use the elementary (CBS) inequality (3.4), then we have
(3.9)

</+ ore (t)> : </+ {u (a : b) - u(t)} POl dt> .

b 1/2 . D
SN (A I
< </+b (t—a)lf (t)|2du(t)+/; b—1)|f (t)Qdu(t)>1/2
X </aa;b [U t)} lg’ t)|2dt+/c; [u(t) u <a42rb>} . (t)|2dt>1/2

a;b) o
( w - (50| <t>|2dt>1/2,

( 0] 19’
(/:K 01y <t>2du<t>>1/2 (/b

t—aifte [a, 4],
K (t) :=
{b tift e (“52,0].

where
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Since

5 ‘, t € [a,b],

hence by (3.8) and (3.9) we get the first inequality in (3.2). The second part follows
by (2.6). O

Remark 4. Assume that f : [a,b] — C is in C* [a,b] with f(a) = f(b) =0 and u
is monotonic nondecreasing on [a,b]. Then

(3.10) /|f )] du (£)

<5 b-a) 2 [u() - /</ 7O du ) (/ 7 dt)
< 10— ) () ~u /V ka1 dt}

/2

1/2
”b\v ) du ())

1/2
f (¢ >2dt>

a+b

y (/a” u<t)_u<a+b>

gi(b—a)/ab|f’(t)|2du(t)—;/ab ‘If )| du (t)

+;/ab u(t)u(a+b>'|f )2 dt.

Corollary 4. Assume that f : [a,b] — C is in C' [a,b], g is absolutely continuous
on [a,b] with g (a) = g (b) = 0 and u is monotonic nondecreasing and L-Lipschitzian
on [a,b]. Then

(3.12) /|f ()] du (t)

si(b—aw(au ) </|g dt)

<to-ar [ (17 OF +lo OF)a
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and

(3.13) /|f ()] du (t)

b a+b 2
gL<2<b—a>/a ofa- [ - (>2dt>
1/2
x(/bt—a;b g’(t)zdt>
b b a 5
<L %(bw/a F@Fd— | Jt- “’Hwn 9 <>]dt].

In particular, if f (a) = f (b) =0, then

(3.14) /|f (t)] du (¢ % —a) /|f )2 dt

and

(3.15) /|f )] du (£)
§L<2(ba)/a |f’<t>|2dt/ab
(/

t—

1/2
'(t)zdt>
1/2
(¢ >|2dt)

< i(b—a)L/a 7 (O dt.

Remark 5. Assume that f : [a,b] — C is in C* [a,b] and g is absolutely continuous
on [a,b] with g(a) = g(b) = 0. If w : [a,b] — [0,00) is continuous and we take
u(t) = fatw(s) ds in (3.1) and (3.2), then we get

a+b
2

t_a+b

b
(3.16) /If’(t)g(t)lw(t)dt

b 1/2 b 1/2 b 1/2
<5 0-a ( / w(s)ds> ( / |f’<t>2w<t>dt> ( / |g/<t>|2dt>
1 b 12
§4(ba)1/2</w(s)ds> V TAGIE dt+/| dt]
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and
b
(3.17) / I () g ()] w (8) de
b b a 1/2
< (;a)—a)/ ol wa- - 2317 o <t>dt>

b| pt 1/2
x ( / /a;buws) as| g <t>|2dt>
i —a/|f dt—l/ab

““’\u w () dt

1 b t
+§/a /a;bw(s)ds

We also have, by taking L = ||wl|, 4 o » i (3.12) and (3.13), that

g (t)]* dt.

b
(3.18) /If’(t)g(t)lw(t)dt

<5 0= ) [l ( dt) (/ ' ( |dt>
<

100 1l / (17" OF +1g' @) dt

and
b
G19) [ 17 @gle @
b b b 1/2
S <§<b—a>/ rara- -5 |dt>
, 1/2
x(/ ta;b‘|g'(t)2dt>

<L L oy 24
< 5 [l p,00 |5 (0= a) ’ |f ()" dt —

By taking w =1 in (3.19), we get the inequality (1.5) from Introduction.

a+b

b
t—
a

2| o -1 o] dt].

