TRAPEZOID TYPE RIEMANN-STIELTJES INTEGRAL
INEQUALITIES FOR CONVEX INTEGRANDS AND
NONDECREASING INTEGRATORS

SILVESTRU SEVER DRAGOMIR

ABSTRACT. In this paper we obtain some inequalities for the trapezoid differ-
ence

b
[u(2) —u(a)l f(a) + [u(b) —u(z)] f () */ f(t) du(t)

where f is a convex function on [a,b], u is monotonic nondecreasing and = €
(a,b). In the case of Riemann integral, namely for u (¢) = t, some particular
inequalities are given.

1. INTRODUCTION

We start with the following result concerning two inequalities of trapezoid type
for convex functions obtained in [6]:

Theorem 1. Let f : [a,b] C R — R be a convex function on [a,b]. Then for any
x € [a,b] one has the inequality

1) 5 [6-22 7@ - @ £ )]
S@-a)f@+o-0f0)- [ f@a

<ge—22r0) - -0 @]

The constant % s sharp in both inequalities.
The second inequality also holds for x = a or x = b.

We have have a simpler first inequality in the case of differentiability:

Corollary 1. With the assumptions of Lemma 1 and if x € (a,b) is a point of
differentiability for f, then

1 (L -0)0-0s @ <E-ai@+ -0 /f

Now, recall that the following inequality, which is well known in the literature
as the Hermite-Hadamard inequality for convex functions, holds

(1.3) f(a;b) /f 1) dt < ”f()( —a).
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The following corollary provides some sharp bounds for the trapezoid difference

M) 210 (b—a)—/abf(t)dt.

Corollary 2. Let f : [a,b] — R be a convex function on [a,b]. Then we have the

inequality
(530 (3o
< W(b—a)—/abf(t)dt
1
8

(14) 0<

| =

<

[f2(b) = £ ()] (b= a)”.
The constant % s sharp in both inequalities.

For various trapezoid type inequalities involving Riemann-Stieltjes integral, see
[1]-[12] and [8]-[16].

Motivated by the above results, in this paper we obtain some inequalities for the
Riemann-Stieltjes integral trapezoid difference

b
[u(z) —u(a)] f(a) + [u(b) —u(z)] f(b) —/ f(#) du(t)

where f is a convex function on [a,b], v is monotonic nondecreasing and z € (a,b) .
In the case of Riemann integral, namely for u (¢t) = t, some particular inequalities
are also given.

2. THE MAIN RESULTS

Theorem 2. Assume that f : [a,b] — R is continuous convex on [a,b] and u :
[a,b] — R is monotonic nondecreasing on [a,b], then

@) = [ 0=l - Oldsw - [ -0 (£ 0 @] dulo)

b
+ £ (b) [/ w(t)dt — (b—z)u(z)

<lu(@) —u(@)] f(a) +[u®d) —u@)] f(b) = [ f(t)du(?)

a

< fL(b) [/:u(t)dt—(b—x)u(x) + f (a) [/:u(t)dt—(x—a)u(x)}

for x € (a,b), provided the Riemann-Stieltjes integrals f; (b—1t) f.(t)du(t) and
L2t —a) fi(t)du(t) exist.
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This is equivalent to the inequality
b
(22) 0 S/ f @) du(t) = [u(z) —u(a)] f (a) = [u(b) —u(@)] f(b)

b T
+ £ (b) [/ w(t)dt—(b—x)u(z)| + f+ (a) [/ u(t)dt — (z —a)u(x)

x

b
<[ o-0lr®-reldao+ [ @-olfo-f @
for x € (a,b).
Proof. For any = € (a,b) we have

T

b
(23) B(f,u.z):= / () — £ (1)) du (t) / [ (6) — £ (@) du(t)
b
~ fu (o) — (@) £ (@) + [~ u @) £ )~ [ FOduo).

Since f is convex, hence by the gradient inequality, we have
FO) = F(t) < (b—1) fL (b) for t € [, 1]
and

f@)=f(a) = (t—a)f, (a) for [a,z].

Since u is monotonic nondecreasing, it follows by using integration by parts that

b b
e [ re-relao<ro) [ e-nae

b
= fL(b) l/ u(t)dt—(b—x)u(m)]

and

Y

i@ [ ¢-ad
f@ |- au - [Cuoa.

