TRAPEZOID TYPE RIEMANN-STIELTJES INTEGRAL INEQUALITIES FOR CONVEX INTEGRANDS AND NONDECREASING INTEGRATORS

SILVESTRU SEVER DRAGOMIR

ABSTRACT. In this paper we obtain some inequalities for the trapezoid difference

$$[u(x) - u(a)] f(a) + [u(b) - u(x)] f(b) - \int_{a}^{b} f(t) du(t)$$

where f is a convex function on [a,b], u is monotonic nondecreasing and $x \in (a,b)$. In the case of Riemann integral, namely for u(t) = t, some particular inequalities are given.

1. Introduction

We start with the following result concerning two inequalities of trapezoid type for convex functions obtained in [6]:

Theorem 1. Let $f:[a,b] \subset \mathbb{R} \to \mathbb{R}$ be a convex function on [a,b]. Then for any $x \in [a,b]$ one has the inequality

$$(1.1) \quad \frac{1}{2} \left[(b-x)^2 f'_+(x) - (x-a)^2 f'_-(x) \right]$$

$$\leq (x-a) f(a) + (b-x) f(b) - \int_a^b f(t) dt$$

$$\leq \frac{1}{2} \left[(b-x)^2 f'_-(b) - (x-a)^2 f'_+(a) \right].$$

The constant $\frac{1}{2}$ is sharp in both inequalities.

The second inequality also holds for x = a or x = b.

We have have a simpler first inequality in the case of differentiability:

Corollary 1. With the assumptions of Lemma 1 and if $x \in (a,b)$ is a point of differentiability for f, then

$$(1.2) \qquad \left(\frac{a+b}{2} - x\right)(b-a)f'(x) \le (x-a)f(a) + (b-x)f(b) - \int_a^b f(t) dt.$$

Now, recall that the following inequality, which is well known in the literature as the Hermite-Hadamard inequality for convex functions, holds

$$(1.3) f\left(\frac{a+b}{2}\right)(b-a) \le \int_a^b f(t) dt \le \frac{f(a)+f(b)}{2}(b-a).$$

 $1991\ Mathematics\ Subject\ Classification.\ 26 D15,\ 41 A55,\ 47 A63.$

 $Key\ words\ and\ phrases.$ Riemann-Stieltjes integral, Trapezoid inequality.

The following corollary provides some sharp bounds for the trapezoid difference

$$\frac{f\left(a\right)+f\left(b\right)}{2}\left(b-a\right)-\int_{a}^{b}f\left(t\right)dt.$$

Corollary 2. Let $f:[a,b] \to \mathbb{R}$ be a convex function on [a,b]. Then we have the inequality

$$(1.4) \quad 0 \le \frac{1}{8} \left[f'_{+} \left(\frac{a+b}{2} \right) - f'_{-} \left(\frac{a+b}{2} \right) \right] (b-a)^{2}$$

$$\le \frac{f(a) + f(b)}{2} (b-a) - \int_{a}^{b} f(t) dt$$

$$\le \frac{1}{8} \left[f'_{-} (b) - f'_{+} (a) \right] (b-a)^{2}.$$

The constant $\frac{1}{8}$ is sharp in both inequalities.

For various trapezoid type inequalities involving Riemann-Stieltjes integral, see [1]-[12] and [8]-[16].

Motivated by the above results, in this paper we obtain some inequalities for the Riemann-Stieltjes integral trapezoid difference

$$[u(x) - u(a)] f(a) + [u(b) - u(x)] f(b) - \int_{a}^{b} f(t) du(t)$$

where f is a convex function on [a, b], u is monotonic nondecreasing and $x \in (a, b)$. In the case of Riemann integral, namely for u(t) = t, some particular inequalities are also given.

2. The Main Results

Theorem 2. Assume that $f:[a,b] \to \mathbb{R}$ is continuous convex on [a,b] and $u:[a,b] \to \mathbb{R}$ is monotonic nondecreasing on [a,b], then

$$(2.1) - \int_{x}^{b} (b-t) \left[f'_{-}(b) - f'_{-}(t) \right] du(t) - \int_{a}^{x} (t-a) \left[f'_{+}(t) - f_{+}(a) \right] du(t)$$

$$+ f'_{-}(b) \left[\int_{x}^{b} u(t) dt - (b-x) u(x) \right] + f_{+}(a) \left[\int_{a}^{x} u(t) dt - (x-a) u(x) \right]$$

$$\leq \left[u(x) - u(a) \right] f(a) + \left[u(b) - u(x) \right] f(b) - \int_{a}^{b} f(t) du(t)$$

$$\leq f'_{-}(b) \left[\int_{x}^{b} u(t) dt - (b-x) u(x) \right] + f'_{+}(a) \left[\int_{a}^{x} u(t) dt - (x-a) u(x) \right]$$

for $x \in (a,b)$, provided the Riemann-Stieltjes integrals $\int_x^b (b-t) f'_-(t) du(t)$ and $\int_a^x (t-a) f'_+(t) du(t)$ exist.

