GENERALIZATIONS OF OPIAL'S INEQUALITIES FOR RIEMANN-STIELTJES INTEGRAL, p-NORMS AND TWO FUNCTIONS WITH APPLICATIONS

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. In this paper we establish some generalizations of Opial's inequalities for Riemann-Stieltjes integral in terms of p-norms and for two functions. Applications related to Grüss' type inequalities are also given.

1. Introduction

We recall the following Opial type inequalities:

Theorem 1. Assume that $u : [a,b] \subset \mathbb{R} \to \mathbb{R}$ is an absolutely continuous function on the interval [a,b] and such that $u' \in L_2[a,b]$.

(i) If
$$u(a) = u(b) = 0$$
, then

(1.1)
$$\int_{a}^{b} |u(t)u'(t)| dt \leq \frac{1}{4} (b-a) \int_{a}^{b} |u'(t)|^{2} dt,$$

with equality if and only if

$$u\left(t\right) = \left\{ \begin{array}{l} c\left(t-a\right) \ \ if \ a \leq t \leq \frac{a+b}{2}, \\ \\ c\left(b-t\right) \ \ if \ \frac{a+b}{2} < t \leq b, \end{array} \right.$$

where c is an arbitrary constant.

(ii) If u(a) = 0, then

(1.2)
$$\int_{a}^{b} |u(t)u'(t)| dt \leq \frac{1}{2} (b-a) \int_{a}^{b} |u'(t)|^{2} dt,$$

with equality if and only if u(t) = c(t-a) for some constant c.

The inequality (1.1) was obtained by Olech in [14] in which he gave a simplified proof of an inequality originally due in a slightly less general form to Zdzislaw Opial [15].

Embedded in Olech's proof is the half-interval form of Opial's inequality, also discovered by Beesack [1], which is satisfied by those u vanishing only at a.

For various proofs of the above inequalities, see [10]-[13] and [17].

In [7] we obtained the following generalizations of Opial inequalities for p-norms of two functions:

Theorem 2. Assume that $f, g: [a,b] \to \mathbb{C}$ are absolutely continuous on [a,b] with $f' \in L_p[a,b]$ and $g' \in L_q[a,b]$ for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$.

 $1991\ Mathematics\ Subject\ Classification.\ 26 D15;\ 26 D10.$

Key words and phrases. Opial's inequality, Grüss' inequality.

1

(i) If g(a) = 0, then

$$(1.3) \int_{a}^{b} |f'(t) g(t)| dt \leq \left(\int_{a}^{b} (t-a) |f'(t)|^{p} dt \right)^{1/p} \left(\int_{a}^{b} (b-t) |g'(t)|^{q} dt \right)^{1/q}$$

$$\leq \int_{a}^{b} \left[\frac{1}{p} (t-a) |f'(t)|^{p} + \frac{1}{q} (b-t) |g'(t)|^{q} \right] dt.$$

(ii) If g(b) = 0, then

$$(1.4) \int_{a}^{b} |f'(t) g(t)| dt \leq \left(\int_{a}^{b} (b-t) |f'(t)|^{p} dt \right)^{1/p} \left(\int_{a}^{b} (t-a) |g'(t)|^{q} dt \right)^{1/q}$$

$$\leq \int_{a}^{b} \left[\frac{1}{p} (b-t) |f'(t)|^{p} dt + \frac{1}{q} (t-a) |g'(t)|^{q} \right] dt.$$

(iii) If
$$g(a) = g(b) = 0$$
, then

$$(1.5) \int_{a}^{b} |f'(t) g(t)| dt$$

$$\leq \left(\frac{1}{2} (b-a) \int_{a}^{b} |f'(t)|^{p} dt - \int_{a}^{b} \left| \frac{a+b}{2} - t \right| |f'(t)|^{p} dt \right)^{1/p}$$

$$\times \left(\int_{a}^{b} \left| \frac{a+b}{2} - t \right| |g'(t)|^{q} dt \right)^{1/q}$$

$$\leq \frac{1}{2p} (b-a) \int_{a}^{b} |f'(t)|^{p} dt + \int_{a}^{b} \left| \frac{a+b}{2} - t \right| \left[\frac{1}{q} |g'(t)|^{q} - \frac{1}{p} |f'(t)|^{p} \right] dt.$$

In particular, we have:

Corollary 1. Assume that $f:[a,b] \to \mathbb{C}$ is absolutely continuous on [a,b] and $f' \in L_p[a,b] \cap L_q[a,b]$ for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$.

(i) If
$$f(a) = 0$$
, then

$$(1.6) \int_{a}^{b} |f'(t) f(t)| dt \leq \left(\int_{a}^{b} (t-a) |f'(t)|^{p} dt \right)^{1/p} \left(\int_{a}^{b} (b-t) |f'(t)|^{q} dt \right)^{1/q}$$

$$\leq \int_{a}^{b} \left[\frac{1}{p} (t-a) |f'(t)|^{p} + \frac{1}{q} (b-t) |f'(t)|^{q} \right] dt.$$

(ii) If
$$f(b) = 0$$
, then

$$(1.7) \int_{a}^{b} |f'(t) f(t)| dt \leq \left(\int_{a}^{b} (b-t) |f'(t)|^{p} dt \right)^{1/p} \left(\int_{a}^{b} (t-a) |f'(t)|^{q} dt \right)^{1/q}$$

$$\leq \int_{a}^{b} \left[\frac{1}{p} (b-t) |f'(t)|^{p} dt + \frac{1}{q} (t-a) |f'(t)|^{q} \right] dt.$$

(iii) If
$$f(a) = f(b) = 0$$
, then

$$(1.8) \int_{a}^{b} |f'(t) f(t)| dt$$

$$\leq \left(\frac{1}{2} (b-a) \int_{a}^{b} |f'(t)|^{p} dt - \int_{a}^{b} \left| \frac{a+b}{2} - t \right| |f'(t)|^{p} dt \right)^{1/p}$$

$$\times \left(\int_{a}^{b} \left| \frac{a+b}{2} - t \right| |f'(t)|^{q} dt \right)^{1/q}$$

$$\leq \frac{1}{2p} (b-a) \int_{a}^{b} |f'(t)|^{p} dt + \int_{a}^{b} \left| \frac{a+b}{2} - t \right| \left[\frac{1}{q} |f'(t)|^{q} - \frac{1}{p} |f'(t)|^{p} \right] dt.$$

In this paper we establish some generalizations of Opial's inequalities for Riemann-Stieltjes integral in terms of p-norms and for two functions. Applications related to Grüss' type inequalities are also given.