4. SOME INEQUALITIES FOR FUNCTIONS OF BOUNDED VARIATION

The following lemma was obtained by the author in 2007, [6] and is of interest
in itself as well (see also [5]):
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Lemma 1. If p: [a,b] — C is continuous on [a,b] and v : [a,b] — C is of bounded
variation on [a,b], then

b
/ p(t) dv (1)

b 1/p b 1/q b
s(/ |p(t>pdV<t>> (\/@)) < max ()] \/ ().

a

b
(4.1) < / Ip ()] dV (1)

where V (1) := \/Z (v) is the total variation of v on [a,t] with t € [a,b].

The function V' is nondecreasing on [a,b] with V (a) = 0 and V (b) = Z(v). If
we put V (t) := \/f (v) = \/Z (v)=V (t), then Vis nonincreasing with V (a) = \/Z (v)
and V (b) = 0.

We have:

Proposition 1. Assume that h : [a,b] — C is continuous, g is absolutely continuous
on [a,b] and v is of bounded variation on [a,b], then the Riemann-Stieltjes integral

f; h(t)g(t)dv(t) exists and:
(i) If g(a) =0, then

b
(4.2) / (1) g (t) do (1)

) 1/2 b 1/2
( / <t—a>|h(t>2dv<t>> ( / v<t>|g'<t>|2dt)

b b
;{/ - alh@Pav @+ [ T g'(t)fdt}.

(ii) If g (b) =0, then

IN

IN

b
(4.3) / B (t) g (t) do (1)

, 1/2 b 1/2
( / (b—t)|h ()] dV <t>> ( / V(t)lg <t>|2dt>
b

b
;{/ G-vh@Pd©+ [ Vil <t>|2dt}.

a

IN

IA

Proof. Using the first inequality in (4.1), we get

b b
(1.4 [ rwswan|< [ rogoae.
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Using now Theorem 3 for f = [ h and u =V, we get, for g (a) = 0, that

(4.5) / [h(t)g ()] dV (¢)

b 1/2
s(/ (t—a) |h () aV (¢ ) (/ >]|g<>|2dt>
gi{/@( I @Fav @+ [ 1|g<>2dt}.

If g (b) =0, then

(4.6) / |h(t) g (t)]dV (¢)

b 1/2 b 1/2

(/ (b—t>|f’<>|2dv<>> (/ ()g'()ﬁ’dt)
b

;{/ b—t)|f (O dV (¢ /V ) g’ (¢ Idt}

By utilising (4.4)-(4.6) we get the desired results (4.2) and (4.3). O

IN

IN

The case h = 1 is of interest since in this case

b b
/(tfa)dV(t):(bfa)V(b)f/ V (t)dt

and
/b(b—t)dv(t)Z/bV(t)dt.

‘We then can state:

Corollary 5. Assume that g is absolutely continuous on [a,b] and v is of bounded
variation on [a,b], then the Riemann-Stieltjes integral ffg (t)dv (t) exists and:

(i) If g(a) =0, then

b b 1/2 b 1/2
[ s < (/ 7 () ) (/ v<t>|g'<t>2dt>

b

<5 [ V(i oF)

(ii) Ifg(b) =0, then

b
/ g (t)dv ()] <

(4.7)

A
&

(4.8)

A\
N =
m\
o
<
=
W
&
~
—
~
[V}
N N
o~ g\
) o
—
S~—
=y
—~
-
QL
Py
~_
—
~
no

We also have:
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Proposition 2. Assume that h : [a,b] — C is continuous, g is absolutely continuous
on [a,b] with g (a) = g (b) =0 and v is of bounded variation on |a,b], then

b
@) | [ e
1 b 2
g2<ba)”2[\/ ] (/ h @) av ) (/ 1o (¢ |dt>
b
si(b—@“[\/ ] V pofav @+ [ |dt]
and
b
410) | [ h(ygydv )

, , . 1/2
g(i(ba)bh(t)ﬁdww - ”\m dvo)

< (/b V(t)—V(a+b)‘| D) dt)l/z

b b
<q=a) [ m@rave-g [ |-

1 b
+3

The proof follows by Theorem 4 and Lemma 1.

t—

Py o

V(t)V<a+b)‘ B2 dt.

