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Abstract. In this paper, we present some properties of the Nielsen’s β-
function. The obtained results are analogous to some known works involving
the gamma and digamma functions.

1. Introduction

In 1974, Gautschi [3] presented an interesting inequality involving the classical
Euler’s Gamma function, Γ(x). He proved that, for x > 0, the harmonic mean of
Γ(x) and Γ(1/x) is always greater than or equal to 1. That is,

1 ≤ 2Γ(x)Γ(1/x)

Γ(x) + Γ(1/x)
, x > 0, (1)

with equality if x = 1. As a direct consequence of (1), the inequalities

2 ≤ Γ(x) + Γ(1/x), x > 0, (2)

and
1 ≤ Γ(x)Γ(1/x), x > 0, (3)

are obtained. Then recently, Alzer and Jameson [1] established a striking com-
panion of (1) which involves the digamma function, ψ(x). They proved that the
inequality

− γ ≤ 2ψ(x)ψ(1/x)

ψ(x) + ψ(1/x)
, x > 0, (4)

holds, with equality if x = 1, where γ = 0.57721, ... is the Euler-Mascheroni
constant. In addition, they proved that

P (x) = ψ(x) + ψ(1/x), (5)

is strictly concave on (0,∞) and that

ψ(x) + ψ(1/x) < −2γ, x > 0, x 6= 1. (6)

ψ(1 + y)ψ(1− y) < γ2, y ∈ (0, 1). (7)

ψ(x)ψ(1/x) < γ2, x > 0, x 6= 1. (8)

Also, in [11], it was established among other things that the function

h1 = ψ

(
x+

1

2

)
− ψ (x)− 1

2x
, (9)
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is strictly decreasing and convex on (0,∞). Motivated by the result (9), Mortici
[6] proved that the generalized function

fa = ψ(x+ a)− ψ(x)− a

x
, a ∈ (0, 1), (10)

is strictly completely monotonic on (0,∞).
Inspired by the above results, the purpose of this paper is to establish analogous
results for the Nielsen’s β-function.

2. Preliminary Definitions

The Nielsen’s β-function may be defined by any of the following equivalent forms
(see [2], [4], [7], [10]).

β(x) =

∫ 1

0

tx−1

1 + t
dt, x > 0, (11)

=

∫ ∞
0

e−xt

1 + e−t
dt, x > 0, (12)

=
∞∑
k=0

(−1)k

k + x
, x > 0, (13)

=
1

2

{
ψ

(
x+ 1

2

)
− ψ

(x
2

)}
, x > 0, (14)

where ψ(x) = d
dx

ln Γ(x) is the digamma or psi function and Γ(x) is the Euler’s
Gamma function. It is known to satisfy the properties:

β(x+ 1) =
1

x
− β(x), (15)

β(x) + β(1− x) =
π

sin πx
. (16)

Some particular values of the function are β(1) = ln 2, β
(
1
2

)
= π

2
, β
(
3
2

)
= 2− π

2

and β(2) = 1− ln 2.
By differentiating n-times of (11), (12), (13), (14) and (15), one obtains

β(n)(x) =

∫ 1

0

(ln t)ntx−1

1 + t
dt, x > 0 (17)

= (−1)n
∫ ∞
0

tne−xt

1 + e−t
dt, x > 0 (18)

= (−1)nn!
∞∑
k=0

(−1)k

(k + x)n+1
, x > 0 (19)

=
1

2n+1

{
ψ(n)

(
x+ 1

2

)
− ψ(n)

(x
2

)}
, x > 0 (20)

β(n)(x+ 1) =
(−1)nn!

xn+1
− β(n)(x), x > 0 (21)

where n ∈ N0 and β(0)(x) = β(x).
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For additional information on this special function, one may refer to [7], [8], [9]
and the related references therein.

3. Main Results

Lemma 3.1. The function xβ(x) is decreasing and convex on (0,∞). Conse-
quently, the inequalities

β(x) + xβ′(x) < 0, x > 0, (22)

and

2β′(x) + xβ′′(x) > 0, x > 0, (23)

are satisfied.

Proof. In Theorem 3 of [9], the function x
∣∣β(m)(x)

∣∣, x > 0, m ∈ N0 was proved
to be completely monotonic. Thus, xβ(x), the case where m = 0, is completely
monotonic. Since every completely monotonic function is decreasing and convex
[5], we conclude that xβ(x) is decreasing and convex. This give rise to inequalities
(22) and (23).

Theorem 3.2. The function

Q(x) = β(x) + β(1/x) (24)

is strictly convex on (0,∞).

Proof. By direct differentiation, and by applying (23), we obtain

Q′(x) = β′(x)− 1

x2
β′(1/x),

Q′′(x) = β′′(x) +
2

x3
β′(1/x) +

1

x4
β′′(1/x)

= β′′(x) +
1

x3

[
2β′(1/x) +

1

x
β′′(1/x)

]
> 0,

which completes the proof.

Theorem 3.3. The inequality

β(x) + β(1/x) ≥ 2 ln 2 (25)

holds for x > 0.

Proof. Since Q′′(x) > 0, then (Q′(x))′ > 0 which implies that Q′(x) is increasing.
Then Q′(x) ≤ Q′(1) = 0 for x ∈ (0, 1] and Q′(x) ≥ Q′(1) = 0 for x ∈ [1,∞).
These imply that Q(x) is decreasing on (0, 1] and increasing on [1,∞). Therefore,
in either case, we have Q(x) ≥ Q(1) = 2 ln 2 which gives the desired result.