2. The Main Results

We have:

Theorem 3. Assume that $f, g : [a,b] \to \mathbb{C}$ are absolutely continuous on [a,b], f' is continuous on [a,b], u is monotonic nondecreasing on [a,b] and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$.

(i) If
$$q(a) = 0$$
, then

$$(2.1) \int_{a}^{b} |f'(t) g(t)| du(t)$$

$$\leq \left(\int_{a}^{b} (t-a) |f'(t)|^{p} du(t) \right)^{1/p} \left(\int_{a}^{b} [u(b) - u(t)] |g'(t)|^{q} dt \right)^{1/q}$$

$$\leq \frac{1}{p} \int_{a}^{b} (t-a) |f'(t)|^{p} du(t) + \frac{1}{q} \int_{a}^{b} [u(b) - u(t)] |g'(t)|^{q} dt.$$

(ii) If
$$g(b) = 0$$
, then

$$(2.2) \int_{a}^{b} |f'(t)g(t)| du(t)$$

$$\leq \left(\int_{a}^{b} (b-t) |f'(t)|^{p} du(t)\right)^{1/p} \left(\int_{a}^{b} [u(t)-u(a)] |g'(t)|^{q} dt\right)^{1/q}$$

$$\leq \frac{1}{p} \int_{a}^{b} (b-t) |f'(t)|^{p} du(t) + \frac{1}{q} \int_{a}^{b} [u(t)-u(a)] |g'(t)|^{q} dt.$$

Proof. (i) Since g(a) = 0, then $g(t) = \int_a^t g'(s) ds$ for $t \in [a, b]$. We have

$$\int_{a}^{b} |f'(t) g(t)| du(t) = \int_{a}^{b} |f'(t)| |g(t)| du(t)$$

$$= \int_{a}^{b} (t-a)^{1/p} |f'(t)| (t-a)^{-1/p} |g(t)| du(t)$$
$$= \int_{a}^{b} (t-a)^{1/p} |f'(t)| (t-a)^{-1/p} \left| \int_{a}^{t} g'(s) ds \right| du(t) =: A.$$

Using the Hölder's inequality for the Riemann-Stieltjes integral of monotonic nondecreasing integrators and for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$(2.3) \quad A \leq \left(\int_{a}^{b} \left[(t - a)^{1/p} |f'(t)| \right]^{p} du(t) \right)^{1/p}$$

$$\times \left(\int_{a}^{b} \left[(t - a)^{-1/p} \left| \int_{a}^{t} g'(s) ds \right| \right]^{q} du(t) \right)^{1/q}$$

$$= \left(\int_{a}^{b} (t - a) |f'(t)|^{p} du(t) \right)^{1/p} \left(\int_{a}^{b} \left[(t - a)^{-1/p} \left| \int_{a}^{t} g'(s) ds \right| \right]^{q} du(t) \right)^{1/q}$$

$$=: B.$$

By Hölder's inequality for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$ we also have

$$(t-a)^{-1/p} \left| \int_{a}^{t} g'(s) ds \right| \le \left(\int_{a}^{t} \left| g'(s) \right|^{q} ds \right)^{1/q}$$

that implies

$$\left[\left(t - a \right)^{-1/p} \left| \int_{a}^{t} g'(s) \, ds \right| \right]^{q} \leq \int_{a}^{t} \left| g'(s) \right|^{q} ds,$$

which gives

$$(2.4) B \leq \left(\int_{a}^{b} (t-a) |f'(t)|^{p} du(t) \right)^{1/p} \left(\int_{a}^{b} \left(\int_{a}^{t} |g'(s)|^{q} ds \right) du(t) \right)^{1/q}.$$

Using integration by parts for the Riemann-Stieltjes integral, we have

$$\int_{a}^{b} \left(\int_{a}^{t} |g'(s)|^{q} ds \right) du(t) = \left(\int_{a}^{t} |g'(s)|^{q} ds \right) u(t) \Big|_{a}^{b} - \int_{a}^{b} u(t) |g'(t)|^{q} dt$$

$$= u(b) \int_{a}^{b} |g'(s)|^{q} ds - \int_{a}^{b} u(t) |g'(t)|^{q} dt$$

$$= \int_{a}^{b} [u(b) - u(t)] |g'(t)|^{q} dt$$

and by (2.3) we get the first inequality in (2.1).