Corollary 6. Assume that g is absolutely continuous on [a,b] with g (a) = g (b) =0
and v is of bounded variation on [a,b], then

b b 1/2
@ | @] <5 e-0" ( / |g'<t>2dt> V@
and
(4.12) / g (#)dv (#)

b 1/2 b 1/2
g(/ sgn(t—;rb>V(t)dt> (/ V(t)—V<a+b>‘|’ |dt> .

Proof. The inequality (4.11) follows by (4.9) for h = 1.
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The same choice produces in (4.10)

<<1(b— )/de(t) /bt ““"dV(z&))U2
=2V Y A
x(/abV(t)—V(a—;b>’|g’(t)|2dt>l/2.

t—aifte [a,2$2],
K(t):=

b—tifte (25L,b],

hence, integrating by parts in the Riemann-Stieltjes integral, we have

b
(4.13) / OL 0

Since

;(b—a)/abdv(t)—/ab t—a+b'dV(t)
/+ (ta)dV(t)Jr/; (b—1t)adv (t)

2

;(ba)V<a—2’_b>/a i V(t)dt;(ba)V<a;b>+/ibV(t)dt

:/absgn<t—a—2'_b>V(t)dt

and by (4.13) we get (4.12). O

5. APPLICATIONS FOR TRAPEZOID INEQUALITY

We have the following equalities:

Lemma 2. Let f, v: [a,b] — C be such that one is continuous and the other is of
bounded variation. Then

(51) T(f,v;[a,b]) = / £ () do (1)

b b
) [v(b)—bla/ v(t)dt] ~ f(a) [bla/ v(t)dt—v(a)]

~LOT oy [Cowar

a

:/ab PR ACIED ES G Py

Proof. Integrating by parts in the Riemann-Stieltjes integral, we have

/: FRRACIEUES U1

b b _ —a
:/f(t)dv(t)f/ F@O= 02T,
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b _ _a b
:/‘fwdv@__fMMb gjg@ﬂt )v@
+f(b):£(a) /bv(t)dt

b

b
— ) [v(b)b_la v(t)dt]f(a) [bia/ v(t)dtv(a)].

a

Integrating by parts again, we also have

b ~fla) [
[ 10w -rmem+s @@+ L1 [ g a
~fla) [P b
zf(bz_i()/ v(t)dt—/a v () df (2).
These prove the required identities. ([

We have the following trapezoid type inequality:

Proposition 3. Assume that f is absolutely continuous on [a,b] and v is of bounded
variation on [a,b], then

2 1/2
f%a“ dt) \/ @)

a

1 e ([
(52) T (fvifab)] < 5 (b -a) (/

and

) 1/2
(5.3) |T(f,v:]a,b])| < (/ sen (t— “‘2”)> V() dt)

x (/b V(t)v<“;b>‘

where V (t) :=\/, (v) is the total variation of v on [a,t] with t € [a,b].

f () = f(a)
b—a

9 N\ 1/2
“)

f@) -

Proof. Consider the function g : [a,b] — C defined by

fla)(b=t)+ f(b)(t—a)
b—a

gt)=f(t)— L teab].

Then g is absolutely continuous on [a,b], g (a) = g (b) =0 and

f(b) = f(a)

g0 =rm-2=

for a.e. t € [a,b].
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By using (4.11), we then have
b - —a
/ [f(t)_f(a)(b H+fO)t=a)

— }dv(t)
< %(b_a)l/z </ab

which by Lemma 2 produces the inequality (5.2).
The inequality (5.3) follows by (4.12). O

f’(t)— f(bl)):i(a)

2 1/2
dt) \/ (v),

a

For a function h : [a,b] — C we consider the symmetrical transform h defined by

h ) ::%[h(t)—%h(a—i—b—t)], t e [a,b]

and the antisymmetrical transform P defined by
~ 1
h(t):= §[h(t) —h(a+b-1)], t €la,b].

