RIEMANN-STIELTJES INTEGRAL INEQUALITIES OF
MODIFIED TRAPEZOID TYPE

SILVESTRU SEVER DRAGOMIR

ABSTRACT. In this paper we provide some bounds for the error in approximat-
ing the Riemann-Stieltjes integral fabf(t)g(t) du (t) by the modified trape-
zoidal rule

x b
f(a)/ g(t)du<t>+f<b>/ 0 (t) du (1)

under various assumptions for the integrands f and g, and the integrator u
for which the above integral exists. Applications for continuous functions of
selfadjoint operators in Hilbert spaces are provided as well.

1. INTRODUCTION

For two functions f, v : [a,b] — R and x € [a,b], consider the generalized
Ostrowski functional (see, [5]):

b
(L1) 0(frusa,a,b) = [u(b) — u(a)] f (x) - / £ () du (),

where the Riemann-Stieltjes integral ff f(t)du(t) is assumed to exist.
In [7], the author proved the following inequality

_a+b
2

r b
|V
for all z € [a,b], where f : [a,b] — R is of r-H-Hslder type, u a function of bounded
variation and \/Z (u) is its total variation on [a,b]. We recall this to mean,

(1.3) |f (@)= f(y)| < Hlz—y|" forany z, y € |a,b];

where H > 0, r € (0,1] are given. He has shown also that the constant %7 the
coefficient of (b — a), is the best possible for all € (0,1].

In [5], by the use of a different technique, the author has proved the following
complementary result

(1.2) 6 (f,u;a,x,b)| <HB (b—a)—l—‘a:

@ b
14 pLuanh <H |@-a\/ () + 0=\ ()
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provided f is a mapping of bounded variation and u is of Holder type with the
constant r € (0,1] and H > 0.

In 2000, Dragomir et al. [10] have also considered another approach in approx-
imating the Riemann-Stieltjes integral. Namely, they introduced the generalized
trapezoid functional

b
(1.5) GT (f,u;a,,b) := [U(fﬂ)—U(a)]f(a)HU(b)—U(w)]f(b)—/ f(#)du(t)

and using the identity

b
(16) GT (f,u;a,2,b) = / (u (t) — u(z)) df (t)
they proved the result

a+b
2

. ]T\b/m,

a

(1.7) |GT (f,u;a,z,b)| < H B (b—a)+

provided u is of r-H-Holder type (H > 0, r € (0,1]) and f is of bounded variation.
Here the constant %, the coefficient of (b — a), is also sharp. A partitioning of
the interval of integration allowed the estimation of the error to be determined,
enabling a priory knowledge for a desired accuracy.

In [4], Cerone and Dragomir obtained the following result for the generalized
trapezoid functional:

Theorem 1. Let f : [a,b] — R be a function of r-H-Hdlder type and u : [a,b] — R
a function of bounded variation on [a,b]. Then

(18) |GT(f;u7a,x,b)|

B T—

IA

vz + (V)| ()7 + (z-z'flr} So-ay
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for all x € [a,b].



RIEMANN-STIELTJES INTEGRAL INEQUALITIES 3

For some trapezoid type inequalities, see [2]-[10] and [12]-[13].
We consider now the more general functional

GT(f7g7u7a”x?b)

T b b
::f(a)/ g(t)du<t>+f<b>/ g(t)du(tw/ £ (t) g () du (1)

for functions for which the Riemann-Stieltjes integral exist and x € [a, b].
In particular, for g = 1, we have

GT(f, 1 u;a,2,b) = GT (f;u,a,2,b).

Motivated by the above results, in this paper we establish some inequalities
for the quantity GT (f,g,u;a,z,b) under various assumptions for the functions
involved. Applications for continuous functions of selfadjoint operators in Hilbert
spaces are provided as well.

2. INEQUALITIES FOR INTEGRANDS OF BOUNDED VARIATION

Assume that u, f : [a,b] — C. If the Riemann-Stieltjes integral f;f (u) du (t)
exists, we write for simplicity, like in [1, p. 142] that f € R¢ (u, [a,b]), or R, (u)
when the interval is implicitly known. If the functions u, f are real valued, then
we write f € R (u,[a,b]), or R (u).

