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GENERALIZATIONS OF OPIAL’S INEQUALITIES FOR
RIEMANN-STIELTJES INTEGRAL, p-NORMS AND TWO
FUNCTIONS WITH APPLICATIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some generalizations of Opial’s inequal-
ities for Riemann-Stieltjes integral in terms of p-norms and for two functions.
Applications related to Griiss’ type inequalities are also given.

1. INTRODUCTION
We recall the following Opial type inequalities:

Theorem 1. Assume that u : [a,b] C R — R is an absolutely continuous function
on the interval [a, b] and such that v’ € Lo [a,b].

(i) Ifu(a) = =0, then

(1.1) /|u (1) dt < ~ b—a/\u )2 dt,

with equality if and only if
- a+b
c(t—a) ifa<t< %,
u(t) =
c(b—t) if 2 <t <,
where ¢ is an arbitrary constant.
(ii) Ifu(a) =0, then

(1.2) /|u |dt< _a/\u )2 dt,

with equality if and only if u (t) = ¢ (t — a) for some constant c.

The inequality (1.1) was obtained by Olech in [14] in which he gave a simplified
proof of an inequality originally due in a slightly less general form to Zdzislaw Opial
[15].

Embedded in Olech’s proof is the half-interval form of Opial’s inequality, also
discovered by Beesack [1], which is satisfied by those u vanishing only at a.

For various proofs of the above inequalities, see [10]-[13] and [17].

In [7] we obtained the following generalizations of Opial inequalities for p-norms
of two functions:

Theorem 2. Assume that f, g : [a,b] — C are absolutely continuous on [a,b] with
€ Lyla,b] and g’ € Ly [a,b] for p, ¢ > 1 with % + % =1.
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(i) If g (a) =0, then

b Ve o
(1.3) /|f |dt<</ (t—a)lf’(t)lpdt> (/ <b—t>|g’<t>|"dt>

b 1 ! P 1 / q
</ [p(taw O+ 0-0lg <t>|]dt.

1/q

(ii) If g (b) =0, then

1/p b 1/q
(1.4) /|f |dt<</ (b —t)f’(t)l”dt> (/ (t—a>|g’(t>|"dt>

b / p 1 / q
</ [p(bmf (OF de+ 1 (¢ - a)lg (Mdt

(iii) If g (a) = g (b) =0, then

(1.5) /|f ()] dt

b b 1/p
g<2<b—a>/ fora- [ 40— f’(t)lpdt>
b 1/q
x(/ ‘L;bug’(qut)
b b a
< g0 [Irwras [ L or - 2o

In particular, we have:

Corollary 1. Assume that f : [a,b] — C is absolutely continuous on [a,b] and
f'€Lya,blNLyla,b] forp, g>1 with%—t—%:l.

(i) If f (a) =0, then

b 1/p b 1/q
o [1ros |dt<</ (t—a)lf’(t)lpdt> (/ (b—t)lf’(t)th>

/ab [; (t—a)lf @O + é (b—t)|f (t)ﬂ dt.

IN

(ii) If £ (b) =0, then

b 1/p b 1/q
o [1ros |dt<</ (b—t)f’(t)lpdt> (/ (t—a)lf’(t)th>

/: [; (b= 1) 17 () dt + - JE-alfe )Iq]

IN
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(i) If f (a) = f(b) =0, then

(1.8) /|f (t)] dt
< (; oo [rora- [ 7 <t>|”dt> "

x (l a+b—¢“f qﬁ>uq
s%g(b@/:f’(mpm/a

In this paper we establish some generalizations of Opial’s inequalities for Riemann-
Stieltjes integral in terms of p-norms and for two functions. Applications related
to Griiss’ type inequalities are also given.

a+b
—t
2

1 / p
~ 21 ) }dt.

a+b
2

| |21

2. THE MAIN RESULTS
We have:

Theorem 3. Assume that f, g : [a,b] — C are absolutely continuous on [a,b], f’
is continuous on [a,b], u is monotonic nondecreasing on [a,b] and p, ¢ > 1 with
1,1

141,

P q

(i) If g(a) =0, then

e [ 15 0ewla
1/p b 1/q
< ( / (t—a)lf’(t)l”dU(t>> ( [ w®)-u) |g’<t>|qozt>
1 ’ ’ p 1 ’ / q
<o [e-airoranss [uwe-uwl o

(ii) Ifg(b) =0, then

(2.2) /|f ()] du (t)
b Ve o
S(/ (b—t)|f'(t)|pdu(f)> (/ [U(t)—u(a)ﬂgl(tﬂth)

b b
g%/a (b—t)\f’(t)\pdu(t)Jrg/a [u(t) —u(a)]lg’ ()| dt.

