OSTROWSKI TYPE RIEMANN-STIELTJES INTEGRAL
INEQUALITIES FOR CONVEX INTEGRANDS AND
NONDECREASING INTEGRATORS

SILVESTRU SEVER DRAGOMIR

ABSTRACT. In this paper we obtain some inequalities for the Ostrowski differ-
ence

b
/f(t)dU(t)ff(z)[u(b)fU(a)],

where f is a convex function on [a,b], u is monotonic nondecreasing and = €
(a,b). In the case of Riemann integral, namely for u (¢) = t, some particular
inequalities are given. Applications for functions of selfadjoint operators on
complex Hilbert spaces with examples are provided as well.

1. INTRODUCTION

We recall the following Ostrowski type inequality for convex functions:

Theorem 1 (Dragomir, 2002 [5]). Let f : [a,b] C R — R be a convex function on
[a,b]. Then for any x € (a,b) one has the inequality

(1.1) %(b—:cff;(x)—(w—a ] /f t)dt —(b—a) f (2)
<5 -0 0 - -0 11 ).

The constant % is sharp in both inequalities. The second inequality also holds for
r=aorz=>.

Corollary 1. With the assumptions of Theorem 1 and if x € (a,b) is a point of
differentiability for f, then

(1.2) (a;b—w)f’(x)ébla/:f(t)dt—f(x)-

The following corollary provides both a sharper lower bound for the Hermite-

Hadamard difference,
1 a+b
i [ roa-1(550),

which we know is nonnegative, and an upper bound [5].
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Corollary 2. Let f : [a,b] — R be a convex function on [a,b]. Then we have the
inequality

(1.3) Hh(”b) f/<a;_b)](b—a)
<t [rwa- s (“F) <t o - sl 6 0.

The constant % s sharp in both inequalities.

For other related results see [6] and [7]. For more inequalities of Ostrowski type,
see [1], [3-[4], [8], [10], [12] and [14].

Motivated by the above results, we establish in this paper some inequalities for
the Ostrowski difference

b
/f(t)dU(t)—f(x)[U(b)—u(a)L

where f is a convex function on [a,b], u is monotonic nondecreasing and z € (a,b) .
In the case of Riemann integral, namely for u (¢t) = ¢, some particular inequalities
are given. Applications for functions of selfadjoint operators on complex Hilbert
spaces with examples are provided as well.

2. THE MAIN RESULTS

We start with the following inequality for convex integrands and monotonic
nondecreasing integrators:

Theorem 2. Assume that [ : [a,b] — R is continuous conver on [a,b] and u :
[a,b] — R is monotonic nondecreasing on [a,b], then

(21) 0< / F 0 du ) - @) [ ) - u o)
(@) [(b—x)u(b)—/:ua)dt]
() [(x—a)u(a)—/ju(t)dt}
</ ) [ () — 7 @] o) + [@-0l -1 @]

for x € (a,b), provided that the Riemann-Stieltjes integrals in the right member
exist.
If f is differentiable in x € (a,b), then we have the simpler inequality

b
(22) 0< / f (@) du(t) = f () [u(b) —u(a)

b
() l(b—x)u(b)+(x—a)u(a)—/ u(t)dt]
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provided that the Riemann-Stieltjes integrals in the right member exist.

Proof. We have

b b
(2.3) / [f (8) = f ()] du(t) =/ f@)du(t) = f(2) [u(b) = u(a)]

for « € [a,b].

Also
b x b
(2.4) / F(6) — f (@) du(t) = / [ (6) — f ()] du (£) + / F () — f (@) du ()
b T
- [f(t)—f(m)]duw/[f(x)—f(t)]du(t)
= B(f,u ZL’)
for x € (a,b).

Since f is convex, hence by the gradient inequality, we have

f(t) = f(z)>(t—2)f} (z) fort € [2,0]
and
f@) = f(t) < (x—1) fL(x) for [a,z].