[0 @ae

which is equivalent to

e - [ o-s@anrto [ woa-e-oue)

for any z € (a,b).
If we add (2.4) with (2.5), then we get

B(f,u,x)

< f.(b) V:uu)dt—(b—xm(m) + 7} (a) [/jwwdt—(m—am(w)}

for any z € (a,b).
This proves the second inequality in (2.1).
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By the gradient inequality we also have
fO)=f@)=@—1t)fL(t) fort € [z,0]

and
f(@&) = f(a) < (t—a)fi(t) fort€ a,a].

This imply that

b b
[o-rwlaw= [ 0-0s o
and
—/x[f(t)—f(a)]du(t)2—/z(t—a)f’+(t)du(t)

for any x € (a,b).
If we add these two inequalities, we get

B (f,u,z)

b x
> —/ (t-b)f (t)du(t)—/ (t—a) £/ (t) du ()

b
——[t-vr O£ Ol - [ -0l 0~ f @] du(o

a

Aoy (t_b)du(@_f+(a>/z<t_a)du<t)

b x
- / (b—1) [ () — f ()] du(t) - / (t—a) [ (1) — f+ (a)] du ()
b x
+f’_(b)/ (bft)dU(t)ff+(a)/ (t - a) du (1)

b x
— - (v) U w(t)dt — (b— ) u(@)| + fs (a) [/ w(t) dt — (z — a)u (z)

b T
[0l o - @l - [ -0 [0 £ @],
which proves the first inequality in (2.1). O

Remark 1. We observe that a sufficient condition for the Riemann-Stieltjes inte-
grals ff (b—1t) f. (t)du(t) and [ (t — a) f (t) du (t) to exist is either u is monotonic
nondecreasing and continuous on [a,b] or f is conver and has a continuous deriv-
ative on an open interval containing [a,b] .

In what follows, we assume that the involved Riemann-Stieltjes integrals exist.
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Remark 2. If we take x = “£> in (2.2), then we get

o) o< [ roao - [u(“F) ~v@]r@ - fue - (5] 10

10 [/b U(t)dt—;(b—a)u<a;—b>

a+b
2

+ 4 () [/aa;bu(t)dt—;(b—a)u<a;b>

a+b
2

b
< [Le-0lro-r@aos [T t-alfo- i@,

a
Pl a

If g € (a,b) is such that u(q) = M, then by (2.2) we get

fla)+70)

1) 0< [ f@du) - ) - u@ 1

b
L) l/ w(tydt — (b — q)u(q)

cr@|[u@i- - au
< [[o-0lro - olao+ [ -0 [0 - £ @),
Corollary 3. With the assumptions of Theorem 2, we have
e8) o< [ F (0 ()~ [u (@) — (@) £ (0) — [ (5) — u (@)] £ )
+ ) V:u(t)dt— (b—2)u@)| + /s (a) [/:u(t)dt— (x—a)u@c)}
(=) [ [ () = f2 (1)) du(t)

IN
S
e
f=al
—
S
|
~~
S—
3
U
<

(v =) [ [£ (5) = f+ (@)] du(t)
) U= au @) (1) - fr (@) du(0)

) 1 1 _
p7q>17 5+E_17

[} (@) = fr (@] [ (t—a)du(t)

for x € (a,b).
Moreover, if f is differentiable, then f' and f! can be replaced by f' for the
interior points.
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Proof. Since f is convex on [a, b], hence f” and f! are monotonic nondecreasing and
by Holder’s inequality for Riemann-Stieltjes integral with monotonic nondecreasing
integrators

x

b
[o-olr -1 olao+ [ ¢-alf -1 @]do

(b—x) [2[f2 (b) — [ (8)] du(t),

(-1 au®)” (11 e - 1 o) aum)
p, ¢>1, %—F =1,

IN

£ (b) = £ ()] [7 (b~ 1) du (t)
(@—a) [T [f} (&) = £, (@)] du(t)

