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CERTAIN PROPERTIES OF THE NIELSEN’S S-FUNCTION
KWARA NANTOMAH

ABSTRACT. In this paper, we present some properties of the Nielsen’s (-
function. The obtained results are analogous to some known works involving
the gamma and digamma functions.

1. INTRODUCTION

In 1974, Gautschi [3] presented an interesting inequality involving the classical
Euler’'s Gamma function, I'(z). He proved that, for z > 0, the harmonic mean of
['(z) and I'(1/x) is always greater than or equal to 1. That is,

20 (x)I(1/x)
~ I'(z)+T(1/z)’
with equality if x = 1. As a direct consequence of (1), the inequalities

2<T(z)+T(1/x), x>0, (2)

x>0, (1)

and

1 <TI'(z)I'(1/x), x>0, (3)
are obtained. Then recently, Alzer and Jameson [1] established a striking com-
panion of (1) which involves the digamma function, ¢ (z). They proved that the

inequality
2¢(x)y(1/x)
-7 < , x>0, 4
9{a) + v(1/2) W
holds, with equality if x = 1, where v = 0.57721, ... is the Euler-Mascheroni
constant. In addition, they proved that

P(z) =¢(z) +¢(1/2), (5)
is strictly concave on (0,00) and that
P+ )1 —y) <v°, ye(0,1). (7)
Pp(1/z) <4 x>0z 4L ®)
Also, in [11], it was established among other things that the function
1 1
= (o+3) -0 -5 )
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is strictly decreasing and convex on (0,00). Motivated by the result (9), Mortici
[6] proved that the generalized function

fo=t(ata) =)= 7, ae(0.1), (10)

is strictly completely monotonic on (0, 0o).
Inspired by the above results, the purpose of this paper is to establish analogous
results for the Nielsen’s S-function.

2. PRELIMINARY DEFINITIONS

The Nielsen’s S-function may be defined by any of the following equivalent forms

(see [2], [4], [7], [10]).

1 txfl
B(x :/ dt, x>0, 11
@=[ 1 (1)
0 efxt
:/0 oo dt, x>0, (12)
0 _1 k
- EC S s, (13)
k=0 T

_%@(xgﬁ_w(g},x>a (14)

where ¢(z) = £ InI'(z) is the digamma or psi function and I'(z) is the Euler’s
Gamma function. It is known to satisfy the properties:

Bla+1) = — f(a), (15)

l—x) = : 1
Bla) + B - 1) = =" (16)
Some particular values of the function are 5(1) =1n2, g (%) =7, 8 (%) =2-3
and 5(2) =1—1n2.
By differentiating n-times of (11), (12), (13), (14) and (15), one obtains
1 nyr—1
() = [ WO L 1
B = [ B >0 (7)
00 tne—xt
=(—1)" dt 0 18
( >A i > (18)
)k
Z ]HWH, x>0 (19)
k=
w [T+ 1 w [T
W{w“( ) w<>(§)}, ©>0  (20)
) _Eutl - am
Nz +1) = e g (z), x>0 (21)

where n € Ny and 8O (z) = B(z).
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For additional information on this special function, one may refer to [7], [3], [I]
and the related references therein.
3. MAIN RESULTS

Lemma 3.1. The function xf(x) is decreasing and convex on (0,00). Conse-
quently, the inequalities

B(z) +xf () <0, x>0, (22)

and
20'(x) + 2p"(z) >0, x>0, (23)

are satisfied.

Proof. In Theorem 3 of [9], the function z |3 (z)|, z > 0, m € Ny was proved
to be completely monotonic. Thus, z5(z), the case where m = 0, is completely
monotonic. Since every completely monotonic function is decreasing and convex

[5], we conclude that x5(x) is decreasing and convex. This give rise to inequalities
(22) and (23).

Theorem 3.2. The function
Q(z) = p(x) + 5(1/x) (24)
is strictly convez on (0,00).

Proof. By direct differentiation, and by applying (23), we obtain
1
Q@) = #(a) ~ (1),
2 1
Q) = '(a) + B (1) + —8(1/)

1 1
= (@) + — |28'(1/2) + —5"(1/2) | >0,
which completes the proof.
Theorem 3.3. The inequality
B(x) + B(1/z) = 2In2 (25)
holds for x > 0.

Proof. Since Q" (x) > 0, then (Q’'(x))" > 0 which implies that Q'(z) is increasing.
Then @Q'(z) < Q'(1) = 0 for x € (0,1] and Q'(x) > Q'(1) = 0 for = € [1, 00).
These imply that Q(x) is decreasing on (0, 1] and increasing on [1, 00). Therefore,
in either case, we have Q(z) > Q(1) = 21In2 which gives the desired result.