Proposition 4. Assume that f is absolutely continuous on [a,b] and v is of bounded
variation on [a,b], then

(5.4) /f T@ETO) 1) - v (a)
L/f )+f(ﬁww—vmn

and we have the inequalities

1 1/2 b5
(5.5) B (f,03[a,0])] < 5 (b—a) / </a

and

(5.6)  [B(f,v;[a, b))

b a+b VR a+b
g(/ sgn<t— . >V(t)dt> </ V(t)—V< + )‘

Proof. Consider the function g : [a,b] — C defined by

o= Foy - 1O

Then g is absolutely continuous on [a,b], g (a) = g (b) =0,

g )= f®) = f’2(a +o-1) = f/(t) for ae. t € [a, b]

t[gwmu>= (f ))ww
F@)

i

1/2
Fro)f a ) .

, t€la,b].

and
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Using the change of variable formula for the Riemann-Stieltjes integral, see for
instance [1, p. 144], we have

b b
/ f(t)dv<t>:1/ F )+ fatb—t)]do ()

5 |[rome [ rais-ano)
-1 /f ) do (t /f ) v ( a—l—b—u)]
/f B dv (i /f Vv ( a+b—u)]:/abf(t)d5(t),

which proves the equality (5.4).
The inequalities (5.5) and (5.6) follows by Corollary 6. O

| —=

DN | =

6. SOME GRUSS’ TYPE INEQUALITIES

For two Lebesgue integrable functions f, g : [a,b] — R, consider the Cebysev
functional:

o et [ rosn-—— [ sou [ o

In 1935, Griiss [10] showed that

(M —m) (N —n),

B~ =

(6.2) 1C(f:9)| <

provided that there exists the real numbers m, M, n, N such that
(6.3) m<f@#)<M and n<g(t)<N forae. t€]alb].

The constant i is best possible in (4.1) in the sense that it cannot be replaced by
a smaller quantity.

Proposition 5. Assume that h : [a,b] — C is integrable on [a,b] and v : [a,b] — C
of bounded variation on [a,b]. Then

97 1/2

/ h(s)ds

b
V(@)

1
64 Chvl<g /| e~
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Jro )

b
h(t) - bia/ h(s) ds

and

(6.5) |C (h,v)| < (bla/:sgn (t_a—2|—b
x(bla/abv(t)_v(a;b)‘ gdt)l/z
V(t)_v(a;—b»(bia/angn(t—a;_b)V(t)dt)l/Q
X [b_la/ablh(t)IQ— b_la/abh(s)ds T 1/2,

Proof. Using the integration by parts for the Riemann-Stieltjes integral, we have

/ab (Lth(s) O /abh@ dS) do (1)
= </:h(5)d8— Z:ZLbh(s)ds>v(t) b

a

/abv(t)d</ath(s)dsZ_Z/abh(s)ds>

—/bv(t)h(t)dter_la bh(s)ds/bv(t)dt,

which gives that

(6.6) C(h,v):b1@/;<Z_Z/abh(s)ds—/ath(s)ds> dv (t).

Consider

< max
tea,b]

_t—a

() ;_bia/ h(s)ds—/ h(s)ds, t € [a,b],

then g is absolutely continuous, g (a) = ¢ (b) = 0 and by (4.11) we get

/ab (2_Z/abh(s)ds/ath(s)ds) dv (1)
S0 (/b

b
S0—a) [bf/ n -

which by the equality (6.6) is equivalent to (6.4).

