BOUNDS ON A GENERALIZED CEBYSEV FUNCTIONAL FOR
THE RIEMANN-STIELTJES INTEGRAL

SILVESTRU SEVER DRAGOMIR

ABSTRACT. In this paper we provide some bounds for the error in approxi-
mating the Riemann-Stieltjes integral ff f(t) g (t)du(t) by the product
1 b b
[ rwae [ g@au
a a a

under various assumptions for the integrands f and g, and the integrator u for
which the above integral exists.

1. INTRODUCTION
In 1998, S. S. Dragomir and I. Fedotov [17], in order to approximate the Riemann-
Stieltjes integral f: f (t) du (t) with the simpler expression

L) i) [ s

introduced the following error functional
b

(1.1) D (f,u;a,b) ::/ f(t)du(t) — A
a

provided that both the Riemann-Stieltjes integral f: f(t)du(t) and the Riemann
integral f(f f(t) dt exist.

Assume that in the Riemann-Stieltjes integral f; f(t)du(t), the integrator u is
L-Lipschitzian, i.e.,

(1.2) lu(t) —u(s)| < L|t— s for each ¢, s € [a,b],

b

[ () — u (a)] / f (t) dt

a

1

—Qa

where L > 0 is given. It is well known that, in this case, the Riemann-Stieltjes
integral f; f(t)du(t) exists provided the integrand f : [a,b] — R is Riemann
integrable on [a, b] .

Theorem 1 (Dragomir-Fedotov 1998, [17]). If w is L-Lipschitzian on [a,b] and f
is Riemann integrable on [a,b], then

b

b
(1.3) D(wab) <L [ |r@) -5 [ £es)ds|at

a

The inequality (1.3) is sharp.

1991 Mathematics Subject Classification. 26D15, 41A55, 47TA63.

Key words and phrases. Riemann-Stieltjes integral, Trapezoidal Quadrature Rule, Selfadjoint
operators, Functions of Selfadjoint operators, Spectral representation, Inequalities for selfadjoint
operators.

1
RGMIA Res. Rep. Coll. 21 (2018), Art. 88, 12 pp. Received 26/07/18


e5011831
Typewritten Text
RGMIA Res. Rep. Coll. 21 (2018), Art. 

e5011831
Typewritten Text

e5011831
Typewritten Text

e5011831
Typewritten Text
. 88, 12 pp.        Received 26/07/18


2 S.S. DRAGOMIR

Moreover, if there exist the constants m, M € R such that

(1.4) m< f(t)<M for any t € [a,b],
then
(1.5) |D(f,u;a,b)|S%L(M—m)(b—a).

The constant & is sharp in (1.5).

A function w is said to be of bounded variation if for any division I, of [a,b],

I,:a=20<x1 < - < Zyp_1 < x, = b, the variation of w on I, is finite, which
means that

n—1
(1.6) Z |w (xi41) — w (x;)] < o0.

i=0

The total variation of w on [a,b] is denoted by \/Z (w) , where

b

(1.7) \/ (w) := sup {Z |w (xi41) —w (x;)|, I, is a division of |a, b]} .
=0

a

Theorem 2 (Dragomir-Fedotov 2001, [18]). If u is of bounded variation on [a,b]
and f 1is continuous on [a,b], then
1 b
5 | @

1.8 b)| <
(1.8) |D (f,u;a,b)] t?[i’é]

b
V(@)

The inequality (1.8) is sharp.
Moreover, if f is K-Lipschitzian, then

b
(1.9) |D (f,u;a,b)| < K a)\/ (u)

The constant % is best possible in (1.9).

For some related results for the functional D (f,u;a,b), see [2]-[6], [10]-[14] and

[17)-[19].

We can introduce the more general functional

b b b
(110) D (fguiab)i= [ 1O9Odu) - = [ fwd [ g@duo),

provided that the involved Riemann-Stieltjes integrals exist. For g (t) = 1, ¢ € [a, ],
we get

D(f,l,u;a,b):D(f,u;a,b).

Motivated by the above results, in this paper we establish some inequalities for
the functional D (f, g, u;a,b) under various assumptions of the integrands f and g
and integrator wu.
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2. INEQUALITIES FOR BOUNDED VARIATION INTEGRATORS

Assume that u, f : [a,b] — C. If the Riemann-Stieltjes integral fab f(u)du(t)
exists, we write for simplicity, like in [1, p. 142] that f € R¢ (u, [a,b]), or R, (u)
when the interval is implicitely known. If the functions u, f are real valued, then
we write f € R (u, [a,b]), or R (u).