The last part follows by the elementary Young's inequality

(2.5)
$$\alpha^{1/p} \beta^{1/q} \le \frac{1}{p} \alpha + \frac{1}{q} \beta, \ \alpha, \ \beta \ge 0.$$

(ii) Since g(b) = 0, then $g(t) = -\int_t^b g'(s) ds$ for $t \in [a, b]$. We have

$$\begin{split} \int_{a}^{b} |f'(t) g(t)| \, du(t) &= \int_{a}^{b} |f'(t)| \, |g(t)| \, du(t) \\ &= \int_{a}^{b} (b-t)^{1/p} \, |f'(t)| \, (b-t)^{-1/p} \, |g(t)| \, du(t) \\ &= \int_{a}^{b} (b-t)^{1/p} \, |f'(t)| \, (b-t)^{-1/p} \, \left| \int_{t}^{b} g'(s) \, ds \right| du(t) =: C. \end{split}$$

Using Hölder's inequality for Riemann-Stieltjes integral and for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$ we also have

$$(2.6) \quad C \leq \left(\int_{a}^{b} \left[(b-t)^{1/p} |f'(t)| \right]^{p} du(t) \right)^{1/p}$$

$$\times \left(\int_{a}^{b} \left[(b-t)^{-1/p} \left| \int_{t}^{b} g'(s) ds \right| \right]^{q} du(t) \right)^{1/q}$$

$$= \left(\int_{a}^{b} (b-t) |f'(t)|^{p} du(t) \right)^{1/p} \left(\left[(b-t)^{-1/p} \left| \int_{t}^{b} g'(s) ds \right| \right]^{q} du(t) \right)^{1/q}$$

$$=: D$$

By Hölder's inequality for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$ we also have

$$(b-t)^{-1/p} \left| \int_{t}^{b} g'(s) ds \right| \leq \left(\int_{t}^{b} \left| g'(s) \right|^{q} ds \right)^{1/q},$$

which gives

$$(2.7) D \leq \left(\int_{a}^{b} (b-t) |f'(t)|^{p} du(t) \right)^{1/p} \left(\int_{a}^{b} \left(\int_{t}^{b} |g'(s)|^{q} ds \right) du(t) \right)^{1/2}.$$

Using integration by parts, we have

$$\int_{a}^{b} \left(\int_{t}^{b} |g'(s)|^{q} ds \right) du(t) = \left(\int_{t}^{b} |g'(s)|^{q} ds \right) u(t) \Big|_{a}^{b} + \int_{a}^{b} |g'(t)|^{q} u(t) dt$$
$$= \int_{a}^{b} [u(t) - u(a)] |g'(t)|^{q} dt$$

and by (2.6) and (2.7) we obtain (2.2).

Remark 1. If we take u(t) = t in Theorem 3 we get the inequalities (1.3) and (1.4).

Corollary 2. Assume that $f:[a,b]\to\mathbb{C}$ is in $C^1[a,b]$, u is monotonic nondecreasing on [a,b] and p, q>1 with $\frac{1}{p}+\frac{1}{q}=1$.

(i) If
$$f(a) = 0$$
, then

$$(2.8) \int_{a}^{b} |f'(t) f(t)| du(t)$$

$$\leq \left(\int_{a}^{b} (t-a) |f'(t)|^{p} du(t) \right)^{1/p} \left(\int_{a}^{b} [u(b) - u(t)] |f'(t)|^{q} dt \right)^{1/q}$$

$$\leq \frac{1}{p} \int_{a}^{b} (t-a) |f'(t)|^{p} du(t) + \frac{1}{q} \int_{a}^{b} [u(b) - u(t)] |f'(t)|^{q} dt.$$

(ii) If
$$f(b) = 0$$
, then

$$(2.9) \int_{a}^{b} |f'(t) f(t)| du(t)$$

$$\leq \left(\int_{a}^{b} (b-t) |f'(t)|^{p} du(t) \right)^{1/p} \left(\int_{a}^{b} [u(t) - u(a)] |f'(t)|^{q} dt \right)^{1/q}$$

$$\leq \frac{1}{p} \int_{a}^{b} (b-t) |f'(t)|^{p} du(t) + \frac{1}{q} \int_{a}^{b} [u(t) - u(a)] |f'(t)|^{q} dt.$$

Corollary 3. Assume that $g:[a,b]\to\mathbb{C}$ is absolutely continuous on [a,b], u is monotonic nondecreasing on [a,b] and $p,\ q>1$ with $\frac{1}{p}+\frac{1}{q}=1$.

(i) If
$$g(a) = 0$$
, then

$$(2.10) \int_{a}^{b} |g(t)| du(t)$$

$$\leq \left(\int_{a}^{b} [u(b) - u(t)] dt \right)^{1/p} \left(\int_{a}^{b} [u(b) - u(t)] |g'(t)|^{q} dt \right)^{1/q}.$$

(ii) If
$$g(b) = 0$$
, then

(2.11)
$$\int_{a}^{b} |g(t)| du(t)$$

$$\leq \left(\int_{a}^{b} [u(t) - u(a)] dt \right)^{1/p} \left(\int_{a}^{b} [u(t) - u(a)] |g'(t)|^{q} dt \right)^{1/q} .$$

It follows by Theorem 3 for $f \equiv 1$. We have:

Theorem 4. Assume that $f, g: [a,b] \to \mathbb{C}$ are absolutely continuous on [a,b], f' is continuous on [a,b], u is monotonic nondecreasing on [a,b] and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. If g(a) = g(b) = 0, then

$$(2.12) \int_{a}^{b} |f'(t) g(t)| du(t)$$

$$\leq \frac{1}{2} (b-a)^{1/p} [u(b) - u(a)]^{1/q} \left(\int_{a}^{b} |f'(t)|^{p} du(t) \right)^{1/p} \left(\int_{a}^{b} |g'(t)|^{q} dt \right)^{1/q}$$

and

$$(2.13) \int_{a}^{b} |f'(t)g(t)| du(t)$$

$$\leq \left(\frac{1}{2}(b-a)\int_{a}^{b} |f'(t)|^{p} du(t) - \int_{a}^{b} \left|t - \frac{a+b}{2}\right| |f'(t)|^{p} du(t)\right)^{1/p}$$

$$\times \left(\int_{a}^{b} \left|u\left(\frac{a+b}{2}\right) - u(t)\right| |g'(t)|^{q} dt\right)^{1/q}.$$