Theorem 3.4. The inequality
B+ 5)B(1 - 5) > (In2)? (26)
holds for s € [0,1).
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Proof. Since (x) is logarithmically convex (see [7]), we have

5(*3Y) < VE@aw 27)

for x > 0 and y > 0. Now, by letting x =1+ s and y = 1 — s in (27), we obtain
the desired result (26).

Theorem 3.5. The inequality
B(z)B(1/x) > (In2)? (28)
holds for x > 0.

Proof. If x > 1, then 0 < 1/x < 1. Also, if 0 < z < 1, then 1/x > 1. Hence
it suffices to prove (28) for # > 1. For x > 1 and s € [0,1), let x = 1 + s and
1/x =1 —s. Then by (26), we obtain

Bx)B(1/z) = B(1+5)B(1 = s) = (In2)?%,
which concludes the proof.

Theorem 3.6. For z,y € (1,00), the harmonic mean of f(x) and [(y) is less
than 1 . In other words, the inequality

26(x)B(y)

B+ Bly) (29)

holds for z,y € (1,00).

Proof. Note that for t € (1,00), we have 8(t) < B(1) = In2, since S(z) is de-
creasing. Let z,y € (1,00). Then by the AM-GM inequality, we have

VE@aE) < A

This implies that

28(x)B(y) < [B(x)]* + [B(y)]? < B(x) + B(y),

which gives the desired result. Note that S(v) € (0,1) for all v € (1,00). Hence,
[B(v)]? < B(v) for all v € (1,00).

In view of the harmonic mean inequalities (1) and (4), we give the following
conjecture.

Conjecture 3.7. For = € (0,00), the inequality
2p(x)B(1/x)

<In2, 30
Bw) + B(1/z) %0)
is satisfied.
Theorem 3.8. The double inequality
1 1
— —1In2 — 31
- 2< )< (31)

holds for x > 0.



Proof. As a a direct consequence of (15), we obtain

Bla) < - (32)
for z > 0. Also, by (15), we obtain the limit
lim {1 - 5(:5)} — 2. (33)
=0t | T
Now, let §(z) = £ — 3(z) for > 0. Then by (21), we obtain
(@) = —= = @) <0,
which shows that 0(x) is decreasing. Hence for > 0, we obtain
1
P Bx) =6(z) < gcligl+ O(z) =1In2 (34)
Then, by combining (32) and (34), we obtain the result (31).
Theorem 3.9. The limit
2
e =) S .

is valid for z € (0,1).
Proof. Tt can be shown from relation (14) that §'(1) = —’{—;. Then by L’Hopital’s

rule, we obtain

N GRS S N W (S I )
: {Bﬂ—z) M1+d} ziw{wu—zW*WM1+aP}

Theorem 3.10. Fora > 0 and x > 0, let f, be defined as
a
fol@) = Bz +a) - B(z) - 2. (36)
Then — f, is strictly completely monotonic.

Proof. Recall that a function f : (0,00) — R is said to be completely monotonic
on (0, 00) if f has derivatives of all order and (—1)" ™ (x) > 0 for all € (0, 00)

and n € N. Let
ha(w) = = fula) = = + Bla) = Bz +a).
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Then by repeated differentiation and by using (18), we obtain

A ) = (~1)'ar 4 B (w) — Bz +-0)

o0 tne—wf
the " dt " dt
/ +(=1) /0 1+ et
e~ (z+a)t
/ it,
1+et
00 yn—at 00 4n —(z+a)t
a/ ”—“dt+/ c dt—/ e —;
0 o 1+et o l+et

o] 1— —at
:/ a—l——e t"e "t dt > 0,
0 14+et

which completes the proof.

—
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Corollary 3.11. The inequality
1
O<ﬂ(x)—5(:z:+a)+%Sln2+a—a+ﬁ(a) (37)
holds for a > 0 and x € [1, 00).

Proof. Since h,(z) is completely monotonic on (0,00), then it is decreasing on
(0,00). Then for = € [1,00), we have

0= Jim ha(2) < hale) < ha(1) = 0+ 6(1) = (1 +0)

1
=In2+a——+ f(a)
a

yielding the desired result.

Remark 3.12. In particular, if @ = 1, we obtain the sharp inequality

O<ﬁ(x)—ﬁ(x—|—%> 21:5— W;?’ (38)

for z € [1,00). If x € (0,1], then the right-hand sides of (37) and (38) are
reversed.

)
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