1/q

Proof. (i) Since g (a) =0, then g (¢ ft g (s)ds for t € [a,b]. We have

[ 15 wewiae = [ 17 wls@lauw
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b
= / (t—a) P ()] (t—a) 7 |g (t)] du ()

/at g (s)ds

Using the Holder’s inequality for the Riemann-Stieltjes integral of monotonic non-
decreasing integrators and for p, ¢ > 1 with % + % =1, we have

b
[t i@l du (t) = A,

1/p
(2.3) A< (/ab [(t Y (t)@pdu (t))

x (/ [(t—arw /:g%s)ds

1/q

)

b Ve s ¢ q a
- ( [ u—airwra (t)) ( / [(t a0 [ ) as ] du (t))
=: B.
By Holder’s inequality for p, ¢ > 1 with % + % = 1 we also have
t t 1/q
| [ (55| < ( I <s>qu)
that implies
t q t
-0 [ @] < [geras
which gives
q

(24) B< ( / - a)lr (t)lpdu(t)>1/p ( / b (/ I (91" as) du<t>> "

Using integration by parts for the Riemann-Stieltjes integral, we have

/ab (/t g (s)lqu> du (t) = (/t g (s)|qu) u(t)
b

b
— u(b) / g/ ()" ds — / u(t)]g' (8)|° dt
b

b b
- / w(t)|g' (8)]° dt

- / [ () — w (B)] g (£)]° dt

and by (2.3) we get the first inequality in (2.1).
The last part follows by the elementary Young’s inequality

1 1
(25) al/pﬁl/q S -+ 7&) «, ﬂ 2 0
p q
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(if) Since g (b) = 0, then g (£) = — [" ¢’ (s)ds for t € [a,b] . We have

t

/|f (1) du (2) /|f Ml (8)] du (2)

:/< D21 () (b — 1) g (1) du (1)

/tb g' (s)ds

Using Holder’s inequality for Riemann-Stieltjes integral and for p, ¢ > 1 with % +

b
[ =017 @l k-7 du(t) = C.

% =1 we also have

b v 1/p
(26) C< ( / (6015 ()] du(t))
([l
b p b
- ( / (b—t)f’(t)lpdu(t)> ([(b—t)‘”” / J (s)ds

By Hoélder’s inequality for p, ¢ > 1 with % + % =1 we also have
1/q

b b
| o @as| < (/ |g'<s>|qcls> ,
which gives
b Ur sy /b 1/2
(2.7) D§</ <bt>|f'<t>”du<t>> (/ (/ |g'<s>|qu> du<t>> .

Using integration by parts, we have
b
+ [
a

/(/ g (s 'qd5>d“ (/ o (s |qu>

:/ [ () — u ()] g (6] dt

and by (2.6) and (2.7) we obtain (2.2). O

q 1/q
] du (t))

=:D.

(b—t)~ /7

Remark 1. If we take u(t) = t in Theorem 3 we get the inequalities (1.3) and

(1.4).

Corollary 2. Assume that f : [a,b] — C is in C'[a,b], u is monotonic nonde-
creasing on [a,b] and p, ¢ > 1 with % + % =
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(i) If f (a) =0, then

(2.8) /|f ()] du (¢
1/p b
< ( / (t—a>|f’(t)|”du(t)> ( / [u(b)—U(t)]lf’(t)th>

1P , P I ’ q
<o [—alr@ra+ ¢ [ e -uolr ore

(ii) If f (b) =0, then

(2.9) /|f ()] du (¢)
b 1/p b 1/q
< < / (b—t>|f'<t>|”du<t>> ( / [u(t)—u(a)]lf’(t)th>

< ;/ (b— 1) £ (1) du () + j}/b fu (2) — u(@)] | (0] dt.

Corollary 3. Assume that g : [a,b] — C is absolutely continuous on [a,b], u is
monotonic nondecreasing on [a,b] and p, ¢ > 1 with % + % =1

(i) If g(a) =0, then

b

@10) [ lg@)ldutt
b 1/p b 1/q
< ( / [u<b>—u<t>]dt> < [ w®)—ute) |g’<t>|qczt> .