Theorem 3.4. The inequality

β(1 + s)β(1− s) ≥ (ln 2)2 (26)

holds for s ∈ [0, 1).
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Proof. Since β(x) is logarithmically convex (see [7]), we have

β

(
x+ y

2

)
≤
√
β(x)β(y), (27)

for x > 0 and y > 0. Now, by letting x = 1 + s and y = 1− s in (27), we obtain
the desired result (26).

Theorem 3.5. The inequality

β(x)β(1/x) ≥ (ln 2)2 (28)

holds for x > 0.

Proof. If x ≥ 1, then 0 < 1/x ≤ 1. Also, if 0 < x ≤ 1, then 1/x ≥ 1. Hence
it suffices to prove (28) for x ≥ 1. For x ≥ 1 and s ∈ [0, 1), let x = 1 + s and
1/x = 1− s. Then by (26), we obtain

β(x)β(1/x) = β(1 + s)β(1− s) ≥ (ln 2)2,

which concludes the proof.

Theorem 3.6. For x, y ∈ (1,∞), the harmonic mean of β(x) and β(y) is less
than 1 . In other words, the inequality

2β(x)β(y)

β(x) + β(y)
< 1 (29)

holds for x, y ∈ (1,∞).

Proof. Note that for t ∈ (1,∞), we have β(t) < β(1) = ln 2, since β(x) is de-
creasing. Let x, y ∈ (1,∞). Then by the AM-GM inequality, we have√

β(x)β(y) ≤ β(x) + β(y)

2
.

This implies that

2β(x)β(y) ≤ [β(x)]2 + [β(y)]2 < β(x) + β(y),

which gives the desired result. Note that β(v) ∈ (0, 1) for all v ∈ (1,∞). Hence,
[β(v)]2 < β(v) for all v ∈ (1,∞).

In view of the harmonic mean inequalities (1) and (4), we give the following
conjecture.

Conjecture 3.7. For x ∈ (0,∞), the inequality

2β(x)β(1/x)

β(x) + β(1/x)
≤ ln 2, (30)

is satisfied.

Theorem 3.8. The double inequality

1

x
− ln 2 < β(x) <

1

x
(31)

holds for x > 0.
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Proof. As a a direct consequence of (15), we obtain

β(x) <
1

x
. (32)

for x > 0. Also, by (15), we obtain the limit

lim
x→0+

{
1

x
− β(x)

}
= ln 2. (33)

Now, let θ(x) = 1
x
− β(x) for x > 0. Then by (21), we obtain

θ′(x) = − 1

x2
− β′(x) < 0,

which shows that θ(x) is decreasing. Hence for x > 0, we obtain

1

x
− β(x) = θ(x) < lim

x→0+
θ(x) = ln 2 (34)

Then, by combining (32) and (34), we obtain the result (31).

Theorem 3.9. The limit

lim
z→0+

1

z

{
1

β(1− z)
− 1

β(1 + z)

}
= − π2

6(ln 2)2
(35)

is valid for z ∈ (0, 1).

Proof. It can be shown from relation (14) that β′(1) = −π2

12
. Then by L’Hopital’s

rule, we obtain

lim
z→0+

1

z

{
1

β(1− z)
− 1

β(1 + z)

}
= lim

z→0+

{
β′(1− z)

[β(1− z)]2
+

β′(1 + z)

[β(1 + z)]2

}
= − π2

6(ln 2)2
.

Theorem 3.10. For a > 0 and x > 0, let fa be defined as

fa(x) = β(x+ a)− β(x)− a

x
. (36)

Then −fa is strictly completely monotonic.

Proof. Recall that a function f : (0,∞)→ R is said to be completely monotonic
on (0,∞) if f has derivatives of all order and (−1)nf (n)(x) ≥ 0 for all x ∈ (0,∞)
and n ∈ N. Let

ha(x) = −fa(x) =
a

x
+ β(x)− β(x+ a).
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Then by repeated differentiation and by using (18), we obtain

h(n)a (x) = (−1)na
n!

xn+1
+ β(n)(x)− β(n)(x+ a)

= (−1)na

∫ ∞
0

tne−xt dt+ (−1)n
∫ ∞
0

tne−xt

1 + e−t
dt

− (−1)n
∫ ∞
0

tne−(x+a)t

1 + e−t
dt,

(−1)nh(n)a (x) = a

∫ ∞
0

tne−xt dt+

∫ ∞
0

tne−xt

1 + e−t
dt−

∫ ∞
0

tne−(x+a)t

1 + e−t
dt

=

∫ ∞
0

[
a+

1− e−at

1 + e−t

]
tne−xt dt > 0,

which completes the proof.

Corollary 3.11. The inequality

0 < β(x)− β(x+ a) +
a

x
≤ ln 2 + a− 1

a
+ β(a) (37)

holds for a > 0 and x ∈ [1,∞).

Proof. Since ha(x) is completely monotonic on (0,∞), then it is decreasing on
(0,∞). Then for x ∈ [1,∞), we have

0 = lim
x→∞

ha(x) < ha(x) ≤ ha(1) = a+ β(1)− β(1 + a)

= ln 2 + a− 1

a
+ β(a)

yielding the desired result.

Remark 3.12. In particular, if a = 1
2
, we obtain the sharp inequality

0 < β(x)− β
(
x+

1

2

)
+

1

2x
≤ ln 2 +

π − 3

2
(38)

for x ∈ [1,∞). If x ∈ (0, 1], then the right-hand sides of (37) and (38) are
reversed.
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