
SOME WEIGHTED OSTROWSKI TYPE INEQUALITIES FOR
RIEMANN-STIELTJES INTEGRAL

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we provide some Ostrowski type inequalities to ap-
proximate the Riemann-Stieltjes integral of a product of two functions

R b
a f (t) g (t) dv (t).

Applications for continuous functions of selfadjoint operators and functions of
unitary operators on Hilbert spaces are also given.

1. Introduction

One can approximate the Stieltjes integral
R b
a
f (t) du (t) with the following sim-

pler quantities:

1

b� a [u (b)� u (a)] �
Z b

a

f (t) dt ([25], [26])(1.1)

f (x) [u (b)� u (a)] ([15], [16])(1.2)

or with

(1.3) [u (b)� u (x)] f (b) + [u (x)� u (a)] f (a) ([24]),

where x 2 [a; b] :
In order to provide a priory sharp bounds for the approximation error, consider

the functionals:

D (f; u; a; b) :=

Z b

a

f (t) du (t)� 1

b� a [u (b)� u (a)] �
Z b

a

f (t) dt;

�(f; u; a; b; x) :=

Z b

a

f (t) du (t)� f (x) [u (b)� u (a)]

and

T (f; u; a; b; x) :=

Z b

a

f (t) du (t)� [u (b)� u (x)] f (b)� [u (x)� u (a)] f (a) :

If the integrand f is Riemann integrable on [a; b] and the integrator u : [a; b]! R
is L�Lipschitzian, i.e.,
(1.4) ju (t)� u (s)j � L jt� sj for each t; s 2 [a; b] ;

then the Stieltjes integral
R b
a
f (t) du (t) exists and, as pointed out in [25],

(1.5) jD (f; u; a; b)j � L
Z b

a

�����f (t)�
Z b

a

1

b� af (s) ds
����� dt:
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The inequality (1.5) is sharp in the sense that the multiplicative constant C = 1 in
front of L cannot be replaced by a smaller quantity. Moreover, if there exists the
constants m; M 2 R such that m � f (t) �M for a.e. t 2 [a; b] ; then [25]

(1.6) jD (f; u; a; b)j � 1

2
L (M �m) (b� a) :

The constant 12 is best possible in (1.6).
A di¤erent approach in the case of integrands of bounded variation were consid-

ered by the same authors in 2001, [26], where they showed that

(1.7) jD (f; u; a; b)j � max
t2[a;b]

�����f (t)� 1

b� a

Z b

a

f (s) ds

�����
b_
a

(u) ;

provided that f is continuous and u is of bounded variation. Here
Wb
a (u) denotes

the total variation of u on [a; b] : The inequality (1.7) is sharp.
If we assume that f is K-Lipschitzian, then [26]

(1.8) jD (f; u; a; b)j � 1

2
K (b� a)

b_
a

(u) ;

with 1
2 the best possible constant in (1.8).

For various bounds on the error functional D (f; u; a; b) where f and u belong
to di¤erent classes of function for which the Stieltjes integral exists, see [21], [20],
[19], and [8] and the references therein.
For the functional � (f; u; a; b; x) we have the bound [15]:

j� (f; u; a; b; x)j(1.9)

� H
"
(x� a)r

x_
a

(f) + (b� x)r
b_
x

(f)

#

� H �

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

[(x� a)r + (b� x)r]
�
1
2

bW
a
(f) + 1

2

���� xW
a
(f)�

bW
x
(f)

����� ;
[(x� a)qr + (b� x)qr]

1
q

"�
xW
a
(f)

�p
+

�
bW
x
(f)

�p# 1
p

if p > 1; 1
p +

1
q = 1;

�
1
2 (b� a) +

��x� a+b
2

���r bW
a
(f) ;

provided f is of bounded variation and u is of r-H-Hölder type, i.e.,

(1.10) ju (t)� u (s)j � H jt� sjr for each t; s 2 [a; b] ;

with given H > 0 and r 2 (0; 1]:
If f is of q-K-Hölder type and u is of bounded variation, then [16]