We start with the following simple fact, see also :

Lemma 1. Let f, g, v : [a,b] = C, \, u € C and z € [a,b]. If fg, g € Rc (v, [a,z])N
Re (v, [x,b]), then fg, g € Rc (v,[a,b]) and
b T b
ey [ 10s®d® = [ s0a®+u[ g0
b

+/Z[f<t>—x1g<t>dv<t>+/ F(6) = ilg (8 do (2)

In particular, for p = X\, we have

(2.2) / £ () g (t)dv(t) = A / g (1) do (1)

+/z[f(t)—k]g(t)dv(t)+/ ()= X g (t)do (t)
b b
:A/ g(t)dv(t>+/ £ (5) = Alg (t)dv (£)

Proof. The integrability follows by Theorem 7. 4 from [1] which says that if a
function is Riemann-Stieltjes integrable on the intervals [a, z], [z, b] with x € [a, ],
then it is integrable on the whole interval [a, b] .
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Using the properties of the Riemann-Stieltjes integral, we have

T b
/ F(8) = Ng (8)do () +/ F(6) — 1lg (8 do (2)

T z b b
=/ f(t)g(t)dv(t)—/\/ g(t)dv<t>+/ f(t)g(t)dv(t)—u/ g (t) do (1)
ab ax xT b T
=/ f(t)g(t)dv(t)—A/ g(t)dv(t)—u/g@)dv(t),
2.1)

which is equivalent to the first equality in (2.1).

The rest is obvious. (]
Corollary 1. Assume that f, v : [a,b] — C and © € [a,b] are such that f €
Re (v, [a, z]) N Re (v, [x,b]). Then for any A, p € C we have the equality
(23 / F O o (0) = Mo (@) = v (@] + o () — 0 ()]

x b
+/ [f(t)—A]dv(tH/ [ (6) — sl dv (8).

In particular, for = X\, we have
b
N B R O R0}
x b
+/ [f(t)fA]dv(tH/ [F (6) — Al (8)
b
:Awb)w(am/ [F(6) — Ao (8).

The proof follows by Lemma 1 for g (t) =1, ¢ € [a, ] .

Remark 1. We observe that, see [1, Theorem 7.27], if f, g € Cc[a,b], namely,
are continuous on [a,b] and v € BV¢ [a,b], namely of bounded variation on [a,b],

then for any x € [a,b] the Riemann-Stieltjes integrals in Lemma 1 exist and the
equalities (2.1) and (2.2) hold.

If we take A = f(a) and p = f (b) in (2.1) we get for x € [a, b] that

b x b
(2.5) / £ () g (&) du(t) = £ (a) / g (t) du(t) +  (b) / g (t) du(t)

x b
+/ [f(t)ff(a)]g(t)dU(tH/ () = £ ()] g (8) du (1),

In particular, for g (¢) =1, ¢t € [a,b], we have for z € [a,b] that

b
(2.6) / @) du(t) = [u(z) —u(a)] f(a) + [u(b) —u(@)] f(b)

‘We have:
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Theorem 2. Assume that f, g € Ccla,b] and v € BVc[a,b]. If f € BV¢ [a,b],
then

(27) |GT (f,9.u;a,2,b)|

for all x € [a,b].

Proof. Tt is well known that if p € R (u, [a,b]) where u € BV¢ [a,b] then we have

1, p. 177]
b
/ p(t)d

Using the representation (2.5) we have

(2.8)

b t b
t) S/a p(f)ld<\a/ (U)> St:ml p (O (w).

a

(2.9)

x b
—f<a>/ g(t)du(t)—f(b)/ g (t) du (1)

<

/w O - F@lg® du<t>| n

< [1r@- @l (

for « € (a,b).
Since f is of bounded variation on [a,b], hence

b
/ [ (6) = £ (0)] g (£) du (1)

a<w
=
S~—
~_—
+
T~
o
-
-~
S~—
|
~
—
=
o
-~
-
ISH
=
S~—
~

t

\/ ) for ¢ € [a, 2]

a

and

b
1f () = f () <\ (f) for t € [2,0],
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which gives

B(f,g,u;)

T t t b b t
9(6) (\/ (f)) d (\/ <u>> + [ a1\ (1 (\/ <u>)

IA
m<& S

This proves the first and second inequality in (2.7).
The last part of (2.7) is obvious.