Proof. If we add the inequalities (2.1) and (2.2) we get

$$(2.14) \quad 2\int_{a}^{b} |f'(t) g(t)| du(t)$$

$$\leq \left(\int_{a}^{b} (t-a) |f'(t)|^{p} du(t)\right)^{1/p} \left(\int_{a}^{b} [u(b) - u(t)] |g'(t)|^{q} dt\right)^{1/q}$$

$$+ \left(\int_{a}^{b} (b-t) |f'(t)|^{p} du(t)\right)^{1/p} \left(\int_{a}^{b} [u(t) - u(a)] |g'(t)|^{q} dt\right)^{1/q}.$$

If we use the elementary Hölder inequality for $p,\,q>1$ with $\frac{1}{p}+\frac{1}{q}=1$

(2.15)
$$\alpha\beta + \gamma\delta \le (\alpha^p + \gamma^p)^{1/p} (\beta^q + \delta^q)^{1/q}, \ \alpha, \ \beta, \ \gamma, \ \delta \ge 0,$$

we have

$$(2.16) \quad \left(\int_{a}^{b} (t-a) |f'(t)|^{p} du(t)\right)^{1/p} \left(\int_{a}^{b} [u(b)] - u(t) |g'(t)|^{q} dt\right)^{1/q} + \left(\int_{a}^{b} (b-t) |f'(t)|^{p} du(t)\right)^{1/p} \left(\int_{a}^{b} [u(t) - u(a)] |g'(t)|^{q} dt\right)^{1/q}$$

$$\leq \left(\int_{a}^{b} (t-a) |f'(t)|^{p} du(t) + \int_{a}^{b} (b-t) |f'(t)|^{p} du(t) \right)^{1/p} \\
\times \left(\int_{a}^{b} [u(b) - u(t)] |g'(t)|^{q} dt + \int_{a}^{b} [u(t) - u(a)] |g'(t)|^{q} dt \right)^{1/q} \\
= (b-a)^{1/p} \left(\int_{a}^{b} |f'(t)|^{p} du(t) \right)^{1/p} [u(b) - u(a)]^{1/q} \left(\int_{a}^{b} |g'(t)|^{q} dt \right)^{1/q}.$$

By making use of (2.14) and (2.16) we get (2.12).

If we use the inequality (2.1) on the interval $\left[a, \frac{a+b}{2}\right]$, then we have

$$(2.17) \int_{a}^{\frac{a+b}{2}} |f'(t) g(t)| du(t)$$

$$\leq \left(\int_{a}^{\frac{a+b}{2}} (t-a) |f'(t)|^{p} du(t) \right)^{1/p} \left(\int_{a}^{\frac{a+b}{2}} \left[u\left(\frac{a+b}{2}\right) - u(t) \right] |g'(t)|^{q} dt \right)^{1/q}$$

while if we use the inequality (2.2) on the interval $\left[\frac{a+b}{2}, b\right]$, then we have

$$(2.18) \int_{\frac{a+b}{2}}^{b} |f'(t) g(t)| w(t) dt$$

$$\leq \left(\int_{\frac{a+b}{2}}^{b} (b-t) |f'(t)|^{p} du(t) \right)^{1/p} \left(\int_{\frac{a+b}{2}}^{b} \left[u(t) - u\left(\frac{a+b}{2}\right) \right] |g'(t)|^{q} dt \right)^{1/q}.$$

If we add these two inequalities, then we get by (2.15) that

$$\int_{a}^{b} |f'(t) g(t)| du(t)
\leq \left(\int_{a}^{\frac{a+b}{2}} (t-a) |f'(t)|^{p} du(t) \right)^{1/p} \left(\int_{a}^{\frac{a+b}{2}} \left[u \left(\frac{a+b}{2} \right) - u(t) \right] |g'(t)|^{q} dt \right)^{1/q}
+ \left(\int_{\frac{a+b}{2}}^{b} (b-t) |f'(t)|^{p} du(t) \right)^{1/p} \left(\int_{\frac{a+b}{2}}^{b} \left[u(t) - u \left(\frac{a+b}{2} \right) \right] |g'(t)|^{q} dt \right)^{1/q}
\leq \left(\int_{a}^{b} K(t) |f'(t)|^{p} du(t) \right)^{1/p} \left(\int_{a}^{b} \left| u \left(\frac{a+b}{2} \right) - u(t) \right| |g'(t)|^{q} dt \right)^{1/q}$$

where

$$K(t) := \left\{ \begin{array}{l} t-a, \text{ if } t \in \left[a, \frac{a+b}{2}\right] \\ b-t, \text{ if } t \in \left[\frac{a+b}{2}, b\right] \end{array} \right. = \frac{1}{2} \left(b-a\right) - \left|t - \frac{a+b}{2}\right|.$$

This proves (2.13).

Remark 2. If we take in (2.13) u(t) = t, then we get (1.5).

Corollary 4. Assume that $f:[a,b] \to \mathbb{C}$ is absolutely continuous on [a,b], f' is continuous on [a,b], u is monotonic nondecreasing on [a,b] and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. If f(a) = f(b) = 0, then

$$(2.19) \int_{a}^{b} |f'(t) f(t)| du(t)$$

$$\leq \frac{1}{2} (b-a)^{1/p} [u(b) - u(a)]^{1/q} \left(\int_{a}^{b} |f'(t)|^{p} du(t) \right)^{1/p} \left(\int_{a}^{b} |f'(t)|^{q} dt \right)^{1/q}$$

and

$$(2.20) \int_{a}^{b} |f'(t) f(t)| du(t)$$

$$\leq \left(\frac{1}{2} (b-a) \int_{a}^{b} |f'(t)|^{p} du(t) - \int_{a}^{b} \left| t - \frac{a+b}{2} \right| |f'(t)|^{p} du(t) \right)^{1/p}$$

$$\times \left(\int_{a}^{b} \left| u \left(\frac{a+b}{2} \right) - u(t) \right| |f'(t)|^{q} dt \right)^{1/q}.$$