(1.11) j� (f; u; a; b; x)j � K
�
1

2
(b� a) +

����x� a+ b2
�����q b_

a

(u) ;

for any x 2 [a; b] :
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If u is monotonic nondecreasing and f of q-K-Hölder type, then the following
re�nement of (1.11) also holds [8]:

j� (f; u; a; b; x)j � K
"
(b� x)q u (b)� (x� a)q u (a)(1.12)

+ q

(Z x

a

u (t) dt

(x� t)1�q
�
Z b

x

u (t) dt

(t� x)1�q

)#
� K [(b� x)q [u (b)� u (x)] + (x� a)q [u (x)� u (a)]]

� K
�
1

2
(b� a) +

����x� a+ b2
�����q [u (b)� u (a)] ;

for any x 2 [a; b] :
If f is monotonic nondecreasing and u is of r-H-Hölder type, then [8]:

j� (f; u; a; b; x)j(1.13)

� H
"
[(x� a)r � (b� x)r] f (x)

+ r

(Z x

a

f (t) dt

(b� t)1�r
�
Z b

x

f (t) dt

(t� r)1�r

)#
� H f(b� x)r [f (b)� f (x)] + (x� a)r [f (x)� f (a)]g

� H
�
1

2
(b� a) +

����x� a+ b2
�����r [f (b)� f (a)] ;

for any x 2 [a; b] :
The error functional T (f; u; a; b; x) satis�es similar bounds, see [24], [8], [3] and

[2] and the details are omitted.
Motivated by the above results, in this paper we provide some simple ways to ap-

proximate the Riemann-Stieltjes integral of a product of two functions
R b
a
f (t) g (t) dv (t)

by the use of simpler quantities and under several assumptions for the functions
involved. Applications for continuous functions of selfadjoint operators and contin-
uous functions of unitary operators on Hilbert spaces are also given.

2. Ostrowski Type Inequalities for Riemann-Stieltjes Integral

Assume that u; f : [a; b] ! C. If the Riemann-Stieltjes integral
R b
a
f (u) du (t)

exists, we write for simplicity, like in [1, p. 142] that f 2 RC (u; [a; b]) ; or RC (u)
when the interval is implicitly known. If the functions u; f are real valued, then
we write f 2 R (u; [a; b]) ; or R (u) :
We have the following simple however useful representation of the Riemann-

Stieltjes integral:

Lemma 1. Assume that u; f : [a; b] ! C and x 2 [a; b] are such that f 2
RC (u; [a; x]) \RC (u; [x; b]). Then for any �; � 2 C we have the equalityZ b

a

f (t) du (t) = � [u (x)� u (a)] + � [u (b)� u (x)](2.1)

+

Z x

a

[f (t)� �] du (t) +
Z b

x

[f (t)� �] du (t) :
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Proof. For any x 2 [a; b] and �; � 2 C the Riemann-Stieltjes integrals
R b
a
f (t) du (t) ;R x

a
[f (t)� �] du (t) and

R b
x
[f (t)� �] du (t) exist and we haveZ x

a

[f (t)� �] du (t) +
Z b

x

[f (t)� �] du (t)

=

Z x

a

f (t) du (t)� �
Z x

a

du (t) +

Z b

x

f (t) du (t)� �
Z b

x

du (t)

=

Z b

a

f (t) du (t)� � [u (x)� u (a)]� � [u (b)� u (x)]

giving the desired result (2.1). �

Remark 1. Assume that v 2 BVC [a; b] ; namely of bounded variation on [a; b]
and f; g 2 R (v; [a; b]). De�ne F (x) :=

R x
a
f (t) dv (t) and G (x) :=

R x
a
g (t) dv (t)

for x 2 [a; b] : According to [1, p. 158-159], we then have that f 2 RC (G; [a; b]) ;
g 2 RC (G; [a; b]) ; fg 2 RC (v; [a; b]) and the following equalities holdZ b

a

f (t) g (t) dv (t) =

Z b

a

f (t) dG (t) =

Z b

a

g (t) dF (t) :

