ON THE HERMITE-HADAMARD TYPE INEQUALITIES FOR n-TIMES DIFFERENTIABLE r-CONVEX FUNCTIONS

MUSTAFA KARAGÖZLÜ★♦ AND MERVE AVCI ARDIÇ★

ABSTRACT. In this paper, some new integral inequalities for n-times differentiable r-convex functions are obtained.

1. INTRODUCTION

The following inequality is well known in literature as Hermite-Hadamard inequality for convex functions:

Let $f: I \subset \mathbb{R} \to \mathbb{R}$ be a convex function on the interval I of real numbers and $a, b \in I$ with a < b. Then the following double inequality holds:

$$(1.1) f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x)dx \le \frac{f(a)+f(b)}{2}.$$

For Hermite-Hadamard inequality, see [2]-[4], [6], [7] and [9]-[11] where further references are listed.

In [7], the power mean $M_r(x, y; \lambda)$ of order r of positive numbers x, y is defined as the following:

(1.2)
$$M_r(x,y;\lambda) = \begin{cases} (\lambda x^r + (1-\lambda)y^r), & if \ r \neq 0 \\ (x^{\lambda}y^{1-\lambda}), & if \ r = 0 \end{cases}.$$

In [3], Gill et. all used the definition of $M_r(x, y; \lambda)$ to introduce the concept of r-convex functions.

Definition 1. A positive function f is r-convex on [a,b] if for all $x,y \in [a,b]$ and $\lambda \in [0,1]$ (1.3)

$$f(\lambda x + (1 - \lambda)y) \le M_r(f(x), f(y); \lambda) = \begin{cases} (\lambda f^r(x) + (1 - \lambda)f^r(y))^{\frac{1}{r}}, & r \ne 0 \\ f^{\lambda}(x)f^{1-\lambda}(y), & r = 0 \end{cases}.$$

In the definition of r-convex functions if we choose r=1 and r=0, we have ordinary convex functions and log-convex functions respectively.

It is obvious that if f is r-convex in [a, b] where r > 0, then f^r is convex on [a, b].

1

¹⁹⁹¹ Mathematics Subject Classification. 26A51; 26D15.

 $[\]label{eq:keywords} \textit{Key words and phrases. } r-\text{convex function, Hermite-Hadamard inequality, } \textit{n-} \text{times differentiable functions.}$

[◆] Corresponding Author.

The generalized logarithmic means of order r of positive numbers x, y defined by

(1.4)
$$L_r(x,y) = \begin{cases} \frac{r}{r+1} \frac{x-y}{\ln x - \ln y}, & r \neq 0, -1; x \neq y \\ \frac{x-y}{\ln x - \ln y}, & r = 0, x \neq y \\ xy \frac{x-y}{\ln x - \ln y}, & r = -1, x \neq y \\ x & x = y \end{cases}$$

,see [3].

Gill et. all proved the following theorem for r-convex functions:

Theorem 1. Suppose f is a positive r-convex function on [a,b]. Then

$$(1.5) \frac{1}{b-a} \int_a^b f(x)dx \le L_r(f(a), f(b)).$$

If f is a positive r-concave function, then the inequality is reversed, see [3].

For several results concerning of r-convexity, see [3] and [5]-[11] where further references are listed.

The main aim of this paper is to obtain some new integral inequalities for r-convex functions by using Lemma 1.

Lemma 1. Suppose $f: I \subseteq \mathbb{R} \to \mathbb{R}$ is a function such that $f^{(n)}$ exists on I° for $n \in \mathbb{N}$, $n \geq 1$. If $f^{(n)}$ is integrable on [a,b], for $a,b \in I$ with a < b, the equality holds

$$(1.6)_{_}$$

$$\sum_{k=0}^{n-1} \frac{\left[(-1)^k + 1 \right]}{2^{k+1}(k+1)!} f^{(k)} \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(x) dx = \frac{(-1)(b-a)^n}{n!} \int_0^1 K_n(t) f^{(n)} \left(ta + (1-t)b \right) dt,$$

where

$$K_n(t) := \left\{ egin{array}{ll} t^n, & t \in \left[0, \frac{1}{2}\right] \\ (t-1)^n & t \in \left(\frac{1}{2}, 1\right], \end{array} \right.$$

see [4].

2. New Results for r-Convexity

Theorem 2. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ is a function such that $f^{(n)}$ exists on I° for $n \in \mathbb{N}$, $n \ge 1$ and $f^{(n)} \in L[a,b]$ where $a,b \in I$ with a < b. If $|f^{(n)}|$ is r-convex function on [a,b] for r > 1, then the inequality holds:

$$\left| \sum_{k=0}^{n-1} \frac{\left| (-1)^k + 1 \right|}{2^{k+1}(k+1)!} f^{(k)} \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(x) dx \right|$$

$$\leq \frac{(b-a)^n}{n!} \left\{ \left| f^{(n)} \left(a \right) \right| + \left| f^{(n)} \left(b \right) \right| \right\}$$

$$\times \left(\frac{r}{2^{(nr+r+1)/r}(nr+r+1)} + \beta_{1/2} \left(n+1, \frac{1}{r}+1 \right) \right),$$

where

$$\beta_z(a,b) = \int_0^z u^{a-1} (1-u)^{b-1} du$$

is the incomplete Beta function which is a generalization of the complete Beta function.

Proof. From Lemma 1 and using properties of modulus, we can write

$$A = \left| \sum_{k=0}^{n-1} \frac{\left[(-1)^k + 1 \right]}{2^{k+1} (k+1)!} f^{(k)} \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(x) dx \right|$$

$$\leq \frac{(b-a)^n}{n!} \left[\int_0^{\frac{1}{2}} t^n \left| f^{(n)} \left(ta + (1-t)b \right) \right| dt + \int_{\frac{1}{2}}^1 (1-t)^n \left| f^{(n)} \left(ta + (1-t)b \right) \right| dt \right].$$

If we use r-convexity of $|f^{(n)}|$, then we have

$$A \leq \frac{(b-a)^n}{n!} \left[\int_0^{\frac{1}{2}} t^n \left(t \left| f^{(n)}(a) \right|^r + (1-t) \left| f^{(n)}(b) \right|^r \right)^{1/r} dt \right] + \int_{\frac{1}{2}}^1 (1-t)^n \left(t \left| f^{(n)}(a) \right|^r + (1-t) \left| f^{(n)}(b) \right|^r \right)^{1/r} dt \right].$$

If we use

(2.1)

$$\sum_{i=1}^{n} (a_i + b_i)^k \le \sum_{i=1}^{n} a_i^k + \sum_{i=1}^{n} b_i^k \text{ for } 0 < k < 1; a_1, a_2, ..., a_n \ge 0 \text{ and } b_1, b_2, ..., b_n \ge 0,$$

we obtain

$$A \leq \frac{(b-a)^n}{n!} \left[\int_0^{\frac{1}{2}} \left(t^{(nr+1)/r} \left| f^{(n)}(a) \right| + t^n (1-t)^{1/r} \left| f^{(n)}(b) \right| \right) dt \right] + \int_{\frac{1}{2}}^1 \left((1-t)^n t^{1/r} \left| f^{(n)}(a) \right| + (1-t)^{(nr+1)/r} \left| f^{(n)}(b) \right| \right) dt \right].$$

If we calculate the above integrals, then the proof is completed.

Theorem 3. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ is a function such that $f^{(n)}$ exists on I° for $n \in \mathbb{N}$, $n \geq 1$ and $f^{(n)} \in L[a,b]$ where $a,b \in I$ with a < b. If $|f^{(n)}|^q$ is r-convex function on [a,b] for r > 1 and q > 1; $\frac{1}{p} + \frac{1}{q} = 1$, then the inequality holds:

$$\left| \sum_{k=0}^{n-1} \frac{\left| (-1)^k + 1 \right|}{2^{k+1}(k+1)!} f^{(k)} \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(x) dx \right|$$

$$\leq \frac{(b-a)^n}{n!} \left(\frac{1}{(np+1)2^{np+1}} \right)^{1/p} \left(\frac{r}{(r+1)2^{(r+1)/r}} \right)^{1/q}$$

$$\times \left\{ \left[\left| f^{(n)}(a) \right|^q + \left| f^{(n)}(b) \right|^q (2^{(r+1)/r} - 1) \right]^{1/q} + \left[\left| f^{(n)}(a) \right|^q (2^{(r+1)/r} - 1) + \left| f^{(n)}(b) \right|^q \right]^{1/q} \right\}.$$

Proof. From Lemma 1 and using the properties of modulus and well known Hölder inequality, we can write

$$A \leq \frac{(b-a)^n}{n!} \left[\left(\int_0^{\frac{1}{2}} t^{np} dt \right)^{1/p} \left(\int_0^{\frac{1}{2}} \left| f^{(n)} \left(ta + (1-t) b \right) \right|^q dt \right)^{1/q} + \left(\int_{\frac{1}{2}}^1 (1-t)^{np} dt \right)^{1/p} \left(\int_{\frac{1}{2}}^1 \left| f^{(n)} \left(ta + (1-t) b \right) \right|^q dt \right)^{1/q} \right].$$

If we use r-convexity of $|f^{(n)}|^q$, then we have

$$A \leq \frac{(b-a)^n}{n!} \left[\left(\int_0^{\frac{1}{2}} t^{np} dt \right)^{1/p} \left(\int_0^{\frac{1}{2}} \left[t \left| f^{(n)}(a) \right|^{qr} + (1-t) \left| f^{(n)}(b) \right|^{qr} \right]^{1/r} dt \right)^{1/q} + \left(\int_{\frac{1}{2}}^1 (1-t)^{np} dt \right)^{1/p} \left(\int_{\frac{1}{2}}^1 \left[t \left| f^{(n)}(a) \right|^{qr} + (1-t) \left| f^{(n)}(b) \right|^{qr} \right]^{1/r} dt \right)^{1/q} \right].$$

Applying (2.1) in the above inequality we can write

$$A \leq \frac{(b-a)^n}{n!} \left[\left(\int_0^{\frac{1}{2}} t^{np} dt \right)^{1/p} \left(\int_0^{\frac{1}{2}} \left[t^{1/r} \left| f^{(n)}(a) \right|^q + (1-t)^{1/r} \left| f^{(n)}(b) \right|^q \right] dt \right)^{1/q} + \left(\int_{\frac{1}{2}}^1 (1-t)^{np} dt \right)^{1/p} \left(\int_{\frac{1}{2}}^1 \left[t^{1/r} \left| f^{(n)}(a) \right|^q + (1-t)^{1/r} \left| f^{(n)}(b) \right|^q \right] dt \right)^{1/q} \right].$$

If we calculate above integrals, then the proof is completed.

Theorem 4. Under the assumptions of Theorem 3 we have the following inequality

$$\left| \sum_{k=0}^{n-1} \frac{\left\lfloor (-1)^k + 1 \right\rfloor}{2^{k+1}(k+1)!} f^{(k)} \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(x) dx \right|$$

$$\leq \frac{(b-a)^n}{n!} \left(\frac{1}{2} \right)^{1/p}$$

$$\times \left\{ \left(\left| f^{(n)}(a) \right|^q \frac{r}{r+qnr+1} \left(\frac{1}{2} \right)^{(r+qnr+1)/r} \right.$$

$$+ \left| f^{(n)}(b) \right|^q \beta_{1/2} \left(qn+1, \frac{1}{r}+1 \right) \right)^{1/q}$$

$$+ \left(\left| f^{(n)}(a) \right|^q \beta_{1/2} \left(qn+1, \frac{1}{r}+1 \right) \right.$$

$$+ \left| f^{(n)}(b) \right|^q \frac{r}{r+qnr+1} \left(\frac{1}{2} \right)^{(r+qnr+1)/r} \right)^{1/q} \right\}.$$

Proof. From Lemma 1 and using the properties of modulus and well known Hölder inequality, we can write

$$A \leq \frac{(b-a)^n}{n!} \left[\left(\int_0^{\frac{1}{2}} dt \right)^{1/p} \left(\int_0^{\frac{1}{2}} t^{nq} \left| f^{(n)} \left(ta + (1-t) b \right) \right|^q dt \right)^{1/q} + \left(\int_{\frac{1}{2}}^1 dt \right)^{1/p} \left(\int_{\frac{1}{2}}^1 (1-t)^{nq} \left| f^{(n)} \left(ta + (1-t) b \right) \right|^q dt \right)^{1/q} \right].$$

If we use $|f^{(n)}|^q$ of r-convexity and applying (2.1) in the above inequality we can write

$$A \leq \frac{(b-a)^n}{n!} \left[\left(\int_0^{\frac{1}{2}} dt \right)^{1/p} \left(\left| f^{(n)}(a) \right|^q \int_0^{\frac{1}{2}} t^{(nqr+1)/r} dt + \left| f^{(n)}(b) \right|^q \int_0^{\frac{1}{2}} t^{nq} (1-t)^{1/r} dt \right)^{1/q} + \left(\int_{\frac{1}{2}}^1 dt \right)^{1/p} \left(\left| f^{(n)}(a) \right|^q \int_{\frac{1}{2}}^1 (1-t)^{nq} t^{1/r} dt + \left| f^{(n)}(b) \right|^q \int_{\frac{1}{2}}^1 (1-t)^{(nqr+1)/r} dt \right)^{1/q} \right].$$

If we calculate above integrals, then the proof is completed.

Theorem 5. Under the assumptions of Theorem 3 we have the following inequality

$$\left| \sum_{k=0}^{n-1} \frac{\left| (-1)^k + 1 \right|}{2^{k+1}(k+1)!} f^{(k)} \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(x) dx \right|$$

$$\leq \frac{(b-a)^n}{n!} \left(\frac{1}{2^{n+1}(n+1)} \right)^{1/p}$$

$$\times \left\{ \left(\left| f^{(n)}(a) \right|^q \frac{r}{(r+nr+1)2^{(r+nr+1)/r}} + \left| f^{(n)}(b) \right|^q \beta_{1/2} \left(n+1, \frac{1}{r}+1 \right) \right)^{1/q} + \left(\left| f^{(n)}(a) \right|^q \beta_{1/2} \left(n+1, \frac{1}{r}+1 \right) + \left| f^{(n)}(b) \right|^q \frac{r}{(r+nr+1)2^{(r+nr+1)/r}} \right)^{1/q} \right\}.$$

Proof. From Lemma 1 and using the properties of modulus and well known Hölder inequality, we can write

$$A \leq \frac{(b-a)^n}{n!} \left[\left(\int_0^{\frac{1}{2}} t^n dt \right)^{1/p} \left(\int_0^{\frac{1}{2}} t^n \left| f^{(n)} \left(ta + (1-t) b \right) \right|^q dt \right)^{1/q} + \left(\int_{\frac{1}{2}}^1 (1-t)^n dt \right)^{1/p} \left(\int_{\frac{1}{2}}^1 (1-t)^n \left| f^{(n)} \left(ta + (1-t) b \right) \right|^q dt \right)^{1/q} \right].$$

If we use $|f^{(n)}|^q$ of r-convexity and applying (2.1) in the above inequality we can write

$$A \leq \frac{(b-a)^n}{n!} \left[\left(\int_0^{\frac{1}{2}} t^n dt \right)^{1/p} \left(\int_0^{\frac{1}{2}} t^n \left(t^{1/r} \left| f^{(n)}(a) \right|^q + (1-t)^{1/r} \left| f^{(n)}(b) \right|^q \right) dt \right)^{1/q} + \left(\int_{\frac{1}{2}}^1 (1-t)^n dt \right)^{1/p} \left(\int_{\frac{1}{2}}^1 (1-t)^n \left(t^{1/r} \left| f^{(n)}(a) \right|^q + (1-t)^{1/r} \left| f^{(n)}(b) \right|^q \right) dt \right)^{1/q} \right].$$

If we calculate above integrals, then the proof is completed.

Theorem 6. Under the assumptions of Theorem 3 we have the following inequality

$$\begin{split} & \left| \sum_{k=0}^{n-1} \frac{\left[(-1)^k + 1 \right]}{2^{k+1}(k+1)!} f^{(k)} \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(x) dx \right| \\ & \leq & \frac{(b-a)^n}{n!} \left(\frac{1}{2^{(n-1)p+2} \left[(n-1)p + 2 \right]} \right)^{1/p} \\ & \times \left\{ \left(\left| f^{(n)}(a) \right|^q \frac{r}{2^{(2r+1)/r}(2r+1)} + \left| f^{(n)}(b) \right|^q \frac{r}{(r+1)(2r+1)} \left[\frac{2^{(2r+1)/r}r - 3r - 1}{2^{(2r+1)/r}} \right] \right)^{1/q} \\ & + \left(\left| f^{(n)}(a) \right|^q \frac{r}{(r+1)(2r+1)} \left[\frac{2^{(2r+1)/r}r - 3r - 1}{2^{(2r+1)/r}} \right] + \left| f^{(n)}(b) \right|^q \frac{r}{2^{(2r+1)/r}(2r+1)} \right)^{1/q} \right\}. \end{split}$$

Proof. From Lemma 1 and using the properties of modulus and well known Hölder inequality, we can write

$$A \leq \frac{(b-a)^n}{n!} \left[\left(\int_0^{\frac{1}{2}} t^{(n-1)p} t dt \right)^{1/p} \left(\int_0^{\frac{1}{2}} t \left| f^{(n)} \left(ta + (1-t) b \right) \right|^q dt \right)^{1/q} + \left(\int_{\frac{1}{2}}^1 (1-t)^{(n-1)p} (1-t) dt \right)^{1/p} \left(\int_{\frac{1}{2}}^1 (1-t) \left| f^{(n)} \left(ta + (1-t) b \right) \right|^q dt \right)^{1/q} \right].$$

If we use $|f^{(n)}|^q$ of r-convexity and applying (2.1) in the above inequality we can write

$$A \leq \frac{(b-a)^n}{n!} \left[\left(\int_0^{\frac{1}{2}} t^{(n-1)p} t dt \right)^{1/p} \left(\int_0^{\frac{1}{2}} t \left(t^{1/r} \left| f^{(n)}(a) \right|^q + (1-t)^{1/r} \left| f^{(n)}(b) \right|^q \right) dt \right)^{1/q} + \left(\int_{\frac{1}{2}}^1 (1-t)^{(n-1)p} (1-t) dt \right)^{1/p} \left(\int_{\frac{1}{2}}^1 (1-t) \left(t^{1/r} \left| f^{(n)}(a) \right|^q + (1-t)^{1/r} \left| f^{(n)}(b) \right|^q \right) dt \right)^{1/q} \right].$$

If we calculate above integrals, then the proof is completed.

Theorem 7. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ is a function such that $f^{(n)}$ exists on I° for $n \in \mathbb{N}$, $n \geq 1$ such that $f^{(n)} \in L[a,b]$ where $a,b \in I$ with a < b. If $\left| f^{(n)} \right|^q$ is r-convex function on [a,b] for q > 1; $\frac{1}{p} + \frac{1}{q} = 1$, then the inequality holds:

$$\left| \sum_{k=0}^{n-1} \frac{\left[(-1)^k + 1 \right]}{2^{k+1}(k+1)!} f^{(k)} \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(x) dx \right|$$

$$\leq \frac{(b-a)^n}{2(n)!} \left(\frac{1}{2^n(n+1)} \right)^{1/p}$$

$$\left\{ \left[L_r \left(\left| f^{(n)} \left(b \right) \right|^q, \left| f^{(n)} \left(\frac{a+b}{2} \right) \right|^q \right) \right]^{1/q} + \left[L_r \left(\left| f^{(n)} \left(a \right) \right|^q, \left| f^{(n)} \left(\frac{a+b}{2} \right) \right|^q \right) \right]^{1/q} \right\}.$$

Proof. From Lemma 1 and using the properties of modulus and well known Hölder inequality, we can write

$$A \leq \frac{(b-a)^n}{n!} \left[\left(\int_0^{\frac{1}{2}} t^{np} dt \right)^{1/p} \left(\int_0^{\frac{1}{2}} \left| f^{(n)} \left(ta + (1-t) b \right) \right|^q dt \right)^{1/q} + \left(\int_{\frac{1}{2}}^1 (1-t)^{np} dt \right)^{1/p} \left(\int_{\frac{1}{2}}^1 \left| f^{(n)} \left(ta + (1-t) b \right) \right|^q dt \right)^{1/q} \right].$$

If we use r-convextity of $|f^{(n)}|^q$; we can write the following inequalities

$$\int_{0}^{1/2} \left| f^{(n)} \left(ta + (1-t) b \right) \right|^{q} dt \le \frac{1}{2} L_{r} \left(\left| f^{(n)} \left(b \right) \right|^{q}, \left| f^{(n)} \left(\frac{a+b}{2} \right) \right|^{q} \right)$$

and

$$\int_{1/2}^{1} \left| f^{(n)} \left(ta + (1-t) b \right) \right|^{q} dt \le \frac{1}{2} L_{r} \left(\left| f^{(n)} \left(a \right) \right|^{q}, \left| f^{(n)} \left(\frac{a+b}{2} \right) \right|^{q} \right)$$

via (1.5). The proof is completed.

References

- Ardıç, M.A., (2013). Inequalities via n-times Differentiable quasi-Convex Functions, arXiv:1310.0947v1 [math.CA].
- [2] Ardıç, M.A., Ekinci, A., Akdemir, A.O., and Özdemir, M.E., (2018). Hadamard type inequalities for m-convex and (α, m)-convex functions via fractional integrals, Conference: 6th International Eurasian Conference on Mathematical Sciences and Applications (IECMSA-2017).
- [3] Gill, P.M., Pearce, C.E.M., and Pečarić, J., (1997). Hadamard's inequality for r-convex functions, Journal of Mathematical Analysis and Applications 215: 461–470.
- [4] Latif, M.A., and Dragomir,S.S., (2014). On Hermite Hadamard Type Integral Inequalities for n-times Differentiable (α, m)-Logarithmically convex Functions, RGMIA Reserch Report Collection, 17, Article 14, 16pp.
- [5] Karagözlü, M., and Ardıç, M.A., (2018). New integral inequalities for r-convex functions, 1st International Conference on Mathematical and Related Sciences, Antalya, Turkey.
- [6] Ngoc, N.P.N., Vinh, N.V., and Hien, P.T.T., (2009). Integral inequalities of Hadamard type for r-convex functions, International Mathematical Forum, no:4, 1723-1728.
- [7] Pearce, C.E.M., Pečarić, J., and Šimić, V., (1998). Stolarsky means and Hadamard's inequality. Journal of Mathematical Analysis and Applications 220: 99–109.
- [8] Sulaiman, W.T., (2010). Integral Inequalities Regarding r-Convex and r-Concave Functions,
 J. Korean Math. Soc. 47 (2010), No. 2, pp. 373–383.
- [9] Yang, G.S., and Hwang, D.Y., (2001). Refinements of Hadamard inequality for r-convex functions. Indian J. Pure Appl. Math. 32(10), 1571-15791.
- [10] Zabandan, G., Bodaghi, A., and Kılıçman, A., (2012). The Hermite-Hadamard inequality for r-convex functions, Journal of Inequalities and Applications, 215.
- [11] Wang, J., Deng, J., and Fečkan, M., (2013). Hermite-Hadamard Type Inequalities for r-Convex Functions Based on The Use of Riemann-Lioville Fractional Integrals, Ukrainian Mathematical Journal, Vol. 65, No. 2.

 \star Adiyaman University, Faculty of Science and Arts, Department of Mathematics, Adiyaman, Turkey

 $E ext{-}mail\ address: m.karagozlu@hotmail.com}$

E-mail address: mavci@adiyaman.edu.tr