Since u is monotonic nondecreasing, it follows by using integration by parts that

b b
(2.5) / F® - f@ldu(t) > f () / (t — ) du (1)

b
7l () [(b ~oyu(t) - [ u) dt]
and

/ 1 (@) — £ @) du(®)

IA

r@ [ @-ndu
- @[ wod-@-au@).

which is equivalent to
2o - [U@- O @ |e-guw- [ uoal

for x € (a,b).
Now, if we add (2.5) with (2.6) we get

B(f,usx)
> 7! (2) [(b—xm(b)—/:u(t)dt 1 (@) [<x—a>u<a>—/ju<t>dt],

and by (2.3) and (2.4) we get the first inequality in (2.1).
By the gradient inequality we also have

f@)—f(z) <(t—x)f,(t) for t € [z,b]

and

fl@)=f@#) = (@—1)f () for [a,a].
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Since u is monotonic nondecreasing, it follows that

b

b
(2.7) / F(5) — f (@)]du (t) < / (t— ) £ (£) du (1)

x

b

b
- / (t— ) [f () — £ @)] du(t) + £ (2) / (t - ) du(t)

x

b b
- / (t—2) [f (1) = £y (@)] du(t) + £ () [(b —2)u ) - / u (t) dt}

and

x

/I[f(w)—f(t)}dU(t)z/ (2~ 1) " (t)dut).

a

which gives

@8 - [ @) - f @) du) < / (6 —a) £ () dut)
=/$<t—x> () — £ (2)] du<t>+f'_<z>/x(t—z>du<t>
:/x(t—x) [f’,(t)—f’,(x)]du(t)-i—f’,(x) [(:C—a)u(a)—/wu(t)dt}

for z € (a,b).
By making use of (2.3) and (2.4) we get the second inequality in (2.1). O

Remark 1. We observe that the Riemann-Stieltjes integrals from the right member
of (2.1) and (2.2) exist if either u is assumed to be continuous or the derivative f’
exists and is continuous on (a,b).

Corollary 3. With the assumptions of Theorem 2, we have

(2.9) os/abfu)du(t)f(”';b) [u (b) — u (a)]
7 (a—;b> ;(b—a)u(b)—/a;u(t)dt]
_f/(“";b ;(b—a)u(a)—/a;)u(t)dtl
b
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If f is differentiable in a+b , then

a+b
S CE)

u(b>—|2'u(a) (b—a)—/abu(t)dt]

52 )

+/ (520 |7 (52) - £ 0] o,

Since most of the convex functions used in applications are smooth, we can state
the following result:

(2.10) Oé/abf(t)dU(t)f<

Corollary 4. Let I an interval and Io, the interior of I. Assume that f: 1 — R is
convez on I, differentiable and with the derivative f' continuous on I and [a,b] C I.
If u: [a,b] — R is monotonic nondecreasing on [a,b], then

(211) 0< / F () du(t) — f (2) [w(b) - u ()
@) l(b—x)u(b)—i—(w—a)u(a)—/ u(t)dt]

b
< / (t— ) [/ (t) — f' () du (2)
[1 (0= a)+ o — 2] [ 1 (8) = f ()] du (2);

(12l au )" (J217 @) - £ @ au) ",

1
p, q¢>1, 5+q 1;

IN

(L1770 = (@) +

| £ () = L] [t — ] du (1)

for all x € [a,b].
In particular,

12 0< [ 10w -7 (") e )

(2
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Lo—a) [7f (6) = £ (%52) | du (t)

(1= aw) ™ (121 @)= 1 (234w ) ™,
1417

"
p,qg>1, -+

IN

f/ (a-é,—b) f (a)+f H f ‘t Q—QH) | du (t)

HIGOEFHOIE

Proof. The first two inequalities are obvious from (2.2) written for differentiable

functions.
We have, by Holder’s inequality for Riemann-Stieltjes integral of monotonic non-
decreasing integrators, that

b

(t —x) [f' (t) = f' ()] du(t)

b
og/ (t—2) [ () — ' (@)] du(t) =

b

g/ ((t—2) [/ (£) — ' (@) du (¢ / t— 2l | (£) - ' ()] du (1)
maxie(a [t — 2| [ |f (t) = ' ()] du(t);