Now, by writing the equality (2.1) for f and u = G we getZ b

a

f (t) g (t) dv (t) = �

Z x

a

g (t) dv (t) + �

Z b

x

g (t) dv (t)(2.2)

+

Z x

a

[f (t)� �] g (t) dv (t) +
Z b

x

[f (t)� �] g (t) dv (t)

= �

Z b

a

g (t) dv (t) + (�� �)
Z x

a

g (t) dv (t)

+

Z x

a

[f (t)� �] g (t) dv (t) +
Z b

x

[f (t)� �] g (t) dv (t) :

The case of � = � is of interest and generates the following particular cases:

Corollary 1. With the assumptions of Lemma 1 we have

(2.3)
Z b

a

f (t) du (t) = [u (b)� u (a)]�+
Z b

a

[f (t)� �] du (t) :

In particular, we have for any x 2 [a; b] thatZ b

a

f (t) du (t) = [u (b)� u (a)] f (x)(2.4)

�
Z x

a

[f (x)� f (t)] du (t) +
Z b

x

[f (t)� f (x)] du (t) :

Remark 2. With the assumption that all Riemann-Stieltjes integrals below exists,
we have the three functions equalities:

(2.5)
Z b

a

f (t) g (t) du (t) = �

Z b

a

g (t) du (t) +

Z b

a

[f (t)� �] g (t) du (t) :
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In particular, we have for any x 2 [a; b] that

(2.6)
Z b

a

f (t) g (t) du (t) = f (x)

Z b

a

g (t) du (t)

�
Z x

a

[f (x)� f (t)] g (t) du (t) +
Z b

x

[f (t)� f (x)] g (t) du (t) :

Theorem 1. Assume that f 2 BVC [a; b] \ CC [a; b] and u 2 BVC [a; b] : Then for
any x 2 [a; b] we have

(2.7)

�����
Z b

a

f (t) du (t)� [u (b)� u (a)] f (x)
�����

�
x_
a

(f)
x_
a

(u) +
b_
x

(f)
b_
x

(u)�
Z x

a

t_
a

(f) d

 
t_
a

(u)

!
�
Z b

x

b_
t

(f) d

 
t_
x

(u)

!

�
x_
a

(f)
x_
a

(u) +
b_
x

(f)
b_
x

(u)

�

8>>>>>><>>>>>>:

 
1
2

b_
a

(f) + 1
2

�����
x_
a

(f)�
b_
x

(f)

�����
!

b_
a

(u)

 
1
2

b_
a

(u) + 1
2

�����
x_
a

(u)�
b_
x

(u)

�����
!

b_
a

(f)

�
b_
a

(f)
b_
a

(u) :

Proof. It is well known that if p 2 R (u; [a; b]) where u 2 BVC [a; b] then we have
[1, p. 177]

(2.8)

�����
Z b

a

p (t) du (t)

����� �
Z b

a

jp (t)j d
 

t_
a

(u)

!
� sup

t2[a;b]
jp (t)j

b_
a

(u) :

Using the identity (2.4) and the property (2.8) we have for any x 2 [a; b] that�����
Z b

a

f (t) du (t)� [u (b)� u (a)] f (x)
�����(2.9)

�
����Z x

a

[f (x)� f (t)] du (t)
����+
�����
Z b

x

[f (t)� f (x)] du (t)
�����

�
Z x

a

jf (x)� f (t)j d
 

t_
a

(u)

!
+

Z b

x

jf (t)� f (x)j d
 

t_
x

(u)

!
=: B (x) :

Now, since f 2 BVC [a; b] ; then

jf (x)� f (t)j �
x_
t

(f) for a � t � x

and

jf (x)� f (t)j �
t_
x

(f) for x � t � b:
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Therefore

(2.10) B (x) �
Z x

a

x_
t

(f) d

 
t_
a

(u)

!
+

Z b

x

t_
x

(f) d

 
t_
x

(u)

!
=: C (x) :

We also have

(2.11)
Z x

a

x_
t

(f) d

 
t_
a

(u)

!
=

Z x

a

 
x_
a

(f)�
t_
a

(f)

!
d

 
t_
a

(u)

!