This is equivalent to the inequality

$$(2.2) \quad 0 \leq \int_{a}^{b} f(t) du(t) - [u(x) - u(a)] f(a) - [u(b) - u(x)] f(b)$$

$$+ f'_{-}(b) \left[\int_{x}^{b} u(t) dt - (b - x) u(x) \right] + f_{+}(a) \left[\int_{a}^{x} u(t) dt - (x - a) u(x) \right]$$

$$\leq \int_{x}^{b} (b - t) \left[f'_{-}(b) - f'_{-}(t) \right] du(t) + \int_{a}^{x} (t - a) \left[f'_{+}(t) - f_{+}(a) \right] du(t)$$

for $x \in (a, b)$.

Proof. For any $x \in (a, b)$ we have

$$(2.3) \quad B(f, u, x) := \int_{x}^{b} [f(b) - f(t)] du(t) - \int_{a}^{x} [f(t) - f(a)] du(t)$$

$$= [u(x) - u(a)] f(a) + [u(b) - u(x)] f(b) - \int_{a}^{b} f(t) du(t).$$

Since f is convex, hence by the gradient inequality, we have

$$f(b) - f(t) \le (b - t) f'_{-}(b)$$
 for $t \in [x, b]$

and

$$f(t) - f(a) \ge (t - a) f'_{+}(a)$$
 for $[a, x]$.

Since u is monotonic nondecreasing, it follows by using integration by parts that

(2.4)
$$\int_{x}^{b} [f(b) - f(t)] du(t) \le f'_{-}(b) \int_{x}^{b} (b - t) du(t)$$
$$= f'_{-}(b) \left[\int_{x}^{b} u(t) dt - (b - x) u(x) \right]$$

and

$$\int_{a}^{x} [f(t) - f(a)] du(t) \ge f'_{+}(a) \int_{a}^{x} (t - a) du(t)$$

$$= f'_{+}(a) \left[(x - a) u(x) - \int_{a}^{x} u(t) dt \right],$$

which is equivalent to

$$(2.5) - \int_{a}^{x} [f(t) - f(a)] du(t) \le f'_{+}(a) \left[\int_{a}^{x} u(t) dt - (x - a) u(x) \right]$$

for any $x \in (a, b)$.

If we add (2.4) with (2.5), then we get

$$\leq f'_{-}(b) \left[\int_{x}^{b} u(t) dt - (b-x) u(x) \right] + f'_{+}(a) \left[\int_{a}^{x} u(t) dt - (x-a) u(x) \right]$$

for any $x \in (a, b)$.

This proves the second inequality in (2.1).

By the gradient inequality we also have

$$f(b) - f(t) \ge (b - t) f'_{-}(t)$$
 for $t \in [x, b]$

and

$$f(t) - f(a) \le (t - a) f'_{+}(t)$$
 for $t \in [a, x]$.

This imply that

$$\int_{x}^{b} [f(b) - f(t)] du(t) \ge \int_{x}^{b} (b - t) f'_{-}(t) du(t)$$

and

$$-\int_{a}^{x} [f(t) - f(a)] du(t) \ge -\int_{a}^{x} (t - a) f'_{+}(t) du(t)$$

for any $x \in (a, b)$.

If we add these two inequalities, we get

which proves the first inequality in (2.1).

$$\begin{split} &B\left(f,u,x\right)\\ &\geq -\int_{x}^{b}\left(t-b\right)f'_{-}\left(t\right)du\left(t\right) - \int_{a}^{x}\left(t-a\right)f'_{+}\left(t\right)du\left(t\right)\\ &= -\int_{x}^{b}\left(t-b\right)\left[f'_{-}\left(t\right) - f'_{-}\left(b\right)\right]du\left(t\right) - \int_{a}^{x}\left(t-a\right)\left[f'_{+}\left(t\right) - f_{+}\left(a\right)\right]du\left(t\right)\\ &- f'_{-}\left(b\right)\int_{x}^{b}\left(t-b\right)du\left(t\right) - f_{+}\left(a\right)\int_{a}^{x}\left(t-a\right)du\left(t\right)\\ &= -\int_{x}^{b}\left(b-t\right)\left[f'_{-}\left(b\right) - f'_{-}\left(t\right)\right]du\left(t\right) - \int_{a}^{x}\left(t-a\right)\left[f'_{+}\left(t\right) - f_{+}\left(a\right)\right]du\left(t\right)\\ &+ f'_{-}\left(b\right)\int_{x}^{b}\left(b-t\right)du\left(t\right) - f_{+}\left(a\right)\int_{a}^{x}\left(t-a\right)du\left(t\right)\\ &= f_{-}\left(b\right)\left[\int_{x}^{b}u\left(t\right)dt - \left(b-x\right)u\left(x\right)\right] + f_{+}\left(a\right)\left[\int_{a}^{x}u\left(t\right)dt - \left(x-a\right)u\left(x\right)\right]\\ &- \int_{x}^{b}\left(b-t\right)\left[f'_{-}\left(b\right) - f'_{-}\left(t\right)\right]du\left(t\right) - \int_{a}^{x}\left(t-a\right)\left[f'_{+}\left(t\right) - f_{+}\left(a\right)\right]du\left(t\right), \end{split}$$