We start with the following simple fact:

Lemma 1 Let frg,v:]a, 0] = C, A\, ue€ Candzx € [a,b]. If fg, g € Rc (v, [a, z])N
Re (v, , then fg, g € Re (v,[a,b]) and

(2.1) /f (1) = A/:g(t)dv(t)+u/xbg(t)dv(t)

b

+/$[f(t)fk]g(t)dv(t)+/ F(6) — 1lg (6 do (2)

In particular, for = A, we have

(2.2) /f (t) = A/abg@)dv(t)

x b

+/ [f(t)—A]g(t)dv<t>+/ F(8) — Ng (8)do ()
b b

:A/ g(t)dv<t>+/ £ (8) = Alg (t)dv (£)

Proof. The integrability follows by Theorem 7. 4 from [1] which says that if a
function is Riemann-Stieltjes integrable on the intervals [a, z], [x,b] with = € [a, b],
then it is integrable on the whole interval [a, b].

Using the properties of the Riemann-Stieltjes integral, we have

x b
/ £ (6) — N g (£) do (1) +/ £ (5) — g (B do (2)

T x b b
:/ f(t)g(t)dv(t)—A/ g(t)dv(t>+/ f(t)g(t)dv(t)—u/ g (t) dv (1
ab aa: xT b T
:/ f(t)g(t)dv(t)*k/ g(t)dv(twu/ g (t)dv (1),
2.1)

which is equivalent to the first equality in (2.
The rest is obvious. U

Corollary 1. Assume that f, v : [a,b] — C and x € [a,b] are such that f €
Re (v, [a,z]) N Re (v, [x,b]). Then for any A\, p € C we have the equality

b
@3) [ FOd®=Mo@ - o@]+plE) - o)
x b
+/ [f(t)fk]dv(tH/ [ (6) — sl dv (8).
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In particular, for p = X\, we have

(2.4) L/fumww=xw@—wwn

=AW@—UWH+/[NO—MM@%

a

The proof follows by Lemma 1 for g (¢) =1, t € [a,].

Remark 1. We observe that, see [1, Theorem 7.27], if f, g € Ccla,b], namely,
are continuous on [a,b] and v € BV¢ [a,b], namely of bounded variation on [a,b],

then for any x € [a,b] the Riemann-Stieltjes integrals in Lemma 1 exist and the
equalities (2.1) and (2.2) hold.

If we use the equality (2.2) for A = bia b

(t) dt, then we have

b b
(25) Dw%wmm=/’Pm—bim/fwm%wwM@»

In particular, for g (¢) =1, t € [a,b], we have

b b
(2.6) qumw—/[ﬂwggjhﬁm4mw

We have:

Theorem 3. Assume that f, g € Cc [a,b] and u € BV¢ [a,b], then

(2.7) |D(f,9,u;a,b)|

maxiclos) £ (8) = 55 [) f (s)ds

t 1/p
@ffu»—$aﬁf@wwfd0¢w0>
¢ 1/q
(f lg (¢ qu<\/( )))

where p, q,> 1, ; +
, t
ﬁfa f(s) ds‘ d (\/ (u)) .

Proof. It is well known that if p € R (u, [a,b]) where u € BV¢ [a, b] then we have

1, p. 177]
IR

IN

maxyciq,p) |9 (t)] fab f(t) -

b

L/ p(t |d(\/ ) < sup @)\ (W)

(2.8)

t€(a,b]
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Using the equality (2.5) we have

b b b
29) | [ 10s®a) - [ 10 [ s

b b t
< [lro-5= [t |g<t>|d<\/<u>>.