1/q

It follows by Theorem 3 for f = 1.
We have:

Theorem 4. Assume that f, g : [a,b] — C are absolutely continuous on [a,b], f’
is continuous on [a,b], u is monotonic nondecreasing on [a,b] and p, ¢ > 1 with

%4—1:1. If g(a) = g (b) = 0, then

(2.12) /|f (t)| du (t)
< 20— a)"" () ~u /</ T |pdu> (/ 7 (¢ |th>

/q



OPIAL’S INEQUALITIES FOR RIEMANN-STIELTJES INTEGRAL,

and

(2.13) /|f ()| du (t)

1/p
< (2 (b‘“)/u 7@ du () - O du <t>>

% </b u(a;b> —u®) ’(t)|th>1/q.

Proof. If we add the inequalities (2.1) and (2.2) we get

(2.14) /|f (t)] du ()
1/p b 1/q
< ( / (t—a) |7 (&) du <t>> ( [ w® vl (qut)
b 1/p b 1/a
+( / (b—t)lf’(t)l”dU(t)> ( / [u(t)—u(a)]lg’(t)lth> .

If we use the elementary Holder inequality for p, ¢ > 1 with % + % =1

a+b

(2.15) aB 470 < (o + )P (B 6D a, B, 7, 6 >0,

we have

b 1/p b

(2.10) ( / (t—a)lf’(t)l”dU(t)> ( [ w1 -u |g’<t>|qczt>
b Ve s

+< / (b—t)lf’(t)lde(t)> ( / [ () — 1 () |g'<t>|th)

1/p

1/q

1/q

b b
s( [ e-alrorans [ (b—t)lf’(t)lpdu(t)>

b b
X (/ [u(b) = u(®)] Ig’(t)lth+/ [u(t) = u(a)] Ig’(t)lth>

b 1/p b
= (b—a)'/? ( / |f’<t)|”du<t>> [ (6) = (a)] ( / |g/<t)|th>

By making use of (2.14) and (2.16) we get (2.12).

1/q

1/q
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If we use the inequality (2.1) on the interval [a, %], then we have
atb

(2.17) / T (g (0] dut)

a

< (/ (t =) If () du (t)) " (/ o(55) - uw) <t>|th) "

while if we use the inequality (2.2) on the interval [“;‘b, b] , then we have

b
1) [ I ®sOw o

2

< (/b =01 () du (t))w (/b - (%50) 1 <t>|th>1/q.

2

If we add these two inequalities, then we get by (2.15) that

/\f (8)]du (2

atb atb

< (/ <t—a>|f’<t>|”du<t>>l/p (/ [u(“;”)—uw} |g'<t>|"dt>1/q
+</ib(bt)f( I du (1) ) ( )-u (%3] g’<t>|qczt>1/q

(/K P (0 |pdu> (/ (a—i—b)_u ‘Ig |th>1/q
a+b"

where
2

—(b—a)—‘t—

This proves (2.13). O

Remark 2. If we take in (2.13) u(t) =t, then we get (1.5).

Corollary 4. Assume that f : [a,b] — C is absolutely continuous on [a,b], f’
is continuous on [a,b], u is monotonic nondecreasing on [a,b] and p, ¢ > 1 with

Db D=1 0f f ) = £ () =0, then

(2.19) /|f ()] du ()

< 50— u(®) - u( /</ 1 ”du> (/ e |th>

/a
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and

(2.20) /|f (1)) dus (2)

b b a 1/p
<<;<b—a>/a rof - [ 52 |”du<>>
([

u (“;b> —u(t)‘ Iz (t)|th>1/q.

Corollary 5. Assume that g : [a,b] — C is absolutely continuous on [a,b],
monotonic nondecreasing on [a,b] and p, ¢ > 1 with %—i—% =1.Ifg(a) =g (b)
then

b 1/q
(2.21) / 9 (0] du(t) < 5 (b— )" [u(b) — u (o) (/ |g'<t>|th>

and

(2.22) ab lg ()] du (t) < (/ab sgn (t - a—2i—b) u (t) dt) "
y </b u(a;b> —u(t)‘|g’(t)|th>1/q.