Corollary 2. If p € [a,b] is such that \/* (f) = \/; (f), then

(2.10) |GT (f,g,u;a,p,b)|
b b b
;\a/ /\g d( ) é aX]Ig(t)I\!(f)\!(U)-

Remark 2. In particular, for g (t) =1, t € [a,b], we have for x € [a,b] that

T T b b
@1) (6T (fruwa,zb)] <\ DV @+ (VW
{ 5 ( VAGEAE) A
<

b b
(2.12) GT (f;u,0,p,0) < 5 \/ () (w).

If m € [a,b] is such that \/™" (u) = \/°, (u), then

b
(213) T (fru,0m,8)] < 5\ (D ().
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Corollary 3. Assume that f € Cc[a,b]NBVc¢ [a,b] and u € BV¢ [a,b]. If g is such
that |g| is convex on [a,b], then for all x € [a,b]

Q1) [GT(f.gus0.2.0) € s (\/ (f)+

x [Lq o b (\/ (u)) at+lg ) [ b (\/ (u)) dt}

Proof. Since |g| is convex on [a, b] , then

g (t)] = g<(b—t)a+(t—a)b>‘ < (b—1t)|g(a)| + (t —a)|g (b)|

b—a
for t € [a,b].

Since \/ (u) is monotonic nondecreasing, then
a

b t
(2.15) / |g<t>|d<\/<u>)
PT(b—1)|g(a)| + (t —a) g (b)| '
A )

b t b t
_ |If(_“i|/a (b—t)d(\!(u)) + 5%/ (t—a)d<\a/(u)>.

Using the integration by parts formula, we have

b t t b
/(b—t)d(\/<u>)=<b—t>\/<u>

a a

and

By using the second inequality in (2.7) we get the first inequality in (2.14).
Also, observe that
t

b b b b b
/(\/(u)>dtg(b—a)\/(u) and/ (\/(u)>dtg(b—a)\/(u),

a

which proves the last part of (2.14). O
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Remark 3. If p € [a,b] is such that \/? (f) = \/Z (f), then

(2.16) [GT (f,9,u;a,p,b)]

SM\?@)[Q(@)/Q”(\}(U)de |/ (\/ )dt]

3. INEQUALITIES FOR LIPSCHITZIAN INTEGRANDS

The following result also holds:

Theorem 3. Assume that f satisfies the end-point Lipschitzian conditions

(3.1) f(t) = f(a)] < Lo (t —a)® and |f(b) — f ()] < Ly (b—t)°

for any t € (a,b) where the constants Lo, Ly > 0 and a, B > 0 are given. If
g € Cc [a,b] and u € BV [a,b], then for any x € [a, b]

32) |GT(f,9,u;a,z,b)

gLa/ (t—a)® |g()|d(\/( )>+Lb/( t)’ Ig()ld<\/( ))
<al, max|g |/ t—aa1<z ))dt
+ 8Ly mas g (1 |/ —t’“<\/ )

x

aLa/: t—a)*! (\7 )dt—&-ﬁLb/:(b—t)Bl (\/(u)) dt]
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Proof. Since f satisfies the condition (3.1) on [a, b], hence

b

(33) 1@ [Cs@a0 -5 [ 0w

<

b
/ [ (6) — £ (0)] g (£) du (1)

[0 >'

a

< [1r@- @l (\/ ) /|f ®)lg ¢ d(\i/())
<La/:<t—a (\/ )+Lb/ b1’ |g<>|d<\7<u>>

< Lo max 98] [ (= )" d(\/w))

t
L b—t)?
+ Ly max |g (t \/ (\/ ) C (g,u; ),

a

for « € (a,b).
Using the integration by parts formula for the Riemann-Stieltjes integral, we
have

and
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which implies that

Clguiw) < Lo max g (1) / (t—a)*! (\/ <u>> dt

t

b A
+ 8L max [ (0] [ 1) (\/ <u>> 0

for « € (a,b).
The last part of (3.2) is obvious. O

Corollary 4. With the assumptions of Theorem 3 and if m € [a,b] is such that

VI (u) = \/fn (u), then
(3.4) |GT(f,g,u;a,m,b)|

m b t
< La/ (t—a)|g ()] d (\/ <u>> +Lb/ (-’19 (®)d <\/ <u>)

a a

< alL, n[lax lg (¢ |/ (t—a)*” (\/())dt

+[3thér[1ax lg (¢ |/ (m >dt
aLa/m(t—a)a1(\7(u)>dt+ﬂLb/b b—tﬁl< ) 1

< max |g (¢)]

t€la,b] :