1/ 1/

) (sl aum) " (fj PO -7 @) "

N p,q>17%+%=1;
maxyea) | (8) = f (@)] [ |t — 2| du (1),

which proves the last part of (2.11). O

Remark 2. We observe that, if m € [a,b] such that [’ (m) = M, then by
(2.11) we get

b
213) 0 [ fOdu(t)~ £ (m)u®) - u (@)
b
— f"(m) [(b—m)u(b)—i—(m—a)u(a)—/ u(t)dt]
b
< [ =m0~ 7 ) due)
(50 —a)+[m— =[] [17 @) = 1" (m)| du ()

(2= mpau )™ (12170 = 7 o an @) ™,
p, q>1, erf:l

IA

LI 0) = f (@) [} |t —m]du(t).

Further, we consider some inequalities with positive weights in the Riemann-
Stieltjes integral:
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Corollary 5. Assume that f is as in Corollary 4. If g : [a,b] — [0, 00) is continuous
and v : [a,b] — R is monotonic nondecreasing, then

b b b
(2.14) OS/ f(t)g(t)dv(t)—f(w)/ g(t)dv(t)—f’(w)/ (t—x)g(t)dv(t)

b
< / (t—2) [f' (1) — ' (@)] g () do (1)
[3(b—a)+ Jo— <[] [71f (t) — f' (x)] g (t) dv (1)

(St -ala®av )’ (f 70— @ g®dnm)

poa>1 s +.=1

IN

317 ®) = £ @]+ |17 (@) = ZOFLON] [V~ alg (t) do ().

Proof. First we observe that, using integration by parts we have

(b—x)u(b)—l—(w—a)u(a)—/ u(t)dt:/ (t—2)du(t).

Using the properties of Riemann-Stieltjes integral with integrators u given by an
integral, namely, if

u<t>=/g<s>dv<s>,

which is monotonic nondecreasing on [a, b] , then

/f t)dhu 8 /f /:@fc)du(t)/ab@:c)g(t)dv(t),
/ab“‘m”f“”—f’@)]du(t)=/b<t—x>[f'<t>—f’(x)]g(t)dv(t»
/abf'“) 7)|du (¢ /lf (t)dv (1),

/‘tﬂ‘pdu /|tfx|p
[ro-r@rmo- [ g(0)do (1)

/|t—x|du /|t—a:|g t)dv(t

By utilising the inequality (2.11) we then get (2.14). O

and
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Remark 3. If we take in (2.14) x = ‘ITH’, then we get the mid-point inequality

b
(2.15) os/ f(Hg()d

( o= =2 g 0o ®) " (2150 - £ (52" 1) o (1)
b,

> 1, ;+,_1

IN

(24) = HE O] = 22 g 0 o).

B ®) - £ @)+

Also, if m € [a,b] is such that f' (m) = M, then by (2.14) we get

b b
216) 02 [ F®9@do @) - ) [ g@do(e)
b
—f'<m>/ (t —m) g (£) dv (1)
b a
< / (t—m) [f' (&) — 1 (m)] g (t) do (1)

[3(b—a)+|m—9E2|] [21F () — f' (m)| g (t) do (¢);

(f1e-mPg@av®)” (S0 @ - F g an®) .
p, ¢ >1, Z%—F%:l;

IN

LIFO) = f (@) [] |t —m|g(t)dv(t).

3. INEQUALITIES FOR RIEMANN INTEGRAL

If in (2.14), (2.15) and (2.16) we take v (t) = t, then we get the weighted integral
inequality for the Riemann integral

b b b
(3.1) os/ f(t)g(t)dt—f(m)/ g(t)dt—f’(w)/ (t—x)g(t)dt
b
< / (t—a)[f' (1) — 1 (2)] g () dit
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[30—a)+[e— 5] []1f (&) = f' (@) g (1) dt