Proof. The inequality (2.21) is obvious by (2.12) for f = 1.
Observe that

b
%(b—a)/a du (1) —

:/aa;b (t—a)du(t)-i—/ib (b —t)du(t)

We also have:

IIQ

and by (2.13) for f =1 we get

/“b|g(t)|du(t) ) (é(b_a)/:d“(t)‘/ab = a;b‘du(t)>1/p
" </b u(“57) vl <t>|th>1/q,

which proves (2.22). O
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3. SOME INEQUALITIES FOR FUNCTIONS OF BOUNDED VARIATION

The following lemma was obtained by the author in 2007, [5] and is of interest
in itself as well (see also [4]):

Lemma 1. Ifp: [a,b] — C is continuous on [a,b] and v : [a,b] — C is of bounded
variation on [a,b], then

b b
/p<t>dv ) s/ Ip ()] dV (1)

b 1/p b 1/q b
S(/ Ip(t)pdV(t)> (\/(v)) <tr€n[3>§}lp()\\/(v),

a

(3.1)

where V (t) := \/% (v) is the total variation of v on [a,t] with t € [a,b)].

The function V' is nondecreasing on [a,b] with V (a) = 0 and V (b) = Z v). If
we put V (t) := \/f (v) = \/Z (v)=V (t), then Vis nonincreasing with V (a) = \/Z (v)
and V (b) =0

We have:

Proposition 1. Assume that h : [a,b] — C is continuous, g is absolutely continuous
on [a,b] and v is of bounded variation on [a,b], then the Riemann-Stieltjes integral

f; h(t)g(t)dv(t) exists and for p, ¢ > 1 with % + % =1, we have,
(i) If g(a) =0, then

)
b
/ B (t) g (t) do (1)
b

<</ (t—a) b () aV (¢ ) (/v )Id' (¢ |th> -
(ii) If g (b) = 0, then
b
/ B (t) g (t) dv (1)

b 1/p b 1/q
<</ <b—t>|h<t>|”dv<t>) (/ v<t>|g'<t>qczt) .

Proof. Using the first inequality in (3.1), we get

[ ros@a) < [ nwswiavo.

Using now Theorem 3 for f = fa h and u =V, we get, for g (a) =0, that

(3.5) /|h (] v (t)

1/p b 1/aq
S(/ (ta)lh(t)pdV(t)> (/ [V(b)V(t)]lg'(t)th> :

(3.2)

(3.4)
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If g (b) = 0, then

b
(3.6) / h(t) g (B)]dV (t)

b 1/p b
s( / (bt>|f’<t>|”dV<t>> ( / V<t>|g/<t>|th>

By utilising (3.4)-(3.6) we get the desired results (3.2) and (3.3). O

1/q

The case h = 1 is of interest since in this case

b b
/(tfa)dV(t):(b—a)V(b)—/ V(t)dt

and

We then can state:

Corollary 6. Assume that g is absolutely continuous on [a,b] and v is of bounded
variation on [a,b], then the Riemann-Stieltjes integral ffg (t)dv (t) exists and for
p,g>1 with}%qLé:l, we have

(i) If g(a) =0, then
b 1/p b 1/q
< (/ V(t)dt) </ V(t)d (t)|th> :

b
(3.7) / g (1) do (1)

(ii) If g(b) =0, then

(3.8)

b 1/p b 1/q
g(/ V(t)dt) </ V(t)|g’(t)|th> .

Proposition 2. Assume that h : [a,b] — C is continuous, g is absolutely continuous
on [a,b] with g (a) = g(b) = 0 and v is of bounded variation on [a,b], then for p,
q>1with%+%:1 we have

/a Yy (1)

We also have:

b
(3.9) / B (t) g (t) do (1)

1 b 1/q b e s 4 1/
< b-a) [\/(@] (/ |h<t>|pdvu)> (/ |g’<t>|th>

q
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and

b
(3.10) / h(t)g(t)dv(2)

< G(b—a)/abh(tnpdva)—/j
} (/ab

The proof follows by Theorem 5 and Lemma 1.

b 1/p
3 o av (t))

1/q
V) -V (“‘2”’>' y (t)|th> .

t—

Corollary 7. Assume that g is absolutely continuous on [a, b] with g (a) =g (b) =0
and v is of bounded variation on [a,b], then for p, ¢ > 1 with % + % =1 we have

b b a
eu) | gwwn]| <60 ( I <t>|”dt> V)
and
b
(3.12) / g8 dv (t)
b a+b e b a+b Ha

< (/a sgn(t—2>V(t)dt> (/a V(t)—V< 5 >'|g’(t)|th> :

Proof. Is similar to the one from Corollary 5. O

4. SOME INEQUALITIES FOR THE CEBYSEV FUNCTIONAL

Consider now the Cebysev functional

b
(41) Cu(f.9) :m / £ () g () du (1)

b b
_Eﬁéaa/fwm@;@%ﬂa/g@m@

where f, g : [a,b] — C are continuous and w« is monotonic nondecreasing with
u(a) # u(b).