=
x_
a

(f)
x_
a

(u)�
Z x

a

t_
a

(f) d

 
t_
a

(u)

!
�

x_
a

(f)
x_
a

(u) ;

since the function
�_
a

(u) is nondecreasing on [a; x] and

(2.12)
Z b

x

t_
x

(f) d

 
t_
x

(u)

!
=

Z b

x

 
b_
x

(f)�
b_
t

(f)

!
d

 
t_
x

(u)

!

=
b_
x

(f)
b_
x

(u)�
Z b

x

b_
t

(f) d

 
t_
x

(u)

!
�

b_
x

(f)
b_
x

(u) ;

since the function
�_
x

(u) is nondecreasing on [x; b] :

By making use of (2.11) and (2.12) we get

C (x) �
x_
a

(f)
x_
a

(u)�
Z x

a

t_
a

(f) d

 
t_
a

(u)

!

+
b_
x

(f)
b_
x

(u)�
Z b

x

b_
t

(f) d

 
t_
x

(u)

!
�

x_
a

(f)
x_
a

(u) +
b_
x

(f)
b_
x

(u)

and the �rst inequality (2.7) is thus proved.
Observe that, by the elementary fact

mp+ nq � max fp; qg (m+ n) =
�
1

2
(p+ q) +

1

2
jp� qj

�
(m+ n)

we deduce the last part of (2.7). �

Remark 3. Assume that there exists m 2 [a; b] such that

(2.13)
m_
a

(f) =
b_
m

(f) ;

then by (2.7) we get�����
Z b

a

f (t) du (t)� [u (b)� u (a)] f (m)
����� � 1

2

b_
a

(f)

b_
a

(u) :
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Also, if p 2 [a; b] is such that
p_
a

(u) =
b_
p

(u) ; then by (2.7) we get

�����
Z b

a

f (t) du (t)� [u (b)� u (a)] f (p)
����� � 1

2

b_
a

(f)
b_
a

(u)

Corollary 2. Assume that f; g 2 BVC [a; b] \ CC [a; b] and v 2 BVC [a; b] : De�ne
G (x) :=

R x
a
g (t) dv (t) ; then for any x 2 [a; b] we have

(2.14)

�����
Z b

a

f (t) g (t) dv (t)� f (x)
Z b

a

g (t) dv (t)

�����
�

x_
a

(f)
x_
a

(G) +
b_
x

(f)
b_
x

(G)�
Z x

a

t_
a

(f) d

 
t_
a

(G)

!
�
Z b

x

b_
t

(f) d

 
t_
x

(G)

!

�
x_
a

(f)

x_
a

(G) +

b_
x

(f)

b_
x

(G)

�

8>>>>>><>>>>>>:

 
1
2

b_
a

(f) + 1
2

�����
x_
a

(f)�
b_
x

(f)

�����
!

b_
a

(G)

 
1
2

b_
a

(G) + 1
2

�����
x_
a

(G)�
b_
x

(G)

�����
!

b_
a

(f)

�
b_
a

(f)
b_
a

(G) :

The proof follows by Theorem 1 by taking u = G:

Remark 4. If there exists m 2 [a; b] such that (2.13) is true, then by (2.14) we get

(2.15)

�����
Z b

a

f (t) g (t) dv (t)� f (m)
Z b

a

g (t) dv (t)

����� � 1

2

b_
a

(f)

b_
a

(G) :

If q 2 [a; b] is such that
q_
a

(G) =
b_
q

(G) ; then by (2.14) we get

(2.16)

�����
Z b

a

f (t) g (t) dv (t)� f (q)
Z b

a

g (t) dv (t)

����� � 1

2

b_
a

(f)

b_
a

(G) :

Let [c; d] � [a; b] and let � : c = x0 < x1 < ::: < xn�1 < xn = d be a division of
[c; d] : Then

d_
c

(G) = sup
�

n�1X
i=0

jG (xi+1)�G (xi)j = sup
�

n�1X
i=0

����Z xi+1

xi

g (t) dv (t)

����
� sup

�

n�1X
i=0

Z xi+1

xi

jg (t)j d
 

t_
c

(v)

!
=

Z d

c

jg (t)j d
 

t_
c

(v)

!

� max
t2[c;d]

jg (t)j
d_
c

(v) ;
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which implies that
x_
a

(G) �
Z x

a

jg (t)j d
 

t_
a

(v)

!
� max

t2[a;x]
jg (t)j

x_
a

(v)

and
b_
x

(G) �
Z b

x

jg (t)j d
 

t_
x

(v)

!
� max

t2[x;b]
jg (t)j

b_
x

(v)

for x 2 (a; b) :
Using Corollary 2 and the above bounds, we can state the following result as

well:

Proposition 1. Assume that f; v 2 BVC [a; b] and f; g 2 CC [a; b] ; then we have

(2.17)

�����
Z b

a

f (t) g (t) dv (t)� f (x)
Z b

a

g (t) dv (t)

�����
�

x_
a

(f)
x_
a

(G) +
b_
x

(f)
b_
x

(G)

�
x_
a

(f)

Z x

a

jg (t)j d
 

t_
a

(v)

!
+

b_
x

(f)

Z b

x

jg (t)j d
 

t_
x

(v)

!

�
x_
a

(f)
x_
a

(v) max
t2[a;x]

jg (t)j+
b_
x

(f)
b_
x

(v) max
t2[x;b]

jg (t)j

for x 2 (a; b) :

From (2.17) we can get various upper bounds for the quantity

B (f; g; v;x) :=
x_
a

(f)
x_
a

(v) max
t2[a;x]

jg (t)j+
b_
x

(f)
b_
x

(v) max
t2[x;b]

jg (t)j ; x 2 (a; b)

out of which we can use in Operator Theory in Hilbert spaces the following one

(2.18) B (f; g; v;x) �
"
x_
a

(f) max
t2[a;x]

jg (t)j+
b_
x

(f) max
t2[x;b]

jg (t)j
#

b_
a

(v)

for x 2 (a; b) :

3. Applications for Selfadjoint Operators

We denote by B (H) the Banach algebra of all bounded linear operators on
a complex Hilbert space (H; h�; �i) : Let A 2 B (H) be selfadjoint and let '� be
de�ned for all � 2 R as follows

'� (s) :=

8<: 1; for �1 < s � �;

0; for � < s < +1:
Then for every � 2 R the operator
(3.1) E� := '� (A)

is a projection which reduces A:
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The properties of these projections are collected in the following fundamental
result concerning the spectral representation of bounded selfadjoint operators in
Hilbert spaces, see for instance [27, p. 256]:

Theorem 2 (Spectral Representation Theorem). Let A be a bounded selfadjoint
operator on the Hilbert space H and let a = min f� j� 2 Sp (A)g =: minSp (A) and
b = max f� j� 2 Sp (A)g =: maxSp (A) : Then there exists a family of projections
fE�g�2R, called the spectral family of A; with the following properties

a) E� � E�0 for � � �0;
b) Ea�0 = 0; Eb = I and E�+0 = E� for all � 2 R;
c) We have the representation

A =

Z b

a�0
�dE�:

More generally, for every continuous complex-valued function ' de�ned on R
there exists a unique operator ' (A) 2 B (H) such that for every " > 0 there exists
a � > 0 satisfying the inequality




' (A)�

nX
k=1

'
�
�0k
� �
E�k � E�k�1

�




 � "
whenever 8>>>><>>>>:

�0 < a = �1 < ::: < �n�1 < �n = b;

�k � �k�1 � � for 1 � k � n;

�0k 2 [�k�1; �k] for 1 � k � n
this means that

(3.2) ' (A) =

Z b

a�0
' (�) dE�;

where the integral is of Riemann-Stieltjes type.

Corollary 3. With the assumptions of Theorem 2 for A; E� and ' we have the
representations

' (A)x =

Z b

a�0
' (�) dE�x for all x 2 H

and

(3.3) h' (A)x; yi =
Z b

a�0
' (�) d hE�x; yi for all x; y 2 H:

In particular,

h' (A)x; xi =
Z b

a�0
' (�) d hE�x; xi for all x 2 H:

Moreover, we have the equality

k' (A)xk2 =
Z b

a�0
j' (�)j2 d kE�xk2 for all x 2 H:

We need the following result that provides an upper bound for the total variation
of the function R 3 � 7! hE�x; yi 2 C on an interval [�; �] ; see [23].
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Lemma 2. Let fE�g�2R be the spectral family of the bounded selfadjoint operator
A: Then for any x; y 2 H and � < � we have the inequality

(3.4)

"
�_
�

�

E(�)x; y

��#2
� h(E� � E�)x; xi h(E� � E�) y; yi ;

where
�_
�

�

E(�)x; y

��
denotes the total variation of the function



E(�)x; y

�
on [�; �] :

Remark 5. For � = a �" with " > 0 and � = b we get from (3.4) the inequality

(3.5)
b_

a�"

�

E(�)x; y

��
� h(I � Ea�")x; xi1=2 h(I � Ea�") y; yi1=2

for any x; y 2 H:
This implies, for any x; y 2 H, that

(3.6)
b_

a�0

�

E(�)x; y

��
� kxk kyk ;

where
b_

a�0

�

E(�)x; y

��
denotes the limit lim"!0+

"
b_

a�"

�

E(�)x; y

��#
:

We can state the following result for functions of selfadjoint operators:

Theorem 3. Let A be a bounded selfadjoint operator on the Hilbert space H
and let a = min f� j� 2 Sp (A)g =: minSp (A) and b = max f� j� 2 Sp (A)g =:
maxSp (A) : Also, assume that fE�g�2R is the spectral family of the bounded self-
adjoint operator A and f; g : I ! C are continuous on I; [a; b] � �I (the interior of
I) with f of locally bounded variation on I: Then for all u 2 [a; b] ;

(3.7) jhf (A) g (A)x; yi � f (u) hg (A)x; yij

�
"
u_
a

(f) max
t2[a;u]

jg (t)j+
b_
u

(f) max
t2[u;b]

jg (t)j
#

b_
a�0

�

E(�)x; y

��
�
"
u_
a

(f) max
t2[a;u]

jg (t)j+
b_
u

(f) max
t2[u;b]

jg (t)j
#
kxk kyk

for any x; y 2 H:

Proof. Using the inequalities (2.17) and (2.18) we have for all u 2 [a; b] ; for small
" > 0 and for any x; y 2 H that�����

Z b

a�"
f (t) g (t) d hEtx; yi � f (u)

Z b

a�"
g (t) d hEtx; yi

�����
�
"

u_
a�"

(f) max
t2[a�";u]

jg (t)j+
b_
u

(f) max
t2[u;b]

jg (t)j
#

b_
a�"

�

E(�)x; y

��
:

Taking the limit over " ! 0+ and using the continuity of f; g and the Spectral
Representation Theorem, we deduce the desired result (3.7). �
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Remark 6. The above inequality (3.7) can produce several particular examples of
interest. For example if [a; b] � (0;1) and we take f (t) = ln t and g (t) = tp;
p > 0; then by (3.7) we get

(3.8) jhAp lnAx; yi � ln (u) hApx; yij �
�
up ln

�u
a

�
+ bp ln

�
b

u

��
kxk kyk

for any x; y 2 H and u 2 [a; b] :
If in (3.8) we take u =

p
ab 2 [a; b] ; then we get

(3.9)

����hAp lnAx; yi � ln a+ ln b2
hApx; yi

����
� 1

2
(ln b� ln a)

p
bp
hp
ap +

p
bp
i
kxk kyk

for any x; y 2 H:
If we take f (t) = tq and g (t) = tp; p; q > 0; then by (3.7) we get

(3.10)
��
Ap+qx; y�� uq hApx; yi�� � [(uq � aq)up + (bq � uq) bp] kxk kyk

for any x; y 2 H and u 2 [a; b] :
If we take u =

�
aq+bq

2

�1=q 2 [a; b] in (3.10), then we get
(3.11)

����
Ap+qx; y�� aq + bq2
hApx; yi

����
� 1

2
(bq � aq)

"�
aq + bq

2

�p=q
+ bp

#
kxk kyk

for any x; y 2 H:

4. Applications for Unitary Operators

A unitary operator is a bounded linear operator U : H ! H on a Hilbert space
H satisfying

U�U = UU� = 1H

where U� is the adjoint of U; and 1H : H ! H is the identity operator. This
property is equivalent to the following:

(i) U preserves the inner product h�; �i of the Hilbert space, i.e., for all vectors
x and y in the Hilbert space, hUx;Uyi = hx; yi and

(ii) U is surjective.

The following result is well known [27, p. 275 - p. 276]:

Theorem 4 (Spectral Representation Theorem). Let U be a unitary operator on
the Hilbert space H: Then there exists a family of projections fP�g�2[0;2�], called
the spectral family of U; with the following properties

a) P� � P�0 for � � �0;
b) P0 = 0; P2� = I and P�+0 = P� for all � 2 [0; 2�);
c) We have the representation

U =

Z 2�

0

exp (i�) dP�:
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More generally, for every continuous complex-valued function ' de�ned on the
unit circle C (0; 1) there exists a unique operator ' (U) 2 B (H) such that for every
" > 0 there exists a � > 0 satisfying the inequality




' (U)�

nX
k=1

'
�
exp

�
i�0k
�� �
P�k � P�k�1

�




 � "
whenever 8>>>><>>>>:

0 = �1 < ::: < �n�1 < �n = 2�;

�k � �k�1 � � for 1 � k � n;

�0k 2 [�k�1; �k] for 1 � k � n
this means that

(4.1) ' (U) =

Z 2�

0

' (exp (i�)) dP�;

where the integral is of Riemann-Stieltjes type.

Corollary 4. With the assumptions of Theorem 4 for U; P� and ' we have the
representations

' (U)x =

Z 2�

0

' (exp (i�)) dP�x for all x 2 H

and

(4.2) h' (U)x; yi =
Z 2�

0

' (exp (i�)) d hP�x; yi for all x; y 2 H:

In particular,

h' (U)x; xi =
Z 2�

0

' (exp (i�)) d hP�x; xi for all x 2 H:

Moreover, we have the equality

k' (U)xk2 =
Z 2�

0

j' (exp (i�))j2 d kP�xk2 for all x 2 H:

On making use of an argument similar to the one in [23, Theorem 6], we have:

Lemma 3. Let fP�g�2[0;2�]be the spectral family of the unitary operator U on the
Hilbert space H: Then for any x; y 2 H and 0 � � < � � 2� we have the inequality

(4.3)
�_
�

�

P(�)x; y

��
� h(P� � P�)x; xi1=2 h(P� � P�) y; yi1=2 ;

where
�_
�

�

P(�)x; y

��
denotes the total variation of the function



P(�)x; y

�
on [�; �] :

In particular,

(4.4)
2�_
0

�

P(�)x; y

��
� kxk kyk

for any x; y 2 H:

We have:
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Theorem 5. Let U be a unitary operator on the Hilbert space H and fP�g�2[0;2�]
the spectral family of projections of U: Also, assume that f; g : C (0; 1) ! C are
continuous on C (0; 1) with f (exp (i�)) of bounded variation on [0; 2�]. If u 2 [0; 2�] ;
then

(4.5) jhf (U) g (U)x; yi � f (exp (iu)) hg (U)x; yij

�
"
u_
0

(f (exp (it))) max
t2[0;u]

jg (exp (it))j+
2�_
u

(exp (it)) max
t2[u;2�]

jg (exp (it))j
#

�
2�_
0

�

P(�)x; y

��
�
"
u_
0

(f (exp (it))) max
t2[0;u]

jg (exp (it))j+
2�_
u

(exp (it)) max
t2[u;2�]

jg (exp (it))j
#

� kxk kyk

for any x; y 2 H:

The proof follows by (2.17) and (2.18) and the Spectral Representation Theorem
for unitary operators in a similar way with the proof of Theorem 1 and we omit
the details.
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