< ax|g<>|[La<m a)* + Ly (b—m)°| \/(

1

2 tefa
Remark 4. If we take g (t) =1 in (3.2), then we get
(35) |GT (f;u,a,z,b)|

gLa/: (t—a)® (\;/ >+Lb/b b—t)5d<\t/(u)>

a

gaLa/x t—a)*! (\/ )dt+ﬂLb/b(b—t)ﬁ1 (\t/(u)> dt

t

gaLa/ ( )dt+ﬁLb b—t)" 1<\t/(u)>dt
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If m € [a,b] is such that \/]" (u) = \/fn (u), then

(3.6) |GT (f;u,a,m,b)|

SLaLmta (Q’ > lw[jbt5d<0 )
SaLa/amt—aa 1(\7 )dt+ﬁLb/7:(b—t)5‘1 (\t/(u)>dt

m

m

m b t
< oL, / (t—a) ! (\/ (u)> dt + BLy / (b—1)° (\/ (u)) dt

t m

—_

b
a B
< Z _ _
<3 [Lam=—a) + Ly 0 —m) ]\a/(u)
Corollary 5. Assume that [ satisfies the Lipschitzian condition
lf (&) = f () < Lt — s

for any t, s € (a,b) where the constant L > 0. If g € Cc[a,b] and u € BV¢ [a,b],
then for any x € [a, b]

3.7 |GT(f,9,u;a,z,b)
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In particular, if m € [a,b] is such that \/" (u) = \/fn (u), then
(3.8) [GT(f,g,u;a,m,b)]
t

/am<t—a>|g<>|d<\/< )>+/:<b—t>|g<t>|d<\2/<u>>]
Lg[lax 9 (t |/ ( )dt+ ma o ( |/ ( ))dt]
< L mas o) [ [ (\W} <u>) as [ (\/ <u>> dt]

t m

<L

b
1
< = _
< L max g (®)] (b —a) Y (u)

Remark 5. We the assumptions of Corollary 5 and if g (t) = 1, t € [a,b], then by
(3.7) we get

(3.9) |GT (f;u,a,z,0)]
t

L) o)

a a

<L

INA
~
—
8
|
Q
S~—
s:<a
=
S~—
_|_
=
|
S
S~—
€~2<v
—
S
S~—
—_

AN
I
h
=
|
&
/N
<=
=
_|_

for x € [a,b], while if m € [a,b] is such that \/" (u) = \/z1 (u), then by (3.8)
(3.10) |GT (f;u,a,m,b)|
t

() L)

a a

m [ m b t 1 b
/ (\/ (u)> dt+/ (\/ (u)> dt} <L~ a)\/ (u)

<L

m a

4. APPLICATIONS FOR SELFADJOINT OPERATORS

We denote by B(H) the Banach algebra of all bounded linear operators on
a complex Hilbert space (H;(-,-)). Let A € B(H) be selfadjoint and let ¢, be
defined for all A € R as follows

NOES

1, for —o0o < s <A,
0, for A < s < 4o0.
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Then for every A € R the operator
(4.1) Ey =, (4)

is a projection which reduces A.

The properties of these projections are collected in the following fundamental
result concerning the spectral representation of bounded selfadjoint operators in
Hilbert spaces, see for instance [11, p. 256]:

Theorem 4 (Spectral Representation Theorem). Let A be a bounded selfadjoint
operator on the Hilbert space H and let a = min {\ |\ € Sp(A)} =: min Sp (A) and
b=max{\|\ € Sp(A)} =: maxSp(A). Then there exists a family of projections
{Ex} e, called the spectral family of A, with the following properties

a) Ex < Ey for A< \;

b) E, 0o=0,E,=1 and E)_;,.o =F, fO’I’ all A € R;

c) We have the representation

b
A= / AE).
a—0

More generally, for every continuous complex-valued function ¢ defined on R
there exists a unique operator ¢ (A) € B(H) such that for every € > 0 there exists
a § > 0 satisfying the inequality
n
TR SRS N

k=1

whenever
M<a=A\<..<MA\_1 </\n:b7

M — A1 <0 for1 <k<mn,

A, € [Me—1, M) for 1<k <n

this means that

b

(12) e = [ b,
a—0

where the integral is of Riemann-Stieltjes type.

Corollary 6. With the assumptions of Theorem 4 for A, E) and @ we have the
representations

b
@(A)x:/ 0 (AN dExx forallz e H
a—0

and

b
43) e Waw) = [ oW d(Brag) for s, ye

In particular,

b
(p(A)z,x) = /7O<p()\)d<E>\x,x> for allz € H.



14 S.S. DRAGOMIR

Moreover, we have the equality

b
|wmmW:/Oquwwﬂwfwmm6H

We need the following result that provides an upper bound for the total variation
of the function R 3 A — (E)z,y) € C on an interval [«, ], see [?].

Lemma 2. Let {Ex}, g be the spectral family of the bounded selfadjoint operator
A. Then for any x, y € H and o < B we have the inequality

2

B
(4.4) \/ <E z,y ] < <(EB _Ea)xax> <(Eﬁ - Ea)yay>7

B
where \/ (<E(‘)I, y>) denotes the total variation of the function <E(.)x, y> on [a, (] .

[e3%

Remark 6. For « =a — with e > 0 and § = b we get from (4.4) the inequality

b
(4.5) \ (Boz,y)) < (U = Baeo) 2,20 (I = Baeo)y, )"/

a—e&

for any x, y € H.
This implies, for any x, y € H, that

b

(4.6) V (Boz.y)) < llall vl
a—0
b
where \/ ) denotes the limit lim._q4 [\/ (<E(_)$7y>)] )
a—0 a—e

We can state the following result for functions of selfadjoint operators:

Theorem 5. Let A be a bounded selfadjoint operator on the Hilbert space H
and let a = min{A|A € Sp(A)} =: minSp(A4) and b = max{A|A € Sp(A)} =:
max Sp (A) . Also, assume that {E\},cp is the spectral family of the bounded self-

adjoint operator A and f : I — C is continuous on I, [a,b] C I (the interior of I)
with f of locally bounded variation on I. Then for any x, y € H and s € (a,b)

4.7 (A zy) = (Esz,y) f(a) = ((1a — E) z,y) f (0)]

<\i/ +\:/ \b/ |>\/ (B, y))

1 ) b s b
<3 (\/ )\/(f)D [yl -

<

N | =
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Proof. If we use the inequality (2.11), we have for small € > 0 and for any z, y € H
that

(B, y) — (Baver,t)] f (0 — &)+ [(Byr,y) — (Eo,w)] f / £ () d Bz, y)
1 b T b
<3 (Vo |Vo-vu D\/ By,

Taking the limit over ¢ — 0+ and using the continuity of f, g and the Spectral
Representation Theorem, we deduce the desired result (4.7). g

Remark 7. If p € [a,b] is such that \/* (f) = \/Z (f), then we obtain from (4.7)
that

4.8)  [(f(A) z,y) — (Epw,y) f(a) = ((Lu — Ep) z,y) f(b)]

1\ 1,
<5V \/ (Eoe,w) <5V (#) el ]
a a—0 a

If we use Theorem 1 we can state the following result as well:

Theorem 6. Let A be a bounded selfadjoint operator on the Hilbert space H
and let a = min{A|XA € Sp(A)} =: minSp(A4) and b = max{\|A € Sp(4)} =:
max Sp (A) . Also, assume that {Ex},cp is the spectral family of the bounded self-
adjoint operator A and f : I — C of r-H-Hélder type on I, [a,b] C I (the interior
of I). Then for any x, y € H and s € (a,b) we have

4.9)  [(f(A)z,y) = (Esz,y) f(a) = ((lu — Es) z,y) f ()]

1 |s—eg2|]” ’
<SH|g+ |5, ] (b-a)" \/ ((Byz.v))
a—0
1 sfaT'H’ "
<H |5+ |52 ] (6 —a)" [l=[ |yl

In particular, we have

for any x, y € H.
If we take f (t) =1Int, and [a,b] C (0,00), then for (4.7) we get
(4.11) [{(InAz,y) — (Esz,y)Ina — ((1g — Es) z,y) In b

(@)D Y,
<3 (n(2) )

a (%)) et
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any s € (a,b) and z, y € H.

If we take s = v/ab in (4.11), then we get

(412)  |(In Az,y) — (E gz, y)yna—((1g — E /) z,y) Inb|

for

< (2)V (Ema) < S (D) I

a—0
any z, y € H.
Similar inequalities may be obtained for other examples of continuous functions

f. The details are left to the interested reader.

(1]
2]

[11]
[12]

[13]
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