Remark 1. We observe that a sufficient condition for the Riemann-Stieltjes integrals $\int_x^b (b-t) f'_-(t) du(t)$ and $\int_a^x (t-a) f'_+(t) du(t)$ to exist is either u is monotonic nondecreasing and continuous on [a,b] or f is convex and has a continuous derivative on an open interval containing [a,b].

In what follows, we assume that the involved Riemann-Stieltjes integrals exist.

Remark 2. If we take $x = \frac{a+b}{2}$ in (2.2), then we get

$$(2.6) \quad 0 \leq \int_{a}^{b} f(t) \, du(t) - \left[u\left(\frac{a+b}{2}\right) - u(a) \right] f(a) - \left[u(b) - u\left(\frac{a+b}{2}\right) \right] f(b)$$

$$+ f'_{-}(b) \left[\int_{\frac{a+b}{2}}^{b} u(t) \, dt - \frac{1}{2} (b-a) \, u\left(\frac{a+b}{2}\right) \right]$$

$$+ f_{+}(a) \left[\int_{a}^{\frac{a+b}{2}} u(t) \, dt - \frac{1}{2} (b-a) \, u\left(\frac{a+b}{2}\right) \right]$$

$$\leq \int_{\frac{a+b}{2}}^{b} (b-t) \left[f'_{-}(b) - f'_{-}(t) \right] du(t) + \int_{a}^{\frac{a+b}{2}} (t-a) \left[f'_{+}(t) - f_{+}(a) \right] du(t) .$$

If $q \in (a,b)$ is such that $u(q) = \frac{u(a)+u(b)}{2}$, then by (2.2) we get

$$(2.7) \quad 0 \leq \int_{a}^{b} f(t) du(t) - [u(b) - u(a)] \frac{f(a) + f(b)}{2}$$

$$+ f'_{-}(b) \left[\int_{q}^{b} u(t) dt - (b - q) u(q) \right] + f_{+}(a) \left[\int_{a}^{q} u(t) dt - (q - a) u(q) \right]$$

$$\leq \int_{q}^{b} (b - t) \left[f_{-}(b) - f'_{-}(t) \right] du(t) + \int_{q}^{q} (t - a) \left[f'_{+}(t) - f_{+}(a) \right] du(t) .$$

Corollary 3. With the assumptions of Theorem 2, we have

$$(2.8) \quad 0 \leq \int_{a}^{b} f(t) du(t) - [u(x) - u(a)] f(a) - [u(b) - u(x)] f(b)$$

$$+ f'_{-}(b) \left[\int_{x}^{b} u(t) dt - (b - x) u(x) \right] + f_{+}(a) \left[\int_{a}^{x} u(t) dt - (x - a) u(x) \right]$$

$$\leq \begin{cases} (b - x) \int_{x}^{b} \left[f'_{-}(b) - f'_{-}(t) \right] du(t) \\ \left(\int_{x}^{b} (b - t)^{p} du(t) \right)^{1/p} \left(\int_{x}^{b} \left[f'_{-}(b) - f'_{-}(t) \right]^{q} du(t) \right)^{1/q} \\ p, q > 1, \frac{1}{p} + \frac{1}{q} = 1, \\ \left[f'_{-}(b) - f'_{-}(x) \right] \int_{x}^{b} (b - t) du(t) \\ \left(\int_{a}^{x} (t - a)^{p} du(t) \right)^{1/p} \left(\int_{a}^{x} \left[f'_{+}(t) - f_{+}(a) \right]^{q} du(t) \right)^{1/q} \\ p, q > 1, \frac{1}{p} + \frac{1}{q} = 1, \\ \left[f'_{+}(x) - f_{+}(a) \right] \int_{a}^{x} (t - a) du(t) \end{cases}$$

for $x \in (a, b)$.

Moreover, if f is differentiable, then f'_{-} and f'_{+} can be replaced by f' for the interior points.