We also have:

Corollary 5. Assume that $g:[a,b] \to \mathbb{C}$ is absolutely continuous on [a,b], u is monotonic nondecreasing on [a,b] and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. If g(a) = g(b) = 0, then

(2.21)
$$\int_{a}^{b} |g(t)| du(t) \leq \frac{1}{2} (b-a)^{1/p} [u(b) - u(a)] \left(\int_{a}^{b} |g'(t)|^{q} dt \right)^{1/q}$$

and

$$(2.22) \int_{a}^{b} |g(t)| du(t) \le \left(\int_{a}^{b} \operatorname{sgn}\left(t - \frac{a+b}{2}\right) u(t) dt \right)^{1/p} \times \left(\int_{a}^{b} \left| u\left(\frac{a+b}{2}\right) - u(t) \right| \left| g'(t) \right|^{q} dt \right)^{1/q}.$$

Proof. The inequality (2.21) is obvious by (2.12) for $f \equiv 1$. Observe that

$$\begin{split} &\frac{1}{2} \left(b - a \right) \int_{a}^{b} du \left(t \right) - \int_{a}^{b} \left| t - \frac{a + b}{2} \right| du \left(t \right) \\ &= \int_{a}^{\frac{a + b}{2}} \left(t - a \right) du \left(t \right) + \int_{\frac{a + b}{2}}^{b} \left(b - t \right) du \left(t \right) \\ &= \left(t - a \right) u \left(t \right) \Big|_{a}^{\frac{a + b}{2}} - \int_{a}^{\frac{a + b}{2}} u \left(t \right) dt + \left(b - t \right) u \left(t \right) \Big|_{\frac{a + b}{2}}^{b} + \int_{\frac{a + b}{2}}^{b} u \left(t \right) dt \\ &= \int_{\frac{a + b}{2}}^{b} u \left(t \right) dt - \int_{a}^{\frac{a + b}{2}} u \left(t \right) dt = \int_{a}^{b} \operatorname{sgn} \left(t - \frac{a + b}{2} \right) u \left(t \right) dt \end{split}$$

and by (2.13) for $f \equiv 1$ we get

$$\int_{a}^{b} \left| g\left(t\right) \right| du\left(t\right) \le \left(\frac{1}{2} \left(b - a\right) \int_{a}^{b} du\left(t\right) - \int_{a}^{b} \left| t - \frac{a + b}{2} \right| du\left(t\right) \right)^{1/p}$$

$$\times \left(\int_{a}^{b} \left| u\left(\frac{a + b}{2}\right) - u\left(t\right) \right| \left| g'\left(t\right) \right|^{q} dt \right)^{1/q},$$

which proves (2.22).

3. Some Inequalities for Functions of Bounded Variation

The following lemma was obtained by the author in 2007, [5] and is of interest in itself as well (see also [4]):

Lemma 1. If $p:[a,b] \to \mathbb{C}$ is continuous on [a,b] and $v:[a,b] \to \mathbb{C}$ is of bounded variation on [a,b], then

$$(3.1) \quad \left| \int_{a}^{b} p(t) dv(t) \right| \leq \int_{a}^{b} |p(t)| dV(t)$$

$$\leq \left(\int_{a}^{b} |p(t)|^{p} dV(t) \right)^{1/p} \left(\bigvee_{a}^{b} (v) \right)^{1/q} \leq \max_{t \in [a,b]} |p(t)| \bigvee_{a}^{b} (v),$$

where $V(t) := \bigvee_{a}^{t} (v)$ is the total variation of v on [a, t] with $t \in [a, b]$.

The function V is nondecreasing on [a,b] with V(a)=0 and $V(b)=\bigvee_a^b(v)$. If we put $\overline{V}(t):=\bigvee_t^b(v)=\bigvee_a^b(v)-V(t)$, then \overline{V} is nonincreasing with $\overline{V}(a)=\bigvee_a^b(v)$ and $\overline{V}(b)=0$.

We have:

Proposition 1. Assume that $h:[a,b]\to\mathbb{C}$ is continuous, g is absolutely continuous on [a,b] and v is of bounded variation on [a,b], then the Riemann-Stieltjes integral $\int_a^b h(t) g(t) dv(t)$ exists and for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, we have,

(i) If
$$g(a) = 0$$
, then

$$\left| \int_{a}^{b} h(t) g(t) dv(t) \right|$$

$$\leq \left(\int_{a}^{b} (t - a) |h(t)|^{p} dV(t) \right)^{1/p} \left(\int_{a}^{b} \overline{V}(t) |g'(t)|^{q} dt \right)^{1/q}.$$

(ii) If
$$g(b) = 0$$
, then

(3.3)
$$\left| \int_{a}^{b} h(t) g(t) dv(t) \right| \\ \leq \left(\int_{a}^{b} (b-t) |h(t)|^{p} dV(t) \right)^{1/p} \left(\int_{a}^{b} V(t) |g'(t)|^{q} dt \right)^{1/q}.$$

Proof. Using the first inequality in (3.1), we get

(3.4)
$$\left| \int_{a}^{b} h(t) g(t) dv(t) \right| \leq \int_{a}^{b} \left| h(t) g(t) \right| dV(t).$$

Using now Theorem 3 for $f = \int_a h$ and u = V, we get, for g(a) = 0, that

(3.5)
$$\int_{a}^{b} |h(t) g(t)| dV(t)$$

$$\leq \left(\int_{a}^{b} (t - a) |h(t)|^{p} dV(t) \right)^{1/p} \left(\int_{a}^{b} [V(b) - V(t)] |g'(t)|^{q} dt \right)^{1/q}.$$

If g(b) = 0, then

(3.6)
$$\int_{a}^{b} |h(t) g(t)| dV(t) \\ \leq \left(\int_{a}^{b} (b-t) |f'(t)|^{p} dV(t) \right)^{1/p} \left(\int_{a}^{b} V(t) |g'(t)|^{q} dt \right)^{1/q}.$$

By utilising (3.4)-(3.6) we get the desired results (3.2) and (3.3).