Using Holder’s inequality for monotonic nondecreasing integrators, we have

b t
/ 9 (0] d (\/ <u)>
b 1 b p t 1/p b : 1/q
<([fr-ste Lrenf ffe))” (Loore(f)

forp,q>1with%+%:1.
By using (2.9) we then get the midle inequality in (2.7)
The rest is obvious. O

b
O L

f) -

Remark 2. If we take g (t) =1, t € [a,b], then by (2.7) we get
(2.10) D (f,u;a,b)|

b
maxieiag) | £ (1) = 5 J2 £ (9)ds| \/ (w), see (1.8),

(f;’

t 1/p
)= 5 [2f () ds| <\/ (u))) (u(6) = u ()"

<
1,1 _ ¢
where p, q,> 1, >t = 1,
b b '
J2|£ 0 = 5k 12 1 o) ds]a (\/ <u>> .
We have:
Theorem 4. Assume that f, g € Ccla,b] and u € BVc[a,b]. If f € BVc]a,b],

then
(2.11)  [D(f,9,u;a,b)|

b b 1 b [t a+b
Sfen[%] ‘g(t)‘\a/(f) [\a/ (u) — bfa/a (\a/ (u)> sgn (t—;—> dt]

b b
< max |g (1) \/ (/) \/ (w).

T t€la,b] M

Proof. Using the Ostrowski type inequality for functions of bounded variation g :
[a,b] — C, [7], [9] (or the survey [16])

1 b 1 _aJQrb
- d -
90— [ e < |5+ |52

<
|2

b
]\/<g>, tefa],
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()
()
(i)
#(0)

b—a

we have

(2.12) /

—7/ f(s)ds
b[1+
2

b

b
< ma.
te[xm OV /
t

= max g ¢ |\/ [;/b <\/(u)>+/abt

I
= max lg (t ) [

b—

1

2+

b—

Using the integration by parts, we have
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which implies that
t

b b b
S R AT

that proves the first inequality in (2.11).

The functions \/ (u) and sgn ( — “;b) are monotonic nondecreasing. By using
a

Cebyseuv’s inequality for the same monotonicity functions, we have

bla/ab (i/(@) sgn<t—“‘2”’)dt
zbi@[f(?@n)wbiaZf%nG—“;b>ﬁ

=0,

which proves the last part of (2.11). O

Remark 3. If we take g (t) =1, t € [a,b] in (2.11), then we get
(2.13)  [D(f,u;a,0)|

b t

b b b b
<\ () [\/(@—bfa/ (\/(@) sen (£~ 45 dt} <V V@,

a a a

3. INEQUALITIES FOR LIPSCHITZIAN INTEGRATORS
We have:

Theorem 5. Assume that f is Riemann-Integrable on [a,
Lipschitzian with the constant L > 0, namely |u (t) — u (s
s € [a,b]. Then

(3.1) |D(f g, u;a,b)|

g € Ccla,b] and u is
< L|t —s| for any t,

bl,
)|

Sbrega | £ (1) = 555 1 (s)ds| [ g (0],
1/ 1/
crx ) (ro =5 s a) " (g@ra)
P, g>1, 5+ =1,

b
maxc(q.0) 9 ()] [,

In particular, for p=q =2,

(3.2) |D(f,g,u;a,b)|

F(8) =52 [T F(s) ds’ dt.

97 1/2

b b
<L-a) |7 [ 1rOPa- | [ f)ds

b 1/2
(bla / |g<t>|2dt> .
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Proof. Tt is known that if p : [¢,d] — C is Riemann integrable and u : [¢,d] —
C is Lipschitzian with the constant L > 0, then the Riemann-Stieltjes integral

f:p (t) du (t) exists and
b b
/p@MMﬂSL/WMMﬁ.

Since € BV¢ [a,b] and g € Cc [a, ], hence the Riemann-Stieltjes integral

b b
/ [f 052 [ 16 ds] 9(6)du (1)

exists and, by (2.5) we have

(3.3)

/f dt/ (t) du (1)
SL/af ——/f ) ds

Using Holder’s integral inequality, we have
b 1 b
o [ ro-5= [ 1@

SDegas) |1 (1) = s Ju £ (s)ds| [ g (8)] dt,

lg(®)]dt =:D(f,g)-

lg (t)] dt

) (@ =k gl s ) s dt) (g mrar)”,
poa>1l 5 +5=1,

maxieiop |9 (O] [, [ £ (6) = 55 7 f () ds| dt.