(S aPayar)” Qﬁf@ffuwgmﬁf@
=1;

pya>1 5 +g

IN

HIGOEFAOIE

r(a) — L [ g0

wa—%?Fgwdo”pqu%w—f%%ﬂfg@dg”ﬁ

<
a p,q>1,%+%:1;
(317 ®) = f (@) + | (252) = LO0pZO] [t - 22 g (1) e
and
b
3.3 0</f f(m)/ g(t)dt
b
) [ (- m)g (o)
b a
< [t-mlr -7 g
(5 (b—a)+ [m — “82[] 71 () = £ (m)] g (2)
L (e-mra ) (017 @ - g )

1
p, g>1, 5+q

LI ) = 1 (@) fy [t —mlg ()t

Now, by taking the weight g to be uniform, namely g (t) = 1, t € [a,b], then we
get from (3.1)-(3.3) the following inequality for the differentiable convex function
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f:la,b] = R

b a
B o< [ FO@-f@0-0- 7@ 0-0 (5 o)
‘ b
s/’u—mw%w—f@ﬂw
(30 —a)+ |z — =5[] [V 1/ (&) = f' (2)] dt
L (62 s e a) T (P10 - g @rar)

(1) AN
p,ag>1, S +o=1

IN

(@) = LA [3 00"+ (2 - =27,

L1 ®) - @)+

(3.5) O</f dt—f(a;b)
L 2
Lo—a) [T (1) = (452) | de;

1/q
sy b= @) T (] - (o) ar)

1 1 _ 1.
p7q>17 5+5_17

IN

Fo— ) [§17 ()~ £ (a)) + |f (552) - L]

and

b
(3.6) OS/ f(t)dtf(m)(ba)f’(m)(ba)(a;bm)

s/a—muwwwwwm
[0 —a)+ |m— =] [71F () = ' (m)| dt;

1/q

b (6= m - ) (10 - 1 ) a)
poa>1 p+5=1

IN
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Using Cebysev’s inequality for functions with the same monotonicity, we have

for differentiable convex functions that

0<

b
= [ -l o - 1 @)

—Qa

= [ = [ 1705 @)
1

- b_a/abu—x)[f'(t)—f'<x>]dt_ (“‘;b—x) (M—f’(@)

—a

Using Ostrowski’ s inequality [13] we also have

o< [e-arw-rela- (5 -o) (1919 )

< g 0-a || ¢ | | max 17 0~ @] - min 17 ) - (m)]}

t€la,b]

=S 0-a) [1L0) - 1 (@),

which implies that

b
a0 [0l ©-r@lis (50 -2) (0 - @ -1 @06-a)

FL -0 [120) - £} (@)

for « € (a,b).
By using (3.4) we get

b
(3:8) OS/f<t>dt—f<:c><b—a>—f'(x)(b—a)(“;"_I)

b
< / (t— ) [ (1) — ' ()] dt

< (“;”’—x) (F0) = fa) = £ @) (b— ) + 5 6= 0 [ 0) - F} @]

for x € (a,b).
In particular, we have

(3.9) os/abfa)dtf(a;”)(ba)

s/ (-5 [ro-r(52)] < go-a 0 - s @)
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If we use the first and last inequality in (3.8) and add f'(z) (b—a) (%2 —z),
then we get the Ostrowski type inequality

a+b
—x

310) 7@ o-o (5 -a) < [T0a-1@ -0

<(S-a) O - F@ 0= [ 0~ )

for z € (a,b).
In particular, we get the Hermite-Hadamard type inequalities [5], see also (1.3)

b
(3.11) 0§/f(t)dt—f<a;b

- < 0-0 7 0 - L),

in which the constant % is best.
Further, assume that f : [a,b] — R is convex and twice differentiable on (a,b)

and || || = subPse(ap) |f” (t)] < 0o. By using Cebysev’s inequality [2] we have

) (1919 p)

—a

b
o<t [e-olr o -1 @l (

}wp[
t€la,b]

4t~ a)

(b—a)® sup [dt %[f’(t)_f/(x)]

12 t€la,b]