Proof. Since f is convex on [a, b], hence f'_{-} and f'_{+} are monotonic nondecreasing and by Hölder's inequality for Riemann-Stieltjes integral with monotonic nondecreasing integrators

$$\int_{x}^{b} (b-t) \left[f'_{-}(b) - f'_{-}(t) \right] du(t) + \int_{a}^{x} (t-a) \left[f'_{+}(t) - f'_{+}(a) \right] du(t)
\leq \begin{cases}
(b-x) \int_{x}^{b} \left[f'_{-}(b) - f'_{-}(t) \right] du(t), \\
\left(\int_{x}^{b} (b-t)^{p} du(t) \right)^{1/p} \left(\int_{x}^{b} \left[f'_{-}(b) - f'_{-}(t) \right]^{q} du(t) \right)^{1/q}, \\
p, q > 1, \frac{1}{p} + \frac{1}{q} = 1, \\
\left[f'_{-}(b) - f'_{-}(x) \right] \int_{x}^{b} (b-t) du(t) \\
\left((x-a) \int_{a}^{x} \left[f'_{+}(t) - f'_{+}(a) \right] du(t) \\
\left(\int_{a}^{x} (t-a)^{p} du(t) \right)^{1/p} \left(\int_{a}^{x} \left[f'_{+}(t) - f'_{+}(a) \right]^{q} du(t) \right)^{1/q} \\
p, q > 1, \frac{1}{p} + \frac{1}{q} = 1, \\
\left[f'_{+}(x) - f_{+}(a) \right] \int_{a}^{x} (t-a) du(t)
\end{cases}$$

for
$$x \in (a, b)$$
.

Remark 3. If f is differentiable convex on (a, b), then

$$\int_{x}^{b} \left[f'_{-}(b) - f'(t) \right] du(t) = f'_{-}(b) \left[u(b) - u(x) \right] - \int_{x}^{b} f'(t) du(t)$$

and

$$\int_{a}^{x} \left[f'(t) - f'_{+}(a) \right] du(t) = \int_{a}^{x} f'(t) du(t) - f'_{+}(a) \left[u(x) - u(a) \right]$$

then

$$(2.9) \quad C(f, u, x) := \int_{x}^{b} \left[f'_{-}(b) - f'(t) \right] du(t) + \int_{a}^{x} \left[f'(t) - f'_{+}(a) \right] du(t)$$

$$= f'_{-}(b) \left[u(b) - u(x) \right] - f'_{+}(a) \left[u(x) - u(a) \right] + \int_{a}^{x} f'(t) du(t) - \int_{x}^{b} f'(t) du(t)$$

$$= f'_{-}(b) \left[u(b) - u(x) \right] - f'_{+}(a) \left[u(x) - u(a) \right] + \int_{a}^{b} \operatorname{sgn}(x - t) f'(t) du(t)$$

and

$$(2.10) \quad D(f, u, x) := \max \left\{ \int_{x}^{b} \left[f'_{-}(b) - f'(t) \right] du(t), \int_{a}^{x} \left[f'(t) - f'_{+}(a) \right] du(t) \right\}$$

$$= \frac{1}{2} \left\{ \int_{x}^{b} \left[f'_{-}(b) - f'(t) \right] du(t) + \int_{a}^{x} \left[f'(t) - f'_{+}(a) \right] du(t) \right\}$$

$$+ \frac{1}{2} \left| \int_{x}^{b} \left[f'_{-}(b) - f'(t) \right] du(t) - \int_{a}^{x} \left[f'(t) - f'_{+}(a) \right] du(t) \right|$$

$$= \frac{1}{2} \left\{ f'_{-}(b) \left[u(b) - u(x) \right] - f'_{+}(a) \left[u(x) - u(a) \right] + \int_{a}^{b} \operatorname{sgn}(x - t) f'(t) du(t) \right\}$$

$$+ \frac{1}{2} \left| f'_{-}(b) \left[u(b) - u(x) \right] - \int_{x}^{b} f'(t) du(t) - \int_{a}^{x} f'(t) du(t) + f'_{+}(a) \left[u(x) - u(a) \right] \right|$$

$$= \frac{1}{2} \left\{ f'_{-}(b) \left[u(b) - u(x) \right] - f'_{+}(a) \left[u(x) - u(a) \right] + \int_{a}^{b} \operatorname{sgn}(x - t) f'(t) du(t) \right\}$$

$$+ \frac{1}{2} \left| f'_{-}(b) \left[u(b) - u(x) \right] - f'_{+}(a) \left[u(x) - u(a) \right] - \int_{a}^{b} f'(t) du(t) \right|$$

for $x \in (a, b)$. Therefore,

$$(b-x) \int_{x}^{b} \left[f'_{-}(b) - f'_{-}(t) \right] du(t) + (x-a) \int_{a}^{x} \left[f'_{+}(t) - f'_{+}(a) \right] du(t)$$