) e @) (7 0 - £ @) )
D, q>1, %"’_%:17

[f4 @) = fr(@)] [; (t—a)du(t)

for x € (a,b). O
Remark 3. If f is differentiable convex on (a,b), then

b b
/ L2 (0) = f (®)] du(t) = fL (b) [u(b) —u(z)] —/ f(t) du(t)
and

/Tf@fﬂmmmm:/meww<ﬂ@w@wwmn



RIEMANN-STIELTJES INTEGRAL INEQUALITIES 7

and

b T
(2.10) D (f,u,z) := max {/ [f2(b) = f (8)] du () ,/ [f' (t) = fi (a)] du (t)}

b xr
_;{/ [fL(0) = f' (t)] du(t)+/a [f' (t) = £ (a)] du(t)}

for x € (a,b).
Therefore,

(b—x)/m 72 (0) — 1~ (#) x—a/a du (1)
{max{b—x ,x—a}C(f,u,x)

D (f,u,x)
and by (2.8) we get

(2.11) OS/ f @) du(t) = [u(z) —ula)l f(a) = [u(b) —u(z)] f(b)

b xr
+ £ (b) [/ w(t)dt — (b—z)u(z)| + [ (a) [/ u(t)dt — (v —a)u(x)
{ [3(b—a)+ [z — 252 C(fiu2),
<

(b_a')D(fau7x)7

where C (f,u,x) is defined by (2.9) while D (f,u,x) is defined by (2.10).
We also have

/b(b—t)du(t):/bu(t)dt—(b—m)u(x)
and xx ' N

/(t—a)du(t):(x—a)u(x)—/ w(t) dt
for x € (a,b). ’ ’
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Then
x b
(2.12) E(f,u, ) ::(a:—a)u(x)—/ u(t)dt+/ w(t)dt — (b—)u ()
b x
:(Qm—a—b)u(:r)—l-/ u(t)dt—/ u(t)dt

b
:(Qxfafb)u(x)Jr/ sgn (t — ) u (t)dt

and

@ b
(2.13)  F(f,u,x) :max{(wa)u(x)/ U(t)dt,/ U(t)dt(ba:)u(x)}
_;{(2x—a—b)U(a:)+/absgn(t—z)u(t)dt}

x b
(J;—a)u(a:)—/ u(t)dt—/ w(tydt+ (b—2)u ()

+% (b—a)u(z)— /abu(t)dt
Therefore,
b x
70~ £ @) [ 0-du@+ [ @) - f @] [ ¢-adu)

< { max { . (b) — f'(z), f' (z) — f} (a)} E (f,u,2)

Lo - A @] F ()
and by (2.8) we get

(2.14) 0 S/ f @) du(t) = [u(z) —ula)l f(a) = [u(b) —u(z)] f(b)

+ ) V w(t)dt — (b— ) u(2)

+ £ (a) [/mu(t)dt—(m—a)u(x)}
{ (3 (2 ) - £2 (@) +

<
[fi (b)_fi (a)]F(f,u,:c),

for x € (a,b), where E(f,u,x) is defined by (2.12) while F (f,u,x) is defined by
(2.13).

"(a " (b
£ (@)= L0 B(fu ),

Corollary 4. Let I an interval and Io, the interior of I. Assume that f: 1 — R is
convez on I, differentiable and with the derivative f' continuous on I and [a,b] C I.
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If g : [a,b] — [0,00) is continuous and v : [a,b] — R is monotonic nondecreasing,
then

b T b
(215) 0< / £ (g (@) do(t) - f (a) / g (t)dv (t) — 1 (b) / g (t) do (1)
b T
+fi(b)/ (b—t)g(t)dv(t)+f+(a)/ (t—a)g () dv (t)

b
< / (b—1) [f ()~ ' ()] g (B) do () + / (t—a) [’ () — f+ (@)] g (£) do (1)

b
§<b—x>[fL<b>—f’<x>]/g(t)dv<t>+<x—a>[f<> fe@! [ a®av(

<max{(b—2) [f. (b) - F @)], (@~ a) [f' (@) — f+ (a }/
for x € (a,b).