1
= 5 (b=l

namely

b
312 [ -0l 0= @l (S - ) (70 - 1@ - F @) 0-a)

i N3 e
15 0-0° 1

for z € (a,b).
By using (3.4) we get

b
(3.13) OS/f(t)dt_f(ﬂf)(b—a)—f'(x)(b—a)(a;—b_x>

b
s/(rwnfw—f@ﬂw

a+b_

() U0 - F@ -1 @00+ 50 1

for z € (a,b).
In particular, we have

(3.14) Og/abf(t)dtf<a;b) (b—a)

<[ (=) [ra-r(40)]ws po-wrir..
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4. APPLICATIONS FOR SELFADJOINT OPERATORS

We denote by B(H) the Banach algebra of all bounded linear operators on
a complex Hilbert space (H;(-,-)). Let A € B(H) be selfadjoint and let ¢, be
defined for all A € R as follows

1, for —oo0 < s < A,
P (s) =
0, for A < s < 4o0.

Then for every A € R the operator
(4.1) Ey = ¢)(4)

is a projection which reduces A.

The properties of these projections are collected in the following fundamental
result concerning the spectral representation of bounded selfadjoint operators in
Hilbert spaces, see for instance [11, p. 256]:

Theorem 3 (Spectral Representation Theorem). Let A be a bounded selfadjoint
operator on the Hilbert space H and let a = min {\|A € Sp(A4)} =: min Sp (A) and
b=max{A|X € Sp(A)} =: maxSp(A). Then there exists a family of projections
{Ex} g, called the spectral family of A, with the following properties

a) Ex < Eyx for A<\

b) E, 0o=0,E,=1 and E)\+0 =F, fO’I" all A € R;

c) We have the representation

b
A= / AE).
a—0

More generally, for every continuous complex-valued function ¢ defined on R
there exists a unique operator ¢ (A) € B(H) such that for every € > 0 there exists
a § > 0 satisfying the inequality
n
TR SRS

k=1

whenever
M<a= A <..< A1 <A, =0,

A= Ap—1 <0 for 1 <k <,

A € M1, M) for1<k<n

this means that

b
(42) e = [ pyam,
where the integral is of Riemann-Stieltjes type.

Corollary 6. With the assumptions of Theorem 3 for A, Ex and ¢ we have the
representations

b
@(A)asz/ (A dExxz forallz € H
a—0
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and

b
43) e Wa) = [ oW d(Bray) foralz, ye B

In particular,

b
(p(A)z,x) = /70<p()\)d<E>\m,x> for all x € H.

Moreover, we have the equality

b
|WMMW=/OMQWMWWWJWMMGH

We need the following result that provides an upper bound for the total variation
of the function R 5 A — (E)z,y) € C on an interval [, 8], see [9].

Lemma 1. Let {Ex}, g be the spectral family of the bounded selfadjoint operator
A. Then for any x, y € H and o < B we have the inequality

2

B
(4.4) \/ <E z,y ] < <(EB _Ea)xax> <(Eﬁ - Ea)yay>7

B
where \/ (<E(‘)m, y>) denotes the total variation of the function <E(.)x, y> on [a, (] .

[e3%

Remark 4. For a« = a — with e > 0 and 8 = b we get from (4.4) the inequality

b
(4.5) \/ (Eoyz,y)) < (U = Bae)w,2) > (I = Ea_o)y,)'°

a—¢&

for any x, y € H.
This implies, for any x, y € H, that

b

(4.6) V (EBoa) <l vl
a—0
b
where \/ ) denotes the limit lim._q4 l\/ (<E(_)$7y>)] )

We can state the following result for functions of selfadjoint operators:

Theorem 4. Let A be a bounded selfadjoint operator on the Hilbert space H
and let a = min{A|A € Sp(A)} =: minSp(A) and b = max{A|A € Sp(A)} =:
max Sp (A) . Also, assume that {Ex},cp is the spectral family of the bounded self-
adjoint operator A and ¢, ¥ : I — C are continuous on I, [a,b] C I (the interior
of I). If v is differentiable convex on [a,b] with a continuous derivative on I and
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¥ is nonnegative on [a,b], then for s € (a,b)