By making use of (3.3) and (3.4) we get
In particular, for p = 2, we have

/abfmbia/abf(s)dsz

b b 2
=(b—a) bia/ f(t)—bla f(s)ds dt}

b 1 b 2
—(b-a) |y [ lOPa- | [ res) |,

which proves (3.2). O
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Remark 4. If we take g (t) =1, t € [a,b], in (3.1) and (3.2), then we get
3.5) [D(f,u;a,b)|

)

(b= @) supyegan | £ (1) = 55 [ (5)ds

70 - [ F s )

and

(3.6) |D(f,u;a,b)
97 1/2

b
7 | s

Using a similar argument to the one in the proof of Theorem 4, we can state the
following result as well:

b
<L(b-a) b%/ ()P dt

Theorem 6. Assume that f € BV¢ [a,b], g € Cc[a,b] and u is Lipschitzian with
the constant L > 0. Then

3
(3.7) D (f,g,uia,b)| < 3 (b= a) max g OI LV (£).
’ a
Remark 5. If in the inequality (3.7) we take g (t) =1, t € [a,b], then we get, see
also [3],
b

b-a)L\/(f).

a

(3.8) 1D (f,usa,b)] <

=~ w

4. SOME FURTHER BOUNDS

In we proved amongst other that, if f : [a,b] — C is of bounded variation, then

b b 9 1/2 b
o [ rera- | [ reds | <3V

with the constant % as best possible.
So, if f is of bounded variation on [a,b], g € Cc [a,b] and u is Lipschitzian with
the constant L > 0, then by (3.2) we get the simple bound:

b b 1/2
(1) D(f,g,u;a,b>|s§L<b—a>\a/<f><b_1a / |g<t>|2dt> .

If in this inequality we take g (t) = 1, t € [a, b], then by (4.1) we have, see also [13],
b

(42) D (fusab)] < 5L0- )\ (F).

a
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Now, for v, I' € C and [a,b] an interval of real numbers, define the sets of
complex-valued functions

oy (7,T) = {f : [a,b] — C| Re [(r o) (W - 7)] >0 for each t € [a, b]}
and

Ajgp) (1,T) = {f : [a,b] — C| ‘f(t) _ %

1
< §|1"—fy| for each t € [a,b]}.

This family of functions is a particular case of the class introduced in [15]

Afg,p),g (7, T)
v+ T

—{ rin el |10 - 150 0] < 50l (0] foreach 1 o},

where g : [a,b] — C.
The following representation result may be stated.

Proposition 1. For any~, I’ € C, v #T', we have that U[a’b] (v,T) and A[a’b] (v,T)
are nonempty, convex and closed sets and

(43) U[a,b] (77 F) = A[a,b] (77 F) .
Proof. We observe that for any z € C we have the equivalence
r 1
’zw‘ <5 [0=1]
2 2

if and only if
Re[(I'=2)(z2-7)] = 0.
This follows by the equality

_2+r

| =RelT—2) (-]

1
0= |

that holds for any z € C.
The equality (4.3) is thus a simple consequence of this fact. ([l

On making use of the complex numbers field properties we can also state that:
Corollary 2. For any v, I' € C, v # I',we have that
(44) Uap) (v, T) ={f:[a,b] > C| (Rel' = Re f(t)) (Re f (t) — Re")
+(ImI' —Im f (¢)) (Im f (¢) —Im~y) > 0 for each t € [a,b]}.

Now, if we assume that Re (') > Re () and Im (T') > Im (v) , then we can define
the following set of functions as well:

(45) Sy (1) = {£ s [a,] = € | Re(I) > Ref () > Re(y)
and Im (T') > Im f (¢) > Im (v) for each t € [a,b]}.

One can easily observe that S[a,b] (7,T) is closed, convex and

(46) 0 7£ S[a,b] (771—‘) - U[a,b] (771_‘) :
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If f € Ay (7,T) is square integrable on [a, b] , then we have the following Griiss
type inequality (see for instance [8])

97 1/2

1 b 1 b 1
bfmlv“wﬁ‘zizlf@ﬂs < SIP =,

so if f is Riemann integrable on [a,b], g € Cc [a,b] and u is Lipschitzian with the
constant L > 0, then by (3.2) we get the simple bound:
1/2

1 I
@1 D(fgwab]|<5I0-alL0-o) ;= [ a0 d
If in this inequality we take g (t) =1, t € [a,b], then by (4.7) we get
1

This inequality extends the result (1.5) from Introduction to complex valued func-
tions f € A[mb] ("y, F) .
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