Proof. Using the properties of Riemann-Stieltjes integral with integrators u given
by an integral, namely, if

u(t)z/g<s>dv<s>,

which is monotonic nondecreasing on [a, b] , then

/f ) du(t /f Lb<b—t>du<t>:/:w—t)g(t)dv(t),

/(t—a)duu | t-ag0ane
b

b
/(b—t) 7 () — 1 ()] du(t):/ bt [f () — £ ®)] g(t)dv ()

xT
and

[ e—arw-si@an= [ t-al -1 @@

and by (2.2) for differentiable functions, we get the first part of (2.15). The second
part is obvious. O

3. INEQUALITIES FOR RIEMANN INTEGRAL

Consider the function u (£) = t, t € [a,d]. Then
/:u(t)dt—(b—a:)u(x):;(bQ—x2)—(b—x)x:(b—a:)z,
/:u(t)dt—(x—a)u(x):;(x2—a2)—(x—a)x:—(:c—a)27
/:(b—t)[f’_(b)—f’(t)]dt=f’_(b)/;(b—t)dt /b(b—t)f()dt
:%f'_(b)(b—:p (b—2)f /f
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and

/z(t—a)[f’(t)—f+(a)]du(t)=/I(t—a)f’(t)dt—f+(a)/x(t—a)dt

for x € (a,b).
By utilising the inequality (2.1) for convex functions, we have

,%f’_(b)(bfx (b—a)f /f t)dt — (z —a) f ()
1 2
+ 50 (@) @ - o) / F@)dt+ S50 (-2~ S+ (@) (2 - a)
S f@+e-nio- [ o
) -2 = S (@) (- )

N —

which is equivalent to

b
(3.1) / f(tydt—(b—a) f (x)

b
<@ f @+ b-a)f0)- [ @
<[ ®e-2* 1@ -]
for x € (a,b).
In particular, if we take in (3.1) 2 = “E2, then we get

b b
(3.2) 0</f(t)dt—(b—a)f(a;b><f(a)—2|—f(b)(b—a)—/f(t)dt

(b—a)* [f. (b) — £ (a)] ,

<

ool —

with % as best possible constant.
If we write the inequality (2.2) for differentiable convex functions and u (t) = t,
then we get

(3.3) os/ ) dt— (z—a) f (a) — (b—2) f (B)
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for x € (a,b), which, in particular, gives

b a
60 o< [ rwa- LTI 604 L o) f @] 0- 0

a+b

b 2
S/m (b—1t) [f. (b) — f (t)] dt+/ (t—a) [fi ) — f+ (a)] dt.

Since f is convex, hence we have
0< fL(b)— fL(t) < fL(b)— fL(x) fort € [z,b]
and
0< fiL(t) = f+(a) < fi(2) = f+ (a) fort € [a,a],

which gives
b x
[e-olro-rolar [ ¢-olho-rwa

b x
< [f’,(b)—f’,(x)]/ (b_t)dt+[f;(x)—f+(a)]/ (t—a)dt
N0 - £ @] 6o+ [ @) - £ 0] (- )

2
for x € (a,b).
By (3.3) we then get

(3.5) og/ f&)ydt— (x—a) f(a) = (b—) £ (b)

for x € (a,b).
Now, if there exists the constants L,, L, > 0 and g > —1 such that

0< fL(b)—fL(t) <Ly (b—1t)? for t € [x,b]
and
0< fL(t) = f+(a) < Ly (t—a)? fort € [a,x],

then

x

b
/ (b—1) [f () - f ()] dt + / (t—a) [} (t) — f (a)] dt

b T
ng/ (bft)q—i_ldtJrLa/ (t—a)"dt
1

T qt2 [Lb (b—a)"2 + La (2 — a>q+2}

11
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and by (3.3) we get

b
(3.6) og/ f ) dt— (z—a) f (a) — (b—2) f (B)

L 0e-0 £ @ -]

= q% Lo (0= 2)™* + Lo (@ — )"
for z € (a,b).
If we take z = %t in (3.6), then we get
’ fla) + f(b)
(3.7) 03/@ Ftyd— =22 - a)
Ly+ L,
FL L0~ f @] 00 < i 00"

If g=1and L = L, = L,, then (3.6) becomes

b
(3.8) os/ f(t)dt— (x—a) f (a) — (b— ) £ (b)

720 (b =) = 1 () (@ — a)?]

<Z[o-0'+@-o

DN | =

+

for « € (a,b) and in particular

(3.9) og/bf(t)dt—

TOXTO 0 L[ )~ 1 @) (- a)

1£(bfa)3.
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