(6.7)

IN

, 9 V2
h(t)—ﬁ/ h(s) ds dt) \/ (@)

1 b
b—a/a h(s)ds

12,
] V@)
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Using (4.12) we get

/ab <£:Z/abh(3)d8—/:h(s)ds> o (t)
< (/absgn (t— a;b)V(t)dt>l/2

V(t)V(a;b)‘ |h(t) . ! /abh(s)ds

—a

9 1/2
dt) |

namely

bla/ab (Z_Z/abh<5>ds—/:h(8)d8> dv (t)
< (bia /absgn (t_ a;rl)) v dt)m
(el o5

9 1/2
dt) |
and the first inequality in (6.5) is obtained.
The second part is obvious. O

b
h) - s [ ) ds

Consider now the weighted Cebysev functional

1 b
Cof:9) = e / w(t) f (D) g (t)dt
1 b b
v [ ewmrwa [ wwgwa,
(Jwar) I J s

where f, g, w: [a,b] — R and w (t) > 0 for a.e. t € [a, ] are measurable functions
such that the involved integrals exist and f; w (t)dt > 0.

Proposition 6. Assume that h : [a,b] — C is integrable on [a,b], w : [a,b] — R,
w(t) > 0 for a.e. t € [a,b] is integrable with fjw (t)dt >0 and v : [a,b] — C is of
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bounded variation on [a,b]. Then

(6.8) |Cuw (h,v)]

1 (b— )1/2 b
s} (/a

. 2
fbwl(s)ds/ h(s)w(s)ds—h(t)
1 (=) [l

T2 fabw(s) ds

b b
x (fbwl(s)ds/ w (t) |h ()] dt — fbwl(s)ds/ h(s)w(s)ds
and

(6.9) |Cy (h,v)]

;w (/b (t—?)\/(t)dt)l/z

f

a+b , 9 1/2
V< ‘|f ds/ h(s)w (s)ds — h(t)| w?(t)dt
< <<b—a>supte[a,b] {v —vw)rw(w})“z
- ffw(s)ds

1 b +b 2
a
><<ba‘/(lsgn<t— 5 )V(t)dt)

b b
XQ%%@/w@hW%Ffmgﬁ/h@mmk

Proof. Consider

2) 1/2

tws S b ¢
Lj/:iwis;jls/h(s)w(s)ds_/h(S)w(S)dSate[“’b]’

g(t) =

then g is absolutely continuous, g (a) = g (b) = 0,

"(t) = ! ' s)w(s)ds — w or a.e a
gﬁ'(ﬁw@@Lh‘)(” h@)(ﬂf.-m[ﬂ
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and, by using the integration by parts for the Riemann-Stieltjes integral,

b [Tw(s)ds [P ¢
/ (ﬁjwis;js/ h(s)w(s)dsf/ h(s)w(s)ds) dv (t)
b tw(s)ds b t
:—/ U(t)d<ﬁ)wis;j15/ h(s)w(s)ds—/ h(s)w(s)ds)

b 1 b b
:/a v(t)h(t)w(t)dt—fabw(s)ds/a h(s)w(s)ds/a v (#)w (1) dt,

which gives the identity
Cy (h,v)

b (Tw(s)ds [P !
B fbwl(s)ds/a (L{%wisi;is/a h(S)w(S)ds_/a h<s>w(8)d8> dv(t)'

By using the inequality (4.11) we have

b t’lU S S b ¢
Iy —
1

) 1/2
Loy o2 ' w? b v
<00 (l e mw) V.

which by division with ff w (s) ds > 0 gives the first inequality in (6.8).
We also have

b
/ h(s)w(s)ds—h(t)

b b
fbwl(s)ds/ fbwl(s)ds/ h(s)w(s)ds—h(t)| w?(t)dt
1 b 1 b )
< ||1UH[a,b],oo ff’w(S)ds/a f:w(s)ds/a h(s)w(s)ds —h(t)| w(t)dt

b
'Ww%wtmi$hlw“wwmﬁ

which proves the second part of (6.8).
Using (4.12) we also have

[ (et [romon [romow)es
([ o)
</ vo-v(*5), e

which proves the first inequality in (6.9).

, ) 1/2
s)ds/ h(s)w () ds — h (1) wQ(t)dt) ,
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The second part is obvious. ([l
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