(4.7) 0= (p(A) v (A)z,2) — ¢ (s) (¥ (A)z,2) — ¢ (s) (A - slu) ) (A) z, )
< ((A=sly)l¢' (A) — ¢’ (s) lul v (A) 2, 2)

[3(0—a) +|s — 2] (' (4) = &' () Lu| ¥ (A) z, ) 5

<|A—31H|p (), >1/p(<|¢(A)—w’(s)lquw(A)wa@)”q,
P, q> 1, 7+f=

IN

@' (s) = RO (14— 5144 (A) 2,2),

forallx € H.
Proof. Using the inequality (2.14) we have for small € > 0, and for any « € H that

0</ab_a<p(t)w() (B, x) — / ¥ (t) d (B, )
—w’<s>/a7€<tfs>w< )d B, )

b
< / (t—3)[¢' (t) — ¢ ()] (£) d (Eym, )

[30—a)+[s— =] [ _1¢' (1) = ¢/ () ¥ (1) d (Er, )

(b= sPw @iz n) " (J2 10 0~ @70 0 dBaa))

pya>1, sH+1=1

IN

310/ 0) = ¢ (@] + | () = ZZQ|| 7t = sl () d (B, a)

Taking the limit over ¢ — 0+ and using the continuity of ¢, ¥ and the Spectral
Representation Theorem, we deduce the desired result (4.7). (]

Corollary 7. With the assumptions of Theorem 4 we have

al vy () = o (252) 1l p () )

IA
SR
e
!
=]
ol
o

o (452) — so'(a);rw’(b) H (|A- GTerlH’q/J(A):c,@,
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forallx € H.
If m € [a,b] is such that ¢’ (m) = M, then

(4.9) 0<(p(A) Y (A=, z) — @ (m) (¥ (A)z,2) — " (m) (A= mly) Y (A)z,2)
< ((A=mlp)[¢" (A) = ¢ (m)1a] ¥ (A) z,2)
[3 (b= a) + |m — 432[ (|¢' (4) = &' (m) 1| ¥ (A) 2, 2) 5

< J A= mLgl e () 2)” (¢ (4) = ¢ (m) Ll (A)2.2))
- p,q>1,%+%:1;
3l () = ¢’ ()] (|A = mlp|¢ (A) 2, z)
forallx € H.
Consider the function ¢ (t) = —Int with ¢t € [a,b] C 0 and A a bounded

selfadjoint operator on the Hilbert space H with a = min{\ |\ € Sp(A)} and
b=max{A|X € Sp(A)}. If ¥ (t) =t" with r a real number. Then by (4.7) we have

(4.10) 0<In(s)(A"x,2) +s 1 ((A—sly) A"z, 2) — (A" In Az, x)
< <(A —sly) ( - Ail) AT:L',iL’>
[2(b—a)+ |s “erH <|A71 — 5711H| ATz, x);

<|A731H|pAT:r x) 1/p (<|A I_ ’11H|qA’":c,:c>)l/q,
p, g>1, = + = =1;

IN

[1t=e |1 — b (|4 - s1p| AT, 2),

for all z € H.
If we take s = 2F? in (4.10), then we get

(4.11) 0<In (“;“b> (AT, z) + (a;b>1 <(A— “;b1H> Arx,ac>
—(A"In Az, z) < <<A— a;blH) ((a;byl 1y —A—1> Arx,x>
4 .

1/
< <|A7‘%H71H| Arx,:c> v (<’A lf(aTb) 11H’ Arx,x>) q,
p, q>17 %4’%7 )

a(a+b) <‘A a+b H‘ ATJj? $> )

forall z € H.
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If we take s = 2“b in (4.10), then we get

(412) 0<In (fﬂ) (ATz,z) + ( 2ab ) << 2ab > AT:c,:z:>

2ab -t

—(A"In Az, z) < <A - — AT ATz,

_|_

e e

< <‘A 31%1 ‘ ATz, x>1/p <<’A‘1 — (%)71 1g qA"x,:c>>1/q7
p,g>1, 1 5+ E =1
bi—g<|A—slH|Arx,w>,
for all x € H.

(1]
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