The case $h \equiv 1$ is of interest since in this case

$$\int_{a}^{b} (t - a) dV(t) = (b - a) V(b) - \int_{a}^{b} V(t) dt$$
$$= \int_{a}^{b} (V(b) - V(t)) dt = \int_{a}^{b} \overline{V}(t) dt$$

and

$$\int_{a}^{b} (b-t) dV(t) = \int_{a}^{b} V(t) dt.$$

We then can state:

Corollary 6. Assume that g is absolutely continuous on [a,b] and v is of bounded variation on [a,b], then the Riemann-Stieltjes integral $\int_a^b g(t) dv(t)$ exists and for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, we have

(i) If
$$g(a) = 0$$
, then

$$\left| \int_{a}^{b} g(t) dv(t) \right| \leq \left(\int_{a}^{b} \overline{V}(t) dt \right)^{1/p} \left(\int_{a}^{b} \overline{V}(t) |g'(t)|^{q} dt \right)^{1/q}.$$

(ii) If
$$g(b) = 0$$
, then

$$\left| \int_{a}^{b} g(t) dv(t) \right| \leq \left(\int_{a}^{b} V(t) dt \right)^{1/p} \left(\int_{a}^{b} V(t) \left| g'(t) \right|^{q} dt \right)^{1/q}.$$

We also have:

Proposition 2. Assume that $h:[a,b]\to\mathbb{C}$ is continuous, g is absolutely continuous on [a,b] with g(a)=g(b)=0 and v is of bounded variation on [a,b], then for p, q>1 with $\frac{1}{p}+\frac{1}{q}=1$ we have

(3.9)
$$\left| \int_{a}^{b} h(t) g(t) dv(t) \right| \\ \leq \frac{1}{2} (b-a)^{1/p} \left[\bigvee_{a}^{b} (v) \right]^{1/q} \left(\int_{a}^{b} |h(t)|^{p} dV(t) \right)^{1/p} \left(\int_{a}^{b} |g'(t)|^{q} dt \right)^{1/q}$$

and

$$(3.10) \quad \left| \int_{a}^{b} h\left(t\right) g\left(t\right) dv\left(t\right) \right|$$

$$\leq \left(\frac{1}{2} \left(b-a\right) \int_{a}^{b} \left|h\left(t\right)\right|^{p} dV\left(t\right) - \int_{a}^{b} \left|t - \frac{a+b}{2}\right| \left|h\left(t\right)\right|^{p} dV\left(t\right) \right)^{1/p}$$

$$\times \left(\int_{a}^{b} \left|V\left(t\right) - V\left(\frac{a+b}{2}\right)\right| \left|g'\left(t\right)\right|^{q} dt \right)^{1/q}.$$

The proof follows by Theorem 5 and Lemma 1.

Corollary 7. Assume that g is absolutely continuous on [a, b] with g(a) = g(b) = 0 and v is of bounded variation on [a, b], then for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$ we have

(3.11)
$$\left| \int_{a}^{b} g(t) dv(t) \right| \leq \frac{1}{2} (b - a)^{1/p} \left(\int_{a}^{b} |g'(t)|^{q} dt \right)^{1/q} \bigvee_{a}^{b} (v)$$

and

$$(3.12) \left| \int_{a}^{b} g(t) dv(t) \right|$$

$$\leq \left(\int_{a}^{b} \operatorname{sgn}\left(t - \frac{a+b}{2} \right) V(t) dt \right)^{1/p} \left(\int_{a}^{b} \left| V(t) - V\left(\frac{a+b}{2} \right) \right| \left| g'(t) \right|^{q} dt \right)^{1/q}.$$

Proof. Is similar to the one from Corollary 5.

4. Some Inequalities for the Čebyšev Functional

Consider now the Čebyšev functional

$$(4.1) \quad C_{u}(f,g) := \frac{1}{u(b) - u(a)} \int_{a}^{b} f(t) g(t) du(t) - \frac{1}{u(b) - u(a)} \int_{a}^{b} f(t) du(t) \frac{1}{u(b) - u(a)} \int_{a}^{b} g(t) du(t)$$

where $f, g:[a,b]\to \mathbb{C}$ are continuous and u is monotonic nondecreasing with $u\left(a\right)\neq u\left(b\right)$.

In [3], Cerone and Dragomir obtained some reverses of Grüss inequality for positive measures. If we write these inequalities for the Riemann-Stieltjes integral

of monotonic integrators, we have

$$(4.2) \quad |C_{u}(f,g)| \\ \leq \frac{1}{2} (M-m) \frac{1}{u(b)-u(a)} \int_{a}^{b} \left| g(t) - \frac{1}{u(b)-u(a)} \int_{a}^{b} g(s) du(s) \right| du(t) \\ \leq \frac{1}{2} (M-m) \left[\frac{1}{u(b)-u(a)} \int_{a}^{b} \left| g(t) - \frac{1}{u(b)-u(a)} \int_{a}^{b} g(s) du(s) \right|^{p} du(t) \right]^{\frac{1}{p}} \\ \leq \frac{1}{2} (M-m) \operatorname{essup}_{t \in [a,b]} \left| g(t) - \frac{1}{u(b)-u(a)} \int_{a}^{b} g(s) du(s) \right|$$

for p>1, provided $-\infty < m \le f(t) \le M < \infty$ for a.e. $t \in [a,b]$ and the corresponding integrals are finite. The constant $\frac{1}{2}$ is sharp in all the inequalities in (4.2) in the sense that it cannot be replaced by a smaller constant.