$$\leq \begin{cases} \max \{b-x, x-a\} C(f, u, x) \\ (b-a) D(f, u, x) \end{cases}$$

and by (2.8) we get

$$(2.11) \quad 0 \leq \int_{a}^{b} f(t) du(t) - [u(x) - u(a)] f(a) - [u(b) - u(x)] f(b)$$

$$+ f'_{-}(b) \left[\int_{x}^{b} u(t) dt - (b - x) u(x) \right] + f'_{+}(a) \left[\int_{a}^{x} u(t) dt - (x - a) u(x) \right]$$

$$\leq \begin{cases} \left[\frac{1}{2} (b - a) + \left| x - \frac{a + b}{2} \right| \right] C(f, u, x), \\ (b - a) D(f, u, x), \end{cases}$$

where C(f, u, x) is defined by (2.9) while D(f, u, x) is defined by (2.10). We also have

$$\int_{x}^{b} (b-t) \, du \, (t) = \int_{x}^{b} u \, (t) \, dt - (b-x) \, u \, (x)$$

and

$$\int_{a}^{x} (t - a) du(t) = (x - a) u(x) - \int_{a}^{x} u(t) dt$$

for $x \in (a, b)$.

Then

$$(2.12) \quad E(f, u, x) := (x - a) u(x) - \int_{a}^{x} u(t) dt + \int_{x}^{b} u(t) dt - (b - x) u(x)$$

$$= (2x - a - b) u(x) + \int_{x}^{b} u(t) dt - \int_{a}^{x} u(t) dt$$

$$= (2x - a - b) u(x) + \int_{a}^{b} \operatorname{sgn}(t - x) u(t) dt$$

and

$$(2.13) \quad F(f, u, x) := \max \left\{ (x - a) u(x) - \int_{a}^{x} u(t) dt, \int_{x}^{b} u(t) dt - (b - x) u(x) \right\}$$

$$= \frac{1}{2} \left\{ (2x - a - b) u(x) + \int_{a}^{b} \operatorname{sgn}(t - x) u(t) dt \right\}$$

$$+ \frac{1}{2} \left| (x - a) u(x) - \int_{a}^{x} u(t) dt - \int_{x}^{b} u(t) dt + (b - x) u(x) \right|$$

$$= \left(x - \frac{a + b}{2} \right) u(x) + \frac{1}{2} \int_{a}^{b} \operatorname{sgn}(t - x) u(t) dt$$

$$+ \frac{1}{2} \left| (b - a) u(x) - \int_{a}^{b} u(t) dt \right|$$

Therefore,

$$\begin{split} \left[f'_{-}\left(b \right) - f'\left(x \right) \right] \int_{x}^{b} \left(b - t \right) du\left(t \right) + \left[f'\left(x \right) - f'_{+}\left(a \right) \right] \int_{a}^{x} \left(t - a \right) du\left(t \right) \\ & \leq \left\{ \begin{array}{l} \max \left\{ f'_{-}\left(b \right) - f'\left(x \right), f'\left(x \right) - f'_{+}\left(a \right) \right\} E\left(f, u, x \right) \\ \left[f'_{-}\left(b \right) - f'_{+}\left(a \right) \right] F\left(f, u, x \right) \end{array} \right. \end{split}$$

and by (2.8) we get

$$(2.14) \quad 0 \leq \int_{a}^{b} f(t) du(t) - [u(x) - u(a)] f(a) - [u(b) - u(x)] f(b)$$

$$+ f'_{-}(b) \left[\int_{x}^{b} u(t) dt - (b - x) u(x) \right] + f'_{+}(a) \left[\int_{a}^{x} u(t) dt - (x - a) u(x) \right]$$

$$\leq \begin{cases} \left[\frac{1}{2} \left(f'_{-}(b) - f'_{+}(a) \right) + \left| f'(x) - \frac{f'_{+}(a) + f'_{-}(b)}{2} \right| \right] E(f, u, x), \\ \left[f'_{-}(b) - f'_{+}(a) \right] F(f, u, x), \end{cases}$$

for $x \in (a,b)$, where E(f,u,x) is defined by (2.12) while F(f,u,x) is defined by (2.13).

Corollary 4. Let I an interval and \mathring{I} , the interior of I. Assume that $f: I \to \mathbb{R}$ is convex on I, differentiable and with the derivative f' continuous on \mathring{I} and $[a,b] \subset \mathring{I}$.