In [3], Cerone and Dragomir obtained some reverses of Griiss inequality for
positive measures. If we write these inequalities for the Riemann-Stieltjes integral
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of monotonic integrators, we have

(4.2) [Cu(f,9)]

1 b 1 b
<501 =m) ot [ o) = ot [ du (o) o
1 1 b 1 b g v

Si(M—m) lu(b)—u(a)/a g(t)_u(b)—u(a)/a g (s)du(s) du(t)]
1 1 b
S2(M_m)f§?£5g(t)_u(b)—u(a)/a g(s)du(s)

for p > 1, provided —co < m < f(t) < M < oo for a.e. t € [a,b] and the
corresponding integrals are finite. The constant % is sharp in all the inequalities in
(4.2) in the sense that it cannot be replaced by a smaller constant.

In addition, if —co <n < g(t) < N < oo for a.e. t € [a,b], then the following
refinement of the Griiss inequality for Riemann-Stieltjes integral is obtained:

—_— T ' 2 U — ; ' S ul\s |
o [ O (u(b)_u(a)/a 9()d <>>

< 2 (M —m)(N-n).

A~ =

Here, the constants % and i are also sharp in the sense mentioned above.

We have the following inequality for the Cebysev functional C,,.
Theorem 5. Assume that g : [a,b] — C is absolutely continuous on [a,b], f :

[a,b] — C is continuous on [a,b] and u is monotonic nondecreasing on [a,b], where
p,qg>1 with%—f—%:l. Then

(4.4) |Cu(f:9)l

1 b
S(wm~wwl“‘®

b D 1/p
f(t)—m / £ () du (s) du<t>)

b 1/q
X(wmiw@/WJ@WW@uqu
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f T /f ) du (s du ))Up
( — /|g >]dt>1/q.

Proof. We use the following Sonin type identity for the Riemann-Stieltjes integral

(4.6) Cul(f,9)

-t [ (10 o [ e -

for v € C, which can be proved directly on calculating the integral from the right
hand side.
Using the inequality (2.1) for v = g (a), we have

Cu7:9)
f(t)—ﬁ/ 7 ($)du(s)] 19 (6) ~ g @] du (0

1/p
[t T /f ) du (s du ))

1/q
x ( [ 1900 ) ) dt)
that proves the inequality in (4.4).

Using the inequality (2.2) for v = ¢ (b) , we have

Cu(120)
f(t)—ﬁ/ £ () (s)] g (6) — 9 ()] du (1

1/p
ft T /f ) du (s du ))

1 b
e VA
1/q
(/ [u(t)u()]lg()lth>

that proves the inequality (4.5). O

<

Corollary 8. Assume that g : [a,b] — C is absolutely continuous on [a,b], f :
[a,b] — C is continuous on [a,b] and u is monotonic nondecreasing on [a,b], where
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p,q>1with%+é=1. Then

1/1) </ g (¢ |th> &
<<b>i<>/ T—ul /f )du(s

Proof. If we add the inequalities (4.4) and (4.5), then we get
21C, (

(4.7) [Cu(f,9)]

l\')\»—t

t—a)

Tl /f ) du (s
/ ¢ (¢ >1dt)

= /f ) du (s
( — /|g >]dt)1/q

Using the inequality (2.15), we have
1 b
Ef<u<b>—u<a>/a“‘“> oEol AL
1 b
Jru(b)—u(a)/ b= ) —u( /f Jau(s
i [ u(®)]di
1/q
— / e (o) dt)

:(b_a)l/p<M/ab - /f du (s

b 1/q
x (/ o <t>|qczt) ,

which proves (4.7).

1/p
u )
1/p
u )

U

1/p
u )

1/p
u )

1/p

15
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Remark 3. If p=q =2, then by (4.7) we get
1/2

b
@) et <50-0" ([ oFa

o\ 1/2
1 b 5 1 b
Nawrme [ FOr a0 |t [ e
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