In addition, if $-\infty < n \le g(t) \le N < \infty$ for a.e. $t \in [a, b]$, then the following refinement of the Grüss inequality for Riemann-Stieltjes integral is obtained:

$$(4.3) \quad |C_{u}(f,g)| \\ \leq \frac{1}{2} (M-m) \frac{1}{u(b)-u(a)} \int_{a}^{b} \left| g(t) - \frac{1}{u(b)-u(a)} \int_{a}^{b} g(s) du(s) \right| du(t)$$

$$\leq \frac{1}{2} (M - m)$$

$$\times \left[\frac{1}{u(b) - u(a)} \int_{a}^{b} g^{2}(t) du(t) - \left(\frac{1}{u(b) - u(a)} \int_{a}^{b} g(s) du(s) \right)^{2} \right]^{\frac{1}{2}}$$

$$\leq \frac{1}{4} (M - m) (N - n).$$

Here, the constants $\frac{1}{2}$ and $\frac{1}{4}$ are also sharp in the sense mentioned above. We have the following inequality for the Čebyšev functional C_u .

Theorem 5. Assume that $g:[a,b] \to \mathbb{C}$ is absolutely continuous on [a,b], $f:[a,b] \to \mathbb{C}$ is continuous on [a,b] and u is monotonic nondecreasing on [a,b], where p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. Then

$$(4.4) \quad |C_{u}(f,g)| \\ \leq \left(\frac{1}{u(b)-u(a)} \int_{a}^{b} (t-a) \left| f(t) - \frac{1}{u(b)-u(a)} \int_{a}^{b} f(s) du(s) \right|^{p} du(t) \right)^{1/p} \\ \times \left(\frac{1}{u(b)-u(a)} \int_{a}^{b} |g'(t)|^{q} \left[u(b) - u(t) \right] dt \right)^{1/q}$$

and

$$(4.5) \quad |C_{u}(f,g)| \\ \leq \left(\frac{1}{u(b)-u(a)} \int_{a}^{b} (b-t) \left| f(t) - \frac{1}{u(b)-u(a)} \int_{a}^{b} f(s) du(s) \right|^{p} du(t) \right)^{1/p} \\ \times \left(\frac{1}{u(b)-u(a)} \int_{a}^{b} |g'(t)|^{q} \left[u(t) - u(a) \right] dt \right)^{1/q}.$$

Proof. We use the following Sonin type identity for the Riemann-Stieltjes integral

(4.6)
$$C_{u}(f,g)$$

$$= \frac{1}{u(b) - u(a)} \int_{a}^{b} \left(f(t) - \frac{1}{u(b) - u(a)} \int_{a}^{b} f(s) du(s) \right) [g(t) - \gamma] du(t),$$

for $\gamma \in \mathbb{C}$, which can be proved directly on calculating the integral from the right hand side.

Using the inequality (2.1) for $\gamma = g(a)$, we have

$$|C_{u}(f,g)| \le \frac{1}{u(b) - u(a)} \int_{a}^{b} \left| f(t) - \frac{1}{u(b) - u(a)} \int_{a}^{b} f(s) du(s) \right| |g(t) - g(a)| du(t)$$

$$\le \frac{1}{u(b) - u(a)} \left(\int_{a}^{b} (t - a) \left| f(t) - \frac{1}{u(b) - u(a)} \int_{a}^{b} f(s) du(s) \right|^{p} du(t) \right)^{1/p}$$

$$\times \left(\int_{a}^{b} |g'(t)|^{q} [u(b) - u(t)] dt \right)^{1/q}$$

that proves the inequality in (4.4).

Using the inequality (2.2) for $\gamma = g(b)$, we have

$$|C_{u}(f,g)| \le \frac{1}{u(b) - u(a)} \int_{a}^{b} \left| f(t) - \frac{1}{u(b) - u(a)} \int_{a}^{b} f(s) du(s) \right| |g(t) - g(b)| du(t)$$

$$\le \frac{1}{u(b) - u(a)} \left(\int_{a}^{b} (b - t) \left| f(t) - \frac{1}{u(b) - u(a)} \int_{a}^{b} f(s) du(s) \right|^{p} du(t) \right)^{1/p}$$

$$\times \left(\int_{a}^{b} [u(t) - u(a)] |g'(t)|^{q} dt \right)^{1/q}$$

that proves the inequality (4.5).

Corollary 8. Assume that $g:[a,b] \to \mathbb{C}$ is absolutely continuous on [a,b], $f:[a,b] \to \mathbb{C}$ is continuous on [a,b] and u is monotonic nondecreasing on [a,b], where

 $p, q > 1 \text{ with } \frac{1}{p} + \frac{1}{q} = 1. \text{ Then }$

$$(4.7) \quad |C_{u}(f,g)| \leq \frac{1}{2} (b-a)^{1/p} \left(\int_{a}^{b} |g'(t)|^{q} dt \right)^{1/q}$$

$$\times \left(\frac{1}{u(b)-u(a)} \int_{a}^{b} \left| f(t) - \frac{1}{u(b)-u(a)} \int_{a}^{b} f(s) du(s) \right|^{p} du(t) \right)^{1/p}.$$

Proof. If we add the inequalities (4.4) and (4.5), then we get

$$\begin{aligned}
&2 \left| C_{u} \left(f, g \right) \right| \\
&\leq \left(\frac{1}{u(b) - u(a)} \int_{a}^{b} \left(t - a \right) \left| f \left(t \right) - \frac{1}{u(b) - u(a)} \int_{a}^{b} f \left(s \right) du \left(s \right) \right|^{p} du \left(t \right) \right)^{1/p} \\
&\times \left(\frac{1}{u(b) - u(a)} \int_{a}^{b} \left| g' \left(t \right) \right|^{q} \left[u \left(b \right) - u \left(t \right) \right] dt \right)^{1/q} \\
&+ \left(\frac{1}{u(b) - u(a)} \int_{a}^{b} \left(b - t \right) \left| f \left(t \right) - \frac{1}{u(b) - u(a)} \int_{a}^{b} f \left(s \right) du \left(s \right) \right|^{p} du \left(t \right) \right)^{1/p} \\
&\times \left(\frac{1}{u(b) - u(a)} \int_{a}^{b} \left| g' \left(t \right) \right|^{q} \left[u \left(t \right) - u \left(a \right) \right] dt \right)^{1/q} \\
&- : E
\end{aligned}$$

