GENERALIZED OSTROWSKI AND TRAPEZOID TYPE RULES
FOR APPROXIMATING THE INTEGRAL OF ANALYTIC
COMPLEX FUNCTIONS ON PATHS FROM GENERAL
DOMAINS

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. In this paper we establish some generalized Ostrowski and trape-
zoid type rules for approximating the integral of analytic complex functions
on paths from general domains. Error bounds for these expansions in terms of
p-norms, Holder and Lipschitz constants are also provided. Examples for the
complex logarithm and the complex exponential are given as well.

1. INTRODUCTION

Suppose 7 is a smooth path parametrized by z (t), ¢t € [a,b] and f is a complex
function which is continuous on 7. Put z (a) = u and z (b) = w with u, w € C. We
define the integral of f on v, , =~ as

Lf(z)dz:Luwf(z)dz:=/abf(z(t))z’(t)dt.

We observe that that the actual choice of parametrization of v does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose
« is parametrized by z (t), ¢ € [a,b], which is differentiable on the intervals [a, c]
and [c, b], then assuming that f is continuous on - we define

(2)dz := (2)dz + f(z)dz
Vurw Y Vo, w

where v := z (¢) . This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

b
f () |dz] = / F (2 ()12 ()] dt

and the length of the curve v is then

E('y):[yuw|dz|:/ah|z’(t)|dt.

Let f and g be holomorphic in G, an open domain and suppose 7 C G is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
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2 S.S. DRAGOMIR

by parts formula

(L1) f(2)g (2)dz = f (w) g (w) — f (u) g (u) - / £ (2) 9 () de.

o Y
We recall also the triangle inequality for the complex integral, namely

/ f(2)dz| < / F @ 1dz] < £ o £ ()

where [[f[|, o := sup.e, [f (2)]-
We also define the p-norm with p > 1 by

191, = [irer |dz|)1/p.

I£1,0 = [ 17 @)l
¥
If p, ¢ > 1 with % + % = 1, then by Hoélder’s inequality we have

£l <MD, -

In the recent paper [9] we obtained the following identity for the path integral
of an analytic function defined on a convex domain:

(1.2)

For p =1 we have

Theorem 1. Let f : D C C — C be an analytic function on the convex domain D
and x € D. Suppose v C D is a smooth path parametrized by z (t), t € [a,b] with
z(a) = u and z (b) = w where u, w € D. Then we have the Ostrowski type equality

13 [1@d=Y o Y @ -2 () - 0]
v k=0

(k+ 1)!
+ Ry (7,7),

for m > 0, where the remainder R, (x,v) is given by

(14) Ry (2,7) = i'/y(z _ g (/01 FOD (1= 8) 2+ 52] (1= 8)" ds) dz

1t (/y (z — )"t FHD (1 = 5) z + s2] dz) (1—5)"ds.

=),
We obtained amongst other the following simple error bound [9]:

Corollary 1. Let f : D C C — C be an analytic function on the convexr domain D
and x € D. Suppose v C D is a smooth path parametrized by z (t), t € [a,b] with
z(a) =u and z (b) = w where u, w € D. If

(1.5) Hf(”H)H ;= sup ’f(”“) (z)‘ < o0 for some n > 0,
D,Oo ZED

then we have the representation (1.3) where the remainder R, (x,7y) satisfies the

bound

1
1 L (2,7)] < H (n+1)H / — 2" 1 dal
(1.6 B o) € gy [0 f 122

The above results extend the inequalities for real valued functions of a real
variable obtained in [6] and [3]. For similar result see [1], [2], [5], [8], [10] and [11].



GENERALIZED OSTROWSKI AND TRAPEZOID TYPE RULES 3

2. REPRESENTATION RESULTS

We have the following identity for the integral on a path from a non-necessarily
convex domain D as above:

Theorem 2. Let f: D C C— C be an analytic function on the domain D and
x € D. Suppose v C D is a smooth path parametrized by z(t), t € [a,b] with
z(a) =u, z(t) =z and z (b) = w where u, w € D. Then we have the equality

n—1
1

@) [1@E= Y Y @ [ -+ () @)
v k=0 '

+ On (2,7),
where the remainder Oy, (z,7v) is given by

(_l)n

(2.2) O, (x,7) = o

/ K, (z,2) f™ (2) dz
y
and the kernel K,, : v x v — C is defined by

(z—w)"  fz€vu.

(2.3) K, (z,z):= , TEY
(’Z - w)n ZfZ € ’Va:,w

and n is a natural number, n > 1.