If $g:[a,b]\to [0,\infty)$ is continuous and $v:[a,b]\to \mathbb{R}$ is monotonic nondecreasing, then

$$(2.15) \quad 0 \leq \int_{a}^{b} f(t) g(t) dv(t) - f(a) \int_{a}^{x} g(t) dv(t) - f(b) \int_{x}^{b} g(t) dv(t) + f'_{-}(b) \int_{x}^{b} (b-t) g(t) dv(t) + f_{+}(a) \int_{a}^{x} (t-a) g(t) dv(t) \leq \int_{x}^{b} (b-t) \left[f'_{-}(b) - f'(t) \right] g(t) dv(t) + \int_{a}^{x} (t-a) \left[f'(t) - f_{+}(a) \right] g(t) dv(t) \leq (b-x) \left[f'_{-}(b) - f'(x) \right] \int_{x}^{b} g(t) dv(t) + (x-a) \left[f'(x) - f_{+}(a) \right] \int_{a}^{x} g(t) dv(t) \leq \max \left\{ (b-x) \left[f'_{-}(b) - f'(x) \right], (x-a) \left[f'(x) - f_{+}(a) \right] \right\} \int_{a}^{b} g(t) dv(t)$$

for $x \in (a, b)$.

Proof. Using the properties of Riemann-Stieltjes integral with integrators u given by an integral, namely, if

$$u\left(t\right) = \int_{a}^{t} g\left(s\right) dv\left(s\right),$$

which is monotonic nondecreasing on [a, b], then

$$\int_{a}^{b} f(t) du(t) = \int_{a}^{b} f(t) g(t) dv(t), \quad \int_{x}^{b} (b-t) du(t) = \int_{x}^{b} (b-t) g(t) dv(t),$$

$$\int_{a}^{x} (t-a) du(t) = \int_{a}^{x} (t-a) g(t) dv(t)$$

$$\int_{x}^{b} (b-t) \left[f'_{-}(b) - f'(t) \right] du(t) = \int_{x}^{b} (b-t) \left[f'_{-}(b) - f'(t) \right] g(t) dv(t)$$

and

$$\int_{a}^{x} (t-a) [f'(t) - f_{+}(a)] du(t) = \int_{a}^{x} (t-a) [f'(t) - f_{+}(a)] g(t) dv(t)$$

and by (2.2) for differentiable functions, we get the first part of (2.15). The second part is obvious.

3. Inequalities for Riemann Integral

Consider the function $u(t) = t, t \in [a, b]$. Then

$$\int_{x}^{b} u(t) dt - (b - x) u(x) = \frac{1}{2} (b^{2} - x^{2}) - (b - x) x = \frac{1}{2} (b - x)^{2},$$

$$\int_{a}^{x} u(t) dt - (x - a) u(x) = \frac{1}{2} (x^{2} - a^{2}) - (x - a) x = -\frac{1}{2} (x - a)^{2},$$

$$\int_{x}^{b} (b - t) [f'_{-}(b) - f'(t)] dt = f'_{-}(b) \int_{x}^{b} (b - t) dt - \int_{x}^{b} (b - t) f'(t) dt$$

$$= \frac{1}{2} f'_{-}(b) (b - x)^{2} + (b - x) f(x) - \int_{x}^{b} f(t) dt$$

and

$$\int_{a}^{x} (t-a) [f'(t) - f_{+}(a)] du(t) = \int_{a}^{x} (t-a) f'(t) dt - f_{+}(a) \int_{a}^{x} (t-a) dt$$
$$= (x-a) f(x) - \frac{1}{2} f_{+}(a) (x-a)^{2} - \int_{a}^{x} f(t) dt$$

for $x \in (a, b)$.

By utilising the inequality (2.1) for convex functions, we have

$$-\frac{1}{2}f'_{-}(b)(b-x)^{2} - (b-x)f(x) + \int_{x}^{b} f(t)dt - (x-a)f(x)$$

$$+\frac{1}{2}f_{+}(a)(x-a)^{2} + \int_{a}^{x} f(t)dt + \frac{1}{2}f'_{-}(b)(b-x)^{2} - \frac{1}{2}f_{+}(a)(x-a)^{2}$$

$$\leq (x-a)f(a) + (b-x)f(b) - \int_{a}^{b} f(t)dt$$

$$\leq \frac{1}{2}f'_{-}(b)(b-x)^{2} - \frac{1}{2}f'_{+}(a)(x-a)^{2},$$

which is equivalent to

(3.1)
$$\int_{a}^{b} f(t) dt - (b - a) f(x)$$

$$\leq (x - a) f(a) + (b - x) f(b) - \int_{a}^{b} f(t) dt$$

$$\leq \frac{1}{2} \left[f'_{-}(b) (b - x)^{2} - f'_{+}(a) (x - a)^{2} \right]$$

for $x \in (a, b)$.

In particular, if we take in (3.1) $x = \frac{a+b}{2}$, then we get

$$(3.2) \quad 0 \le \int_{a}^{b} f(t) dt - (b - a) f\left(\frac{a + b}{2}\right) \le \frac{f(a) + f(b)}{2} (b - a) - \int_{a}^{b} f(t) dt \\ \le \frac{1}{8} (b - a)^{2} \left[f'_{-}(b) - f'_{+}(a)\right],$$

with $\frac{1}{8}$ as best possible constant.