Using the inequality (2.15), we have

$$\begin{split} E &\leq \left(\frac{1}{u\left(b\right) - u\left(a\right)} \int_{a}^{b} \left(t - a\right) \left| f\left(t\right) - \frac{1}{u\left(b\right) - u\left(a\right)} \int_{a}^{b} f\left(s\right) du\left(s\right) \right|^{p} du\left(t\right) \right. \\ &+ \frac{1}{u\left(b\right) - u\left(a\right)} \int_{a}^{b} \left(b - t\right) \left| f\left(t\right) - \frac{1}{u\left(b\right) - u\left(a\right)} \int_{a}^{b} f\left(s\right) du\left(s\right) \right|^{p} du\left(t\right) \right)^{1/p} \\ &\times \left(\frac{1}{u\left(b\right) - u\left(a\right)} \int_{a}^{b} \left| g'\left(t\right) \right|^{q} \left[u\left(b\right) - u\left(t\right) \right] dt \right. \\ &+ \frac{1}{u\left(b\right) - u\left(a\right)} \int_{a}^{b} \left| g'\left(t\right) \right|^{q} \left[u\left(t\right) - u\left(a\right) \right] dt \right)^{1/q} \\ &= \left(b - a\right)^{1/p} \left(\frac{1}{u\left(b\right) - u\left(a\right)} \int_{a}^{b} \left| f\left(t\right) - \frac{1}{u\left(b\right) - u\left(a\right)} \int_{a}^{b} f\left(s\right) du\left(s\right) \right|^{p} du\left(t\right) \right)^{1/p} \\ &\times \left(\int_{a}^{b} \left| g'\left(t\right) \right|^{q} dt \right)^{1/q}, \end{split}$$

which proves (4.7).

Remark 3. If p = q = 2, then by (4.7) we get

$$(4.8) \quad |C_{u}(f,g)| \leq \frac{1}{2} (b-a)^{1/2} \left(\int_{a}^{b} |g'(t)|^{2} dt \right)^{1/2}$$

$$\times \left(\frac{1}{u(b)-u(a)} \int_{a}^{b} |f(t)|^{2} du(t) - \left| \frac{1}{u(b)-u(a)} \int_{a}^{b} f(s) du(s) \right|^{2} \right)^{1/2}.$$

References

- P. R. Beesack, On an integral inequality of Z. Opial. Trans. Am. Math. Soc. 104 (1962), 470–475.
- [2] P. L. Chebyshev, Sur les expressions approximatives des intègrals définis par les outres prises entre les même limites, Proc. Math. Soc. Charkov, 2 (1882), 93-98.
- [3] P. Cerone and S. S. Dragomir, A refinement of the Grüss inequality and applications, Tamkang J. Math., 38(1) (2007), 37-49. Preprint RGMIA Res. Rep. Coll., 5(2) (2002), Article 14. [Online: http://rgmia.vu.edu.au/v5n2.html].
- [4] S. S. Dragomir, Accurate approximations for the Riemann-Stieltjes integral via theory of inequalities. J. Math. Inequal. 3 (2009), no. 4, 663-681
- [5] S. S. Dragomir, Approximating the Riemann-Stieltjes integral via a Chebyshev type functional. Acta Comment. Univ. Tartu. Math. 18 (2014), No. 2, 239–259. Preprint RGMIA Res. Rep. Coll. 10 (2007), Suplement Art. 18 [Online http://rgmia.org/papers/v10e/ARSICTF.pdf].
- [6] S. S. Dragomir, Generalizations of Opial's inequalities for two functions and applications, Preprint RGMIA Res. Rep. Coll. 21 (2018), Art. 64. [Online http://rgmia.org/papers/v21/v21a64.pdf].
- [7] S. S. Dragomir, p-Norms generalizations of Opial's inequalities for two functions and applications, Preprint RGMIA Res. Rep. Coll. 21 (2018), Art.
- [8] L. Fejér, Über die Fourierreihen, II, (In Hungarian) Math. Naturwiss, Anz. Ungar. Akad. Wiss., 24 (1906), 369-390.
- [9] G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_a^b f(x)g(x)dx \frac{1}{(b-a)^2} \int_a^b f(x)dx \int_a^b g(x)dx$, Math. Z., 39(1935), 215-226.
- [10] L.-G. Hua, On an inequality of Opial. Sci. Sinica 14 (1965), 789-790.
- [11] N. Levinson, On an inequality of Opial and Beesack. Proc. Amer. Math. Soc. 15 (1964), 565–566.
- [12] A. Lupaş, The best constant in an integral inequality, Mathematica (Cluj, Romania), 15(38)(2) (1973), 219-222.
- [13] C. L. Mallows, An even simpler proof of Opial's inequality. Proc. Amer. Math. Soc. 16 (1965), 173
- [14] C. Olech, A simple proof of a certain result of Z. Opial. Ann. Polon. Math. 8 (1960), 61-63.
- [15] Z. Opial, Sur une inégalité. Ann. Polon. Math. 8 (1960), 29–32.
- [16] A. M. Ostrowski, On an integral inequality, Aequat. Math., 4 (1970), 358-373.
- [17] R. N. Pederson, On an inequality of Opial, Beesack and Levinson. Proc. Amer. Math. Soc. 16 (1965), 174.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E ext{-}mail\ address: sever.dragomir@vu.edu.au}$

URL: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA