APPROXIMATING THE INTEGRAL OF ANALYTIC COMPLEX
FUNCTIONS ON PATHS FROM CONVEX DOMAINS IN TERMS
OF GENERALIZED OSTROWSKI AND TRAPEZOID TYPE
RULES

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. In this paper we establish some results in approximating the in-
tegral of analytic complex functions on paths from convex domains in terms
of generalized Ostrowski and Trapezoid type rules. Error bounds for these
expansions in terms of p-norms are also provided. Examples for the complex
logarithm and the complex exponential are also given.

1. INTRODUCTION

Let f : D C C — C be an analytic function on the convex domain D and z,
x € D, then we have the following Taylor’s expansion with integral remainder

n

L) £ =3 =B (@) (z - )"

x| =

+ = (z—a)" /01 FOY(1 = s)z +s2] (1 —5)"ds

n!
for n > 0, see for instance [15].

Consider the function f(z) = Log(z) where Log(z) = In|z| + i Arg(z) and
Arg(z) is such that —7m < Arg(z) < w. Log is called the "principal branch" of
the complex logarithmic function. The function f is analytic on all of C, :=
C\{z+iy:2 <0, y=0} and

(1" (k= 1)!
k

) (2) = , k>1, zeC,.

z

Using the representation (1.1) we then have

nC) R s e\ F
(1.2) Log(z)—Log@HZ(l)( )

k T
k=1

(1—5)"ds
1—s)x+ sz]

n+1

+(=1)" (2 — m)nH /0 T

for all z, x € C; with (1 —s)z + sz € C, for s € [0,1].
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Consider the complex exponential function f (z) = exp (2), then by (1.1) we get

n

1

|
k=0 k!

(1.3) exp(z (z — z)" exp (2)

+ % (z —x)nﬂ/o (1—35)"exp[(1 —s)z+ sz]ds

for all z, x € C.

For various inequalities related to Taylor’s expansions for real functions see [1]-
[14].

Suppose v is a smooth path parametrized by z (t), ¢ € [a,b] and f is a complex
function which is continuous on «. Put z (a) = u and z (b) = w with u, w € C. We
define the integral of f on v, , =~ as

Lf(z)dZZ %“f(Z)dz:/abf(Z(t))Z’

We observe that that the actual choice of parametrization of v does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose
« is parametrized by z (¢), t € [a,b], which is differentiable on the intervals [a, (]
and [c, b], then assuming that f is continuous on v we define

f(z)dz = f(z)dz+ f(z)dz
Vauw Vai,v Vo,

where v := z (¢). This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

dz| == dt
RELEE [ reaE o

and the length of the curve + is then

() = / e = /ab 12 (1) dt.

Let f and g be holomorphic in G, an open domain and suppose v C G is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
by parts formula

(1.4) f(2)g (2)dz = f (w)g(w) = f(u)g(u) - / f'(2)g(2)dz.

Yu,w u,w

We recall also the triangle inequality for the complex integral, namely

(1.5) < / FOdzl < 1100 ()

z)dz

where || f[| = sup.e, |f (2)].
We also define the p-norm with p > 1 by

T (/ e Ipldz|) v
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For p =1 we have
Hm%pz/iﬂauww
Yy

If p, ¢ > 1 with % + % = 1, then by Holder’s inequality we have

£, < UL, -

In this paper we establish some results in approximating the integral of analytic
complex functions on paths from convex domains in terms of generalized Ostrowski
and Trapezoid type rules. Error bounds for these expansions in terms of p-norms are
also provided. Examples for the complex logarithm and the complex exponential
are also given.

2. OSTROWSKI AND TRAPEZOID TYPE EQUALITIES
‘We have:

Theorem 1. Let f: D CC — C be an analytic function on the convex domain D
and x € D. Suppose v C D is a smooth path parametrized by z (t), t € [a,b] with
z(a) =u and z (b) = w where u, w € D. Then we have the Ostrowski type equality

ey [rea %+1)ﬂ“<>ﬁ w=2)* 4 (1) (o - )]

+ Rn (w, )

where the remainder Ry, (x,v) is given by

(2.2) R, (x,7) = il/v(z — )" (/01 FO (1 —s)x +s2] (1 —s)" ds) dz

_ 1 01 </7 (z—2)" T FOD (1 — 8)  + 2] dz) (1—35)"ds.

n!

Proof. If we take the integral on the path v = v, ,, in the equality (1.1), then we
get

(2.3) / f2)dz=3" % £®) () / (2 — )" dz
v k=0

u,w

1
+ % (z — )"t </0 FO (1 =)z +s2](1—s)" ds> dz
_ ~ 1 (w—z) T = (u— )
- k=0 Ef(k) () E+1
1
+ %/ (z x)n+1 < i f(n+1) [(1 Yo+ sz](1—s) ds> d
b g [ — - -
Z;“H4yf (2) [(w— 2 + (1) (@ = w)*]



4 S. S. DRAGOMIR
which proves the equality (2.1) with the first representation of the remainder from

(2.2).
The second representation in (2.2) follows by Fubini’s theorem. (]

Corollary 1. With the assumptions of Theorem 1 we have the mid-point equality

(2.4) /f Qk (,:+ A (“;w>
+Mn( )

1+ g—l)k] (w — u)F !

where the remainder R, (x,7) is given by

(2.5) My (v)

;:% W<z—“+w) (/f"“[ —s)“;wﬂz}u—s)”ds)dz
:% 01<L<Z“;w> f<n+1>{( s)u;ersz}dz)(ls)nds.

The proof follows from Theorem 1 by taking z = HTM eD.

Corollary 2. With the assumptions of Theorem 1 and if A € C, then we have the
weighted trapezoid equality

20) [ sl =30 gy O )+ -0 0 )] -
(A 7)

where the remainder T, (\,7) is given by

(2.7) Tn(M\7) ;:2!/7(2 w)" (/ FOD1 = s)u+s2] (1 —8)" ds> dz

+(1_A)/7 z—w)" ! (/ FeFD[( s)w+sz](1—s)"ds)dz

== 01 <A (z—w)" T D1 = s)u + s2] dz> (1—s)"ds

P [ s ds) (1=

n!

In particular, for A = % we have the trapezoid equality

(2.8) / f(z)dz = (k n 1)

k=0
+ T (7)),

5 (w - u)k+l

f® () + (=" f® (w)]
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where the remainder T, () is given by

(29) T, (vy):= % — )"t </01 FOY(1 = s)u+s2](1—5)" ds) dz
b [ ([ 50 w0 o) a
51 | (F-w ; s)w + sz s)"ds | dz
= % /01 (/ (z — u)“Jr1 FOFV1 = s)u + s2] dz> (1—s)"ds
+ L 1 (/ (z —w)" T FOFD (1 — 5)w + s2] dz) (1—5)"ds
2n! . '
Proof. We write the equality (2.1) for x = u to get
L) _ )k
@10) [ 1= 3 g ) w0 R ),

where the remainder R, (u,7) is given by

0

;l /01 </7 W)™ D (1= 8)u+ s2] dz) (1—5)"ds,

and for x = w to get

(2.11) R, (u,7) := 2'/7(,2 — )" </1 FOYI1—s)u+s2](1—s)" ds) dz

n _1\k
212) [ 1Ed=3 T @) - 0 Ry w0)
v k=0 ’

where the remainder R, (w,~) is given by

(213) Ro(w) = / (2 — )™ ( / O (- w2 (1 8" ds) dz

_ L 01 ( [ =t s s ) (19" ds

n!

Now, if we multiply the equality (2.10) by A and the equality (2.13) by 1 — A and

sum, then we obtain the desired result.

Remark 1. Let f : D C C — C be an analytic function on the convex domain D
and x € D. Suppose v C D is a smooth path parametrized by z (t), t € [a,b] with

z(a) = u and z (b) = w where u, w € D.
If we take n = 0 in Theorem 1, then we obtain the Ostrowski type equality

(2.14) / f(2)dz = f (2) (1w —u) + R (7).
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where the remainder R (x,v) is given by

(2.15) R(z,7) ::L(z—x)< Olf’ (1= 8)a + s2] ds) dz

:/01 (L(z—x)f’[(l—s)x+sz]dz)ds.

In particular, for x = “JrT“’ we have the midpoint type equality
U+ w
(2.16) [rea=r(52) -+ o).
¥

where the remainder R (vy) is given by

(2.17) R() ::/7<z—“7;“’> (/Olf’ {(1—5)“;‘%&2] ds)dz
L2532 e
o \Jy

If we take n = 0 in Corollary 2, then we obtain the weighted trapezoid equality
forxeC

(2.18) / F(2)dz = M () + (1= A) £ (w)] (w—u) + T (A7),

where the remainder T (A\,7) is given by

(2.19) T (\n) ::AL(z—u) </01f’[(1—s)u+sz]ds> dz

+(1—)\)L(z—w) </01f’[(1—s)w+sz]ds>dz
:)\/01 (/y(z—u)f’[(l—s)u-i—sz]dz)ds

+(1—A)/01 (/v(z—w)f'[(l—s)w—&—sz]dz)ds.

In particular, for A = 5 we have the trapezoid type equality

(2.20) /f(z)dZ:M(W*U)+T(’}/),
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where the remainder T () is given by
1 1
(2.21) T() = 5/ (2 w) (/ Pl =s)uts7] ds) dz
vy 0

vy [ ([ ria-sus )
:;/01 ([y(z—u)f’[(l—s)u—&—sz]dz)ds
+;/01 <[y(z—w)f’[(1—s)w+sz]dz)ds.

Let f: D C C — C be an analytic function on the convex domain D and x € D.
Suppose v C D is a smooth path parametrized by z (¢), t € [a, b] with z (a) = u and
z (b) = w where u, w € D.

For n =1 in (2.1) we get the perturbed Ostrowski’s equality

w—+u

(2.22) Lf(z)dz—f(m)(wU)+f'(w)< o) =)+ Rie),

where the remainder R; (x,7) is given by
1
(2.23) Ry (z,7):= / (z — ) </ F"(1=s)z+s2](1—s) ds> dz
¥ 0

/01 </7(zx)2f”[(15):c+sz]dz> (1—s)ds.

In particular, for x = wT*“ we get the mid-point equality
w+u
(2.21) [rea=r("5") w-w+ ),
gl

where the remainder M (vy) is given by

(2.25) M, (7) ::/7<z—w—2i_u>2</01f” [(1—8)1024_’&—&-52} (l—s)ds> dz
:/01 (L (Z_w;“>2f” [(1—s)w2+u+sz}dz> (1—s)ds.

If we take n = 1 in Corollary 2 then we get the perturbed weighted trapezoid
equality for A € C

220 [ F@)ds= 0 @)+ (1= f )] (-

5 () — (1= 0) £ )] (0= ) + T3 (A, 9),
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where

(2.27) Ty (A7) : z—u2</ 7 1—s)u+8z](1—s)ds)d

2(/ 1 w—l—sz](l—s)ds)dz

1 /z—u il s)u-i—sz]dz)(l—s)ds

-
L

+(1—>\)/01 </(z—w)2f”[(1—s)w+sz]dz> (1= s)ds.

Y

In particular, for A = % we have the perturbed trapezoid type equality

e [ peae= LI G - g ) -
+Ti(v),
where
(2.29) Tl(’y):fé/ z—u) </ ' qusz](ls)ds)dz
+;L(2w) (/0 f”[(ls)w+sz](ls)ds>dz
;/01<L(zu)2f’/[(1s)u+sz]dz)(ls)ds

w2l (fur rria = sl 0 -nas

Consider the function f (z) = 1, z € C\ {0}. Then

(—=1)" k!
) (2) = s, for k >0, z € C\ {0}
and suppose v C Cy is a smooth path parametrized by z (t) , t € [a,b] with z (a) = u
and z (b) = w where u, w € Cy. Then

/Wf(Z)dz=/7uwf(Z)dz=/%wde=Log(w)—Log(u)

for u, w € Cy.
Let D be a convex domain included in C,. Assume that v = v, ,, C D and

x € D. Then by Theorem 1 we have

n (71)k w— 2\ Pl (=)
2. L - L = -1

230) Lo (u) ~Los() =3 5y | () 0t (5

+RTL (Z’,"}/),
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where the remainder R, (x,~) is given by

(2.31) Ry (2,7) = (n+1)(—1)”+1/ (2 — z)"*! (/0 1 (1= d‘s]n+2>dz

1—s)z+sz
e (z— )"t
=+ D) /0 </ [(1—s8)z+ s2]""? dz) oo

U, w

u,w

for n > 0.

Consider the function f (z) = Log (z), the "principal branch" of the complex log-
arithmic function. The function f is analytic on all of C; := C\ {z + iy : <0, y = 0}
and

k—1
F® (z) = w, k>1, z€C,.

Suppose v C Cy is a smooth path parametrized by z (t), t € [a,b] with z (a) = u
and z (b) = w where u, w € Cy. Then

Af(Z)dz: Mf(z)dzz/ Log (2) ds =

u,w

—sLog@Iy - [ (Log(2)) sz

u,w

= wLog (w) — uLog (u) — / dz

u,w

= wLog (w) —uLog (u) — (w —u),

where u, w € Cy.
Let D be a convex domain included in C,. Assume that v = v, , C D and
x € D. Then by Theorem 1 we have

(2.32) / f(2)dz = £ (@) (w — )

9 () [ —2)" + ()" @ =] + Ba (2,9),

which gives

(2.33) wLog(w) —uLog (u) — (w—u)

o Log (o) ”k: ((ki);; wax)'cﬂ +(-1* (x - u)ﬂ

+Rn (xa’Y),

where

! — S S
(234) Ry (w.7) = (-1)" / ) (/ 11”+i}n+1>dz

n+l
dz | (1 —s)"ds,
/(L 1—s x—|—sz}"+1 >( )

for n > 1.
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Consider the function f (z) =exp(z), z € C. Then
f*® (2) =exp(z) for k>0, z€C

and suppose v C C is a smooth path parametrized by z (t), t € [a,b] with z (a) = u
and z (b) = w where u, w € C. Then

[yf(z)dz:Luwf(z)dz=[Yuwexp(z)dz:exp(w)—exp(u).

By Theorem 1 we get

(2.35) exp(w) — exp (u) = exp () Z ¢ i il [(w — )" (1) (@ — w)FT!
k=0 '
+ Ry (z,7),

where the remainder R, (z,7) is given by

(2.36) R, (z,7) = % / (z— )"t (/01 exp[(1—s)z+s2] (1 —s)" ds> dz

Y

_ 1 01 (L (z—2)"Mexp[(1—s)z + s2] dz) (1—1s)"ds

n!

for n > 0.

3. ERROR BOUNDS FOR OSTROWSKI’S RULE

We have the following error bunds:

Theorem 2. Let f: D CC — C be an analytic function on the convex domain D
and x € D. Suppose v C D is a smooth path parametrized by z (t), t € [a,b] with
z(a) = u and z (b) = w where u, w € D. Then we have the representation (2.1)
where the remainder Ry, (x,v), n > 0 satisfies the bounds

(31) 1Rz < / o — o ( / [ s)e sl - 0" ds) dz]
< B, (557'7)
where

(3.2) By (z,7)

n%rl f7 |z — "t (max,eo,1) |f(”+1) (1= s)a+ s2]|) |dz];

n n 1/p
1 m]ﬁh—ﬂ + (fol‘f( +1) [(1—s)m+sz]|pds> |dz|

| th L1 .
n: p,q>1wzthp+q_1,

J, 1z = x| (f01 | f V(1= s) 2 + s2]| ds) |dz] .
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Moreover, we have

(83) Bnl®:7) = 7y

max,e(o,1] zey | FOTV (1= 8) @+ s2]| [ |2 — 2" |dz]

a(n 1/(x n B 1/6
(fy |z — 2| ($1) |dZ|) [L (max,eo,1) |f( (1 -s)z+ sz]’) \dzﬂ
a, B>1 withé+%:1;

max.c. |z — x\nﬂ f,y maXeo,1] !f("‘H) [(1—s)z+ szH |dz],

1
n! (qn + 1)1/q

1/
maxc- <f01 ’f(n+1) [(1-s)z+ sz]|p ds) g f7 |z — x|n+1 |dz|

(3.4) By (z,7) <

a 1/8
y (f,y |Z . x|a(n+1) |dz|)1/ |:(f01 {f(n-t,-l) [(1 _ 8) x + SZ]|p ds)ﬁ/jl’ |dz|:|

a,ﬁ>1withé+%=l;

n 1/p
ey |5 —al "L (J) 1O (= )2+ 2] ds) ]
and
(3.5) By (z,7v)
max,c- fol |fHED (1 = s) 2 + s2]| ds fv |z — 2"t |dz|

) )] P
(12 = "0 Jaz1) [(fo £ (1= 5) @+ 2] ds) |dz|]
a, B> 1 with 5 + 4 =1;

IN
A

maxzey |2 = al " [, (fy [FO (1= )+ s2]] ds ) dz]

Proof. Taking the modulus in the first representation in (2.2) we get

(R (2,7)] = / (2 — 2y ( / O [ syt 2] (1 s)"ds) @z
<o f]e=ar (/ O [ syt 2] (1 s)"ds)\ @2

/1 flnt) [(1—s)x+s2] (1 —s)"ds||dz]
0

1
n. v

< :L,/| o (/ |7 [0 - ) o+ s2]| (1 - s)”ds) 2]
An (z,7)

for x € D.
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Using Holder’s integral inequality we get

/ ‘f(nﬂ x+sz]‘(1—s)"ds
max,epo 1) | fOHD (1= )@ + 2] fy (1= 9)" ds;
1/q
_ (fol ‘f(n+l) [(1—s)z+ SZHP dS) (fo yar dS)
o a1l 1 .
D, q>1w1th5+a_1
fol |fFD[(1 = s) 2 + s2]| ds
it maxseqo, ) [ST (1 - s) z + 52] | ;
1/p
- W(fo | fntD) (1—s)x+sz| ds)
D, q>1w1thp+a_1,
Jo |FmD (1~ 8) @ + s2]| ds.
Therefore
a2 = 2™ (maxgepoqy [FTY [(1 = 8) @ + s2]]) |dz];
1 — s [ 12— $|n+1 (fl |f("+1) [(1-s)x+ sz]|p ds)l/p |dz|
Ay (z,7) < — ¢ (ant)V 7y 0
“nl )| opog>1with § +1=1;
fﬁf |z — x|”+1 (fol |f(n+1) [(1—s)z+ sz]’ ds) |dz|

for x € D, which proves the second bound in (3.1).
The bounds (3.3)-(3.5) follows by Holder’s integral inequality. O

For a recent survey on Ostrowski type inequalities for functions of a real variable,
see [6].
In a similar way we can prove:

Theorem 3. Let f: D C C — C be an analytic function on the convex domain D
and x € D. Suppose v C D is a smooth path parametrized by z (t), t € [a,b] with
z(a) = u and z (b) = w where u, w € D. Then we have the representation (2.1)
where the remainder R, (x,7), n > 0 satisfies the bounds

(3.6) | R (2, )|<n|/ (/|z ot [0 [(1—s)x+sz‘dz|) (1— )" ds
< G (z,7)
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ok masgepo,y [, 12— a0 (1 - ) e+ s2]] |d2]

1 n+1 ] 1/p
e Jo (1= o D (1= sy + 2] [da]) T ds
D, q>1with%+%:1;

i fol (f’y |z — " |FOFD[(1 = ) 2 4 s2]| |dz|) ds.

Moreover, we have
3.8) Cn(z,7) L —=x
(38) Culen) < gy
maXseco,1],z€y {f(n+1) [(1 - S) x + S’ZH fry ‘Z - x‘n+1 |dZ|

1/« 1/8
(1 12 =2l dz)) " masaeio (U, £ (1= )2+ s2]|[d2])
a, B>1 with ; + 5 =1;

max, e, |z — x| max,ep. I, |f V(1 = ) 2 + s2]| |da]

1
n! (ng + 1)"/1

1/p
max,e~ |z — $|("+1)/p fol (f7 ‘f("H) [(1—s)z+ sz]’ |dz\) ds

(3.9) Cn(z,7y) <

, 1/(pe) B/p
(12 =2l 1ael ) (150 [0 - ) o+ 52))azl) as
a, B>1 withé—!—%:l;

1/
(f,y |Z o x|n+1 |d2|) p fol max.c. }f(7l+1) [(1 . S) T+ SZHl/p ds
and

(3.10) C, (z,7)
max,e~ |z — :v|""’1 fol (fﬁ{ |f(”+1) [(1—s)x+ szH |dz|) ds

1/« 1/B
(S 12 =" jazt) o (4 10010 =)o+ 52]| Jaz]) T ds
a, ﬁ>1withé+%:1;

IN
AL

S, 1z = 2"t |dz| fol max.c, | f"TV[(1 = s) 2 + s2]| ds.

The following particular case may be useful for applications:
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Corollary 3. Let f : D C C — C be an analytic function on the conver domain D
and x € D. Suppose v C D is a smooth path parametrized by z (t), t € [a,b] with
z(a) =u and z (b) = w where u, w € D. If

(3.11) Hf(”+1)H = sup ‘f(”"’l) (z)‘ < oo for some n > 0,
D,oc0 z€D

then we have the representation (2.1) where the remainder R, (x,7) satisfies the

bound

1
(n+1)H 2™t dsl
(n+1)! Hf D,oo[Y|Z 2™ ldz]

Remark 2. Let f: D C C — C be an analytic function on the convexr domain D
and x € D. Suppose v C D is a smooth path parametrized by z (t), t € [a,b] with
z(a) =u and z (b) = w where u, w € D.

For n =0 we get the Ostrowski type inequality

/f(Z)dz—f(w) (w—w)| < ||f’||D,oo/|z—x||dz\

(3.12) R (2,7)] <

(3.13)

for x € D, provided || f'|| 5 o, < oc.
In particular, we have the midpoint type inequality

1= (52) =) <1l |

provided || f'|| p o, < 0.
Forn =1 we get the perturbed Ostrowski type inequality

(3.14)

w+u

[ 1@ @)= @) (U5 ) 0w

1" | 12 =l a
i

(3.15)

<

N | =

for x € D, provided || f"||p o, < oc.
In particular, we have the midpoint type inequality

[ 1= () | < 518 e

provided || f"||p o, < oc.

(3.16)

We also have:

Theorem 4. Let f : D C C— C be an analytic function on the conver domain
D and z € D. Suppose v C D is a smooth path parametrized by z(t), t € [a,b]
with z (a) = u and z (b) = w where u, w € D. If |f(”+1)| is convex on D, for some
n > 0, then we have the representation (2.1) where the remainder R, (x,7y) satisfies
the bounds

(3.17)  |Ru(z,7)| < m

|l @] [z =et sl + g [l =al e o)
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Proof. We have by (3.6) and by the convexity of | f("*1)| that

(3.18) [Ry (x,7)|
<L / i ( / 1 PO = )@+ 2] (1 - s)”ds) dz|
g;/7|zx|"“(/0[ )70 @) ] 1040 @) (@ - 0" as ) s

1 n+1
= '/y|z—33| *
Uf(”“) \/ s ds [ £ (2 \/ (1—s)" ds] |dz| =

1 1 1
Ry
0 0 n+2
and

1 1 1 " 1 1
1— nd — 1— "ds = n__ .n ds = _
/Os( s)"ds /0 ( s)s"ds /0 (s s ) s T

1

(n+1)(n+2)’

Since

hence
1

G [ o= @) g e G g

- g [l [ @]+ e @] g e

_ 1
~nl(n+2)

s @) [l met a4 gy [l =t [ ) 21

and by (3.18) we get the desired result (3.18). O

Remark 3. Let f: D C C — C be an analytic function on the convex domain D
and x € D. Suppose v C D is a smooth path parametrized by z (t), t € [a,b] with
z(a) =u and z (b) = w where u, w € D. If |f'| is convex on D, then we have the
Ostrowski type inequality

(3.19)

z)dz = f(z) (w - u)

<3| @1 f1e=aliaz+ [ 12=allr Gl

for any x € D.
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In particular, we have the midpoint inequality
z)dz — f (u;w) (w—u)
1 U+ w w U+ w
2[ (G s ey e IO
¥

If | f"| is convex on D, then we have the perturbed Ostrowski type inequality

(3.20)

w4 u

iz @) w0~ ) (o) (W

<3 bf" (:c)|/72$|2 ldz] + ;/' e 'dz'}
for any x € D.

In particular, we have the midpoint inequality

Lf(Z)dz—f(u;w>(w—U)
<ol (5L

4. ERROR BOUNDS FOR TRAPEZOID RULE

(3.21)

(3.22)

w+u w+u

z —

1
|dz|+f/
2 Y

1" (2)] IdZI] :

Similar inequalities may be stated for the trapezoid rule, however here we present
only the simplest case of bounded derivatives:

Theorem 5. Let f: D C C — C be an analytic function on the convex domain D
and x € D. Suppose v C D is a smooth path parametrized by z (t), t € [a,b] with
z(a) = u and z (b) = w where u, w € D. If f"*V) satisfies the condition (3.11) for

some n > 0 and X € C, then we have the representation (2.6) and the remainder
T, (\,7) satisfies the bound

41) [T, (A )l
Hf(n+1)H [A|/|z—u|”+1|dz+|1—A|L|z—w|”+1 |dz|]

Hf<"+1 U PEias |dz|+/|z—w|”+1 |dz|].
(n+ Dioo L)y v

In particular, if A = %, then we have the bound

(42) 15,00 < gy [, | f 1= e f 1 ]

n+1

<max {|A|,|1 = A} ——=
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Proof. Using the representation (2.7) we have
1
(4.3) [T (M )] < ‘ (z—u)" ™! </ FO (1 —s)u+s2](1—s)" ds> dz
+‘(1'>\)/ z—w)" ! </ FOFD[( s)w+sz](ls)"ds)dz
n!
1

<A 7/ |z — "t / U = s)u+s2] (1 —s)" ds

n! J, 0

1 ;
+f||1—/\\/|z—w\ +1
n: ~

|dz|

/1 FOFD1 = s)w+ s2] (1 — )™ ds| |dz|
0

1
<o [l al ™ ([ = s u ssll (1= 9 ds ) o
e

1
+;!|1—/\|/7|z—w|n+1 (/O ‘f(nJrl) [(1—s)w+ s2] (1—3)"ds> d2|

1 n ' n
SMn!Hf(M)HD,mL|Z_"| b <A 1=3) d8> i
1 (n+1) n+1 ! n
+—\1—>\|Hf /|z—w| /(1—5) ds ) |dz]
n! 0

/ 12— ™ |dzf
D,oo

1 n+1
oAl ot
+(n+1)!\ reeol, . f 1wl e

which proves the desired result (4.1).

For some inequalities of trapezoid type for functions of a real variable, see [4].

Remark 4. Let f : D C C — C be an analytic function on the convex domain D
and x € D. Suppose v C D is a smooth path parametrized by z (t), t € [a,b] with
z(a) = u and z (b) = w where u, w € D.

For n =0 we get the generalized trapezoid type inequality

(4.4) 2)dz = [Af (u) + (1 =) f (w)] (w —u)

<1 e [A|/|zu|dz|+|1A|/|zw||dz|}
Yy Yy

for X € C, provided || f'|| p, o, < o0.
In particular, we have the trapezoid inequality

OESLC M

< 517 o | [ 1o =ulldzl + [ 12 =l

(4.5)

provided || || o, < oc.
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We also have the perturbed generalized trapezoid inequality

(4.6)

2z — N () + (L= ) £ ()] (w0~ )
50 = N @] )
%nf"nDoo [ [ =t 1= 2=l
< g (A 1= N e | f =+ [ 12—l ]

for X € C, provided ||f"|| 5 o, < 00.
In particular, we have the perturbed trapezoid inequality

(4.7

—_

1 oo | [ 1= u 1del+ [ Jo =l ]
ol ol

S

provided || f"||p o, < oc.

We also have:

Theorem 6. Let f: D C C — C be an analytic function on the convex domain D
and x € D. Suppose v C D is a smooth path parametrized by z (t), t € [a,b] with
z(a) = u and z(b) = w where u, w € D. If ’f(”+1)| is convexr on D, for some

n > 0, then we have the representation (2.6) and the remainder T,, (A, 7y) satisfies
the bound

(4.8) | ( ,7)|_

x {M [f("“ W) / o - u\"“ el + 7

N e e e ey
Y

o — L gD <z>|dz|}

= ™ 7 )|

1
< CEDLT max {[A[, |1 = A[}

<[ [ 1=l a1 )] [ o0l
ot vy

# _ g ntl _ n+1 (n+1)
+(n+1)L[|Z uf "™ |z — " |(z)||dz|}

TR
TR

for X e C.
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Proof. Using the representation (2.7) and the convexity of | f (”+1)| is on D we have

(49) [T, O\
<= / o — " ( / [ syt se] (1 s)"ds) d2)
b = f 1z up (/ 001 = 9w ]| (- 5" s )

< (o [l ma ([ fa= o s @) - 97 as)

+1 =
X L Iz — w|" (/01 (1) ‘f("“) (w)’ +s)f<"+1> (Z)H (1—s)" ds> dz|}
for A € C.
Since

1
/ o — uf™+! (/ (1= ) £ )] + £ ()] (1 - 9" dS) dz]
’Y
= 1 ] f fo =l o [
o ntl g(n+1) d 1— nd
+/y o™ |<z)||z|/05< 5" ds

1
_ (n+1) o ntl d
gl [ =l o

1 n "
Ry Lt A T

1
= s [N e s s [l 0 |

and, similarly

L= (f a0+ o] @ o - o) as
= s [ [l e s [l e .

n+2
hence by (4.9) we get the desired result (4.8). O

Remark 5. For A\ = % we have the representation (2.8) and the remainder satisfies
the bound

1
(4.10) |7, ()] < DL
x { [f“”” @] [ 1=l del + £ )] [ 12—l dz@
Y Yy

*ﬁ [/ [l = ul"™ e + |z — "] £ |(2)] |dz|] } ,
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provided |f("+1)| is convexr on D, for some n > 0.

Remark 6. If |f'| is convex on D, then we have the inequality

(4.11)

/f(Z)dz—[Af(U)Jr(l—A)f(w)](w—u)

<3 {10l [ 1=zt [ = 1]

=1l o=+ [ 12— ul 1) 1|
< g (A 11— X} |7l 12 =ulldel+ /)] | J2 ==

+/7[Izu+lzw|}f’l(2)lld2|}

and for A = %,

J Ry LU (T

(4.12) 5

<3 |11 f 1= wlidel 1) [ 1wl
+ [ =l 1=l £ 1 |
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