If we write the inequality (2.2) for differentiable convex functions and u(t) = t, then we get

$$(3.3) \quad 0 \le \int_{a}^{b} f(t) dt - (x - a) f(a) - (b - x) f(b)$$

$$+ \frac{1}{2} \left[f'_{-}(b) (b - x)^{2} - f_{+}(a) (x - a)^{2} \right]$$

$$\le \int_{x}^{b} (b - t) \left[f'_{-}(b) - f'_{-}(t) \right] dt + \int_{a}^{x} (t - a) \left[f'_{+}(t) - f_{+}(a) \right] dt$$

for $x \in (a, b)$, which, in particular, gives

$$(3.4) \quad 0 \leq \int_{a}^{b} f(t) dt - \frac{f(a) + f(b)}{2} (b - a) + \frac{1}{8} \left[f'_{-}(b) - f_{+}(a) \right] (b - a)^{2}$$

$$\leq \int_{\frac{a+b}{2}}^{b} (b - t) \left[f'_{-}(b) - f'_{-}(t) \right] dt + \int_{a}^{\frac{a+b}{2}} (t - a) \left[f'_{+}(t) - f_{+}(a) \right] dt.$$

Since f is convex, hence we have

$$0 \le f'_{-}(b) - f'_{-}(t) \le f'_{-}(b) - f'_{-}(x)$$
 for $t \in [x, b]$

and

$$0 \le f'_{+}(t) - f_{+}(a) \le f'_{+}(x) - f_{+}(a) \text{ for } t \in [a, x],$$

which gives

$$\int_{x}^{b} (b-t) \left[f'_{-}(b) - f'_{-}(t) \right] dt + \int_{a}^{x} (t-a) \left[f'_{+}(t) - f_{+}(a) \right] dt$$

$$\leq \left[f'_{-}(b) - f'_{-}(x) \right] \int_{x}^{b} (b-t) dt + \left[f'_{+}(x) - f_{+}(a) \right] \int_{a}^{x} (t-a) dt$$

$$= \frac{1}{2} \left\{ \left[f'_{-}(b) - f'_{-}(x) \right] (b-x)^{2} + \left[f'_{+}(x) - f_{+}(a) \right] (x-a)^{2} \right\}$$

for $x \in (a, b)$.

By (3.3) we then get

$$(3.5) \quad 0 \le \int_{a}^{b} f(t) dt - (x - a) f(a) - (b - x) f(b)$$

$$+ \frac{1}{2} \left[f'_{-}(b) (b - x)^{2} - f_{+}(a) (x - a)^{2} \right]$$

$$\le \frac{1}{2} \left\{ \left[f'_{-}(b) - f'_{-}(x) \right] (b - x)^{2} + \left[f'_{+}(x) - f_{+}(a) \right] (x - a)^{2} \right\}$$

for $x \in (a, b)$.

Now, if there exists the constants L_a , $L_b > 0$ and q > -1 such that

$$0 \le f'_{-}(b) - f'_{-}(t) \le L_b (b - t)^q \text{ for } t \in [x, b]$$

and

$$0 \le f'_{+}(t) - f_{+}(a) \le L_{a}(t-a)^{q} \text{ for } t \in [a, x],$$

then

$$\int_{x}^{b} (b-t) \left[f'_{-}(b) - f'_{-}(t) \right] dt + \int_{a}^{x} (t-a) \left[f'_{+}(t) - f_{+}(a) \right] dt$$

$$\leq L_{b} \int_{x}^{b} (b-t)^{q+1} dt + L_{a} \int_{a}^{x} (t-a)^{q+1} dt$$

$$= \frac{1}{q+2} \left[L_{b} (b-x)^{q+2} + L_{a} (x-a)^{q+2} \right]$$

and by (3.3) we get

$$(3.6) \quad 0 \le \int_{a}^{b} f(t) dt - (x - a) f(a) - (b - x) f(b)$$

$$+ \frac{1}{2} \left[f'_{-}(b) (b - x)^{2} - f_{+}(a) (x - a)^{2} \right]$$

$$\le \frac{1}{a + 2} \left[L_{b} (b - x)^{q+2} + L_{a} (x - a)^{q+2} \right]$$

for $x \in (a, b)$.

If we take $x = \frac{a+b}{2}$ in (3.6), then we get

$$(3.7) \quad 0 \le \int_{a}^{b} f(t) dt - \frac{f(a) + f(b)}{2} (b - a) + \frac{1}{8} \left[f'_{-}(b) - f_{+}(a) \right] (b - a)^{2} \le \frac{L_{b} + L_{a}}{(q + 2) 2^{q + 2}} (b - a)^{q + 2}.$$

If q = 1 and $L = L_b = L_a$, then (3.6) becomes

$$(3.8) \quad 0 \le \int_{a}^{b} f(t) dt - (x - a) f(a) - (b - x) f(b)$$

$$+ \frac{1}{2} \left[f'_{-}(b) (b - x)^{2} - f_{+}(a) (x - a)^{2} \right]$$

$$\le \frac{L}{3} \left[(b - x)^{3} + (x - a)^{3} \right]$$

for $x \in (a, b)$ and in particular

$$(3.9) \quad 0 \le \int_{a}^{b} f(t) dt - \frac{f(a) + f(b)}{2} (b - a) + \frac{1}{8} \left[f'_{-}(b) - f_{+}(a) \right] (b - a)^{2}$$

$$\le \frac{L}{12} (b - a)^{3}.$$

References

- [1] M. W. Alomari, New sharp Ostrowski-type inequalities and generalized trapezoid-type inequalities for Riemann-Stieltjes integrals and their applications. *Ukrainian Math. J.* **65** (2013), no. 7, 995–1018.
- [2] A. Asanov, M. Haluk Chelik and A. Chalish, Approximating the Stieltjes integral by using the generalized trapezoid rule. *Matematiche* (Catania) **66** (2011), no. 2, 13–21.
- [3] N. S. Barnett, W.-S. Cheung, S. S. Dragomir and A. Sofo, Ostrowski and trapezoid type inequalities for the Stieltjes integral with Lipschitzian integrands or integrators. *Comput. Math. Appl.* 57 (2009), no. 2, 195–201.
- [4] P. Cerone and S. S. Dragomir, Sharp error bounds in approximating the Riemann-Stieltjes integral by a generalised trapezoid formula and applications. J. Inequal. Appl. 2013, 2013:53, 11 pp.
- [5] S. S. Dragomir, Some inequalities of midpoint and trapezoid type for the Riemann-Stieltjes integral. Proceedings of the Third World Congress of Nonlinear Analysts, Part 4 (Catania, 2000). Nonlinear Anal. 47 (2001), no. 4, 2333–2340.
- [6] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3 (2002), no. 3, Article 35, 8 pp.
- [7] S. S. Dragomir, Approximating the Riemann-Stieltjes integral in terms of generalised trapezoidal rules. *Nonlinear Anal.* **71** (2009), no. 12, e62–e72.

- [8] S. S. Dragomir, Approximating the Riemann-Stieltjes integral by a trapezoidal quadrature rule with applications. *Math. Comput. Modelling* **54** (2011), no. 1-2, 243–260.
- [9] S. S. Dragomir, Trapezoidal type inequalities for Riemann-Stieltjes integral via Čebyšev functional with applications. Nihonkai Math. J. 26 (2015), no. 1, 47–69.
- [10] S. S. Dragomir, C. Buşe, M. V Boldea and L. Braescu, A generalization of the trapezoidal rule for the Riemann-Stieltjes integral and applications. *Nonlinear Anal. Forum* 6 (2001), no. 2, 337–351.
- [11] S. S. Dragomir, Y. J. Cho, Y. H. Kim, On the trapezoid inequality for the Riemann-Stieltjes integral with Hölder continuous integrands and bounded variation integrators. *Inequality* theory and applications. Vol. 5, 71–79, Nova Sci. Publ., New York, 2007.
- [12] S. S. Dragomir and I. Fedotov, Approximating the Stieltjes integral via a weighted trapezoidal rule with applications. Math. Comput. Modelling 57 (2013), no. 3-4, 602-611.
- [13] P. R. Mercer, Hadamard's inequality and trapezoid rules for the Riemann-Stieltjes integral. J. Math. Anal. Appl. 344 (2008), no. 2, 921–926.
- [14] W. Zhao and Z. Zhang, Derivative-based trapezoid rule for the Riemann-Stieltjes integral. Math. Probl. Eng. 2014, Art. ID 874651, 6 pp.
- [15] W. Zhao, Z. Zhang and Z. Ye, Midpoint derivative-based trapezoid rule for the Riemann-Stieltjes integral. Ital. J. Pure Appl. Math. No. 33 (2014), 369–376.
- [16] W. Zhao, Z. Zhang and Z. Ye, Composite trapezoid rule for the Riemann-Stieltjes integral and its Richardson extrapolation formula. Ital. J. Pure Appl. Math. No. 35 (2015), 311–318

Mathematics, School of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E ext{-}mail\ address: sever.dragomir@vu.edu.au}$

 URL : http://rgmia.org/dragomir/

DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL AND STATISTICAL SCIENCES,, SCHOOL OF COMPUTER SCIENCE AND APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, PRIVATE BAG-3, WITS-2050, JOHANNESBURG, SOUTH AFRICA