Proof. We prove the identity by induction over n. For n = 1, we have to prove the
equality

(2.4) / f(2)dz = (w—u) f (z) - / Ky (2,2) ' (2) d,

where
z—u ifzey,,
K (x,z) :=
z—w if 2 €7,

Integrating by parts, we have:
[ K@) r s
—[ crur@dr [ Gowfede
y

u,z Ve, w

:(sz)f(Z)lﬁf/ f(Z)dH(sz)f(Z)lﬁff/ f (2) d

T, w

=(m—u>f<x>+(w—x)f(w)—/ﬂz)dz
=<w—u>f<x>—/f<z>dz

and the identity (2.4) is proved.
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Assume that (2.1) holds for “n” and let us prove it for “n+1”. That is, we have
to prove the equality

" (w = 2) T (=) (2 — )T
I L 3] e LA
_ n+1
+ ((TL1—|-)1)' / KrL+1 (33, Z) f‘(n+1) (Z) dz.
We have, by using (2.2),
gy [ o ) 00 )
2 — n+1 . w nal
= ‘/yu ) ((7’1—‘,—)1)’f(n+1) (Z) dz + AT ) ((n_;'_)l)[f(n+l) (Z) dz

and integrating by parts gives

(n4f1)!/Cz(n+1(z,z)j<”+1>(z)dz
- (Z(nf);;lf(m =l :z [ g ey
ey | | Gmwrs e
_@—w +(§1—+1)1”)*! Hw=2)" o % A K, (2. 2) ™ (2) dz
That is

(n+1)!
- ﬁ / K1 (2,2) f"Y (2) dz

x—un+1 _ n’LU—.T7L+1

[ Koa @) 1040 )
Y

1
C (n41)!
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Now, using the mathematical induction hypothesis, we get
n—1 k+1 k k+1
_ Z (w—2)"" +(-1)" (z —u) (k)

_ m)nJrl + (_1)71 (LE o u)n+1
(n+1)!

g

F ()

- (5111)1”)' / K (,2) fF (2) dz

n
k=0

(_1)n+1
(n+1)!

(w _ x)k—i-l + (_1)k ($ _ u)k-‘rl
(k+1)!

] % ()

/ Ko (x,2) fO (2) dz.
v
That is, identity (2.5) and the theorem is thus proved. O

Corollary 2. With the assumptions of Theorem 2 and for A1, Ay complex numbers
we have the identity

(2.6) / )z =Y & j i @ [(w = 2)" 4 (1) (=)
Y k=0 '
(_1 n+1

(_1)n n+1
+A (x —u) +>\2(n+1)!

1(n+1)' (x_w)n+1+0n ($77aA1;A2)7

where the remainder O,, (x,7, A1, \2) is given by

(2.7) Oy (z,7,M1,\2) := (=1)" / (z—u)" [f(”) (2) — )\1} dz

n!
L ey / (2= w)" [1 (2) — %] d=.

u,x

n!

@, w

In particular, for Ay = Ay = X\, we have

28 [FE@dz= Y @[ -0+ () - 0]
v k=0

(k+ 1)
(D" e, GO
Mm@ G @  + O,




6 S.S. DRAGOMIR

Proof. Observe that

+ (:741')?1 L (2 — w)n [f(n) () — A2+ )\2} dz
- (_nl!)n L (z —u)" [f(n) (2) - Al} dz + M\ (—1|)” /7 (z—u)"dz
+ (_nl!)n L (2 = w)" [£ (2) = Xo] d2 + 2 (_n1')" [y (z—w)" dz
= (jf!)n / ey [ () = M) dz + 1(7(”1):), (= w)""
S G [ @ - e
and by (2.1) we then get (2.6). 0

Corollary 3. With the assumptions of Theorem 2 and for 6 a complex number we
have the identity

o [se-5

1 [0 70 @)+ (1= 0) £O )] (w =)+

+ T, (7,9)

where the remainder T, (x,7, ) is given by

e Ta0= Sk -0 0= 6w G e
© Iy
In particular, for 6 = % we have

n—1 1 _1k ®) (w + *) (4
(2.12) /Wf(z)dzzkz_o(kﬂ)' (=D £® (w) + £5 (w)

2

(w — )"

where

(2.13) T () = [l + =) 1 )
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Proof. From Theorem 2 for x = w we have

(2.14) / f(z)dz

- (=" " pln
kz k+1 (w) (w—u)* + A(z—u) £ (2) dz

while for z = u we have

(2.15) /f

-5 o 0 S [ e g

If we multiply (2.14) by 6 and (2.15) by 1 — 6 and sum the obtained equalities, then
we get

« (D" L (D" n o
7f(z)dz:e;(]H1)!f<'€>(w)(ww)’“* Jrn!G[/(zu) ™ (2)dz

L0y — !f(k)(u)(w—u)kﬂ—i—(_”n(l—Q)/(z—w)”f(")(z)dz

k=0 +1) n!
n—1
L k k+1
T (k1) [9 (—1)F f®) (w) + (1 - 9) f® (u)} (w— )"
(-1)" o - o
+ o /7[9 (z—=uw)"+1-0)(z—w)"] f"(2)dz,
which proves the desired result (2.10). O

For the case of real variable functions see [4] and [7].

Corollary 4. With the assumptions of Theorem 2 and for 8 and A complex numbers
we have the identity

E 1
(2.16) /f Z AT {9 (=DF £®) () + (1= 0) f® ()| (w — w)"*
(-1

n

=

+ O+ (=1 (1= 0)] (w—w)""" + T, (v,0,\),

(n+1)!
where the remainder T, (7,0, \) is given by

(217) Ty (7,0) == (’nl!) / 0(2—u)" + (1—0) (2 — w)"] [f<n> (2) — /\} dz.

In particular, for = % we have

n—1 1
(2.18) /f kzo(lc+1) 2
(=" [H(—l)"

x| 2

(—1)F F0) (w) 4 £ (u)] (0 — W

} Aw — u)n+1 +Tn (7, M),
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where the remainder T,, (v, \) is given by

(2.19) T, (3,0 = D / (2 — )" + (2 — w)"] [f<"> (2) — A} dz.

2n!

3. p-NOrRM ERROR BOUNDS

We have:

Theorem 3. Let f: D C C— C be an analytic function on the domain D and
x € D. Suppose v C D is a smooth path parametrized by z(t), t € [a,b] with
z(a) =wu, z(t) =z and z (b) = w where u, w € D. Then we have the equality (2.1)
and the remainder Oy, (z,v) satisfies the bounds

(3.1) |On (z,7)] < By (z,7)

where

1 n
mww:mV|wm
: Yu,z

Moreover, we have

0 @1+ [l

Yo ,w

ﬂmwﬂwﬂ.

1P, S el e

" 1/q
1, (= ul™ lazl)

1,1 _ 1.
where p, q¢ > 1, 5—&—5—1,

£,
1, e S, o=l 2]

x,w

max.e,, |2 —ul"

1/q
S (T el )
where p, ¢ > 1, %—i—%:l;

n
max.e,, , [z — w

(PR

171, Uy 2 —ul|de + [, |z —wl" IdZI] 7

u,z

1/q
10, (e =l el L, L= ™ Jdz])
where p, q > 1, %—s—%:l;

IN
==

”f(n)

" n
Vuwol max {maxze'}’u,w |Z - U| 7maxz€’h,w |Z - w‘ } .

Proof. We have

- L (2 — w)" f) (=) dz

x,w

+

tﬂ (2 —w)" £ (=) dz

u, T

1
S 7' / ‘Z _ u|7L
n: Vo m

1 n n
£ @1l + 5 [ o= wl [0 )1,
T J



GENERALIZED OSTROWSKI AND TRAPEZOID TYPE RULES 9

which proves the inequality (3.1).
Using Holder’s integral inequality we have

maXzev, , Hf(n) (Z)H f’Yu,m |Z - U|n |dz|

n 1/a
Yuu N Where p, q> 1 = + 2 1

f’Yu,z ’f(n) (z)| |dZ| maXZE'Yu,x |Z _ u|n

1A, S el e

" 1/q
L, (=l ae)
where p, ¢ > 1, %—i—%:

I, maxeey, |z —ul"

and

Hf(n)

Fooe 120l 1

) an g 1/q
[ =@ < 170, v (o 12 = wl™a1)
Ve, w where p, ¢ > 1, 5—}-%:1

Lo, maxec,, 12—l

Using the elementary inequality

max {«, 8} (a +b)

aa + b < (ap+/8p)l/p (aq+bq)l/q;

1,1 _
where p, ¢ > 1, 5+5_1

we have
Y,z Yu,x Va,wr Yz,w
Smax{Hf(") ) } [/ |z—u|"|dz|—|—/ |z — w|" |dz|]
Y, @ Ve, w s Vu,z Yz, w

= Hf(n)

V 1z — " |dz] +/ 2 — | |dz|] ,
Y, w1 Y,

T, w
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1/q 1/q
( [ -ur |dz|> + s ( [l |dz|>
Vu,2>P Yu,z Ya,wP Yz, w
» 1/p 1/4
< (| V[ i [ e e
Va,wP Varo Youw
1/q
(/ Iz — ul™ |dz| +/ 15 — | |dz|>
TuwP \ Iy o gl

max |z —u|" + Hf(")
Yu,erl Z€Vuw

H )

P

|

Yu,zP

-

T, w

and

e

max |z —wl|"
Ye,wil Z€Va,w

f(n)

< max{ max |z —u|", max |z — w"} [
2€%u, 2€Y% w

e

m,w,l]

max{ max |z —u|", max |z — w|n} ,
Vs 2€70 Z€75 2

Yu,z>

— Hf(n)

which proves the inequality (3.2). O
In a similar way we can prove:

Theorem 4. With the assumptions of Theorem 8 and for 6 a complex number we
have the identity (2.10) and the remainder T, (x,7,0) satisfies the bounds

(3.3) T (7,0)] < Cn (7,0),

where

(34) Cn(v,0)

1 n
- [9|/|z—u
: vy

Moreover, we have

(3.5) Cn(v,0)

£ @) 1del + 1= 0] [ |z = wl"
8l

70 ) )

1PN, o S 1z = ul™ [dz|

1/q
o) 180, (1 = =l ]
where p, q¢ > 1, %—l—%:l;

IN
Sl=

£, maxzes [z = ul”

1F ] o S 12 = w0l 2]

n 1/q
+l'|1_9| £, (f7 |z — wl* Idz\)
n. wherep,q>1,%+%:1;

Hf(”)”ml maxe |z — w|"
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1
(3.6) < I max {|0],]|1 — 0|}
17, o [ 1z = wl™ + 12 = w0l 2]

n 1/ n 1/
O (01—l ael) " (5 2 = i )]

where p, ¢ > 1, %—i—%:l;

77, Imaees |2 = uf" + max.ey |2 = wl"].

We observe that for 6 = % we have the representation (2.12) and the remainder
T, () satisfies the inequalities

BT 1) < gy [ ==l 1wl

£ (2)] Idz]

£ o L Tz =l + |2 = w]"] |dz|
1 (n) n nya 1
< L), (F L2 =l + 1= = w]) a2
2n! where p, ¢ > 1, %—}—%:1;
|| £ Hml max,eq (|2 — ul” + |z — w|"].

4. ERROR BOUNDS FOR BOUNDED DERIVATIVES

Suppose v C C is a piecewise smooth path parametrized by z(t), ¢t € v from
z(a) = u to z (b) = w. Now, for ¢, ® € C and 7 an interval of real numbers, define
the sets of complex-valued functions

T, (6,®) == {f:fyH(C\Re {(fo(z)) (W—&)} >0 for each zefy}
and

By (0,9) = {f¢7—>C| 'f(z)—d’;@

The following representation result may be stated.

'<;|<I>—¢| for each 267}.

Proposition 1. For any ¢, ® € C, ¢ # ®, we have that U, (¢, ®) and A, (¢, ®)
are nonempty, convexr and closed sets and

(4.1) Uy (6,2) = Ay (6, D).
Proof. We observe that for any w € C we have the equivalence
o+ 1
_ < Z|d—
w212 < e g

if and only if

Re [(® —w) (W —¢)] > 0.
This follows by the equality
2

oot <o 52 <o wie-3
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that holds for any w € C.
The equality (4.1) is thus a simple consequence of this fact. O

On making use of the complex numbers field properties we can also state that:
Corollary 5. For any ¢, ® € C, ¢ # ®,we have that
42)  Uy(6,®)={f:7—=C| (Re®—Ref(2)) (Re[(2) —Reo)

+(Im® —Im f (2)) (Im f (2) —Im @) > 0 for each z € v} .

Now, if we assume that Re (®) > Re (¢) and Im (®) > Im (¢) , then we can define
the following set of functions as well:
(4.3) S,(¢,®):={f:7— C| Re(®) >Ref(z) > Re(q)

and Im (®) > Im f (z) > Im (¢) for each z € v}.

One can easily observe that 5‘7 (¢, @) is closed, convex and

(4.4) 0# 5, (¢,2) CU, (¢, 9).
We have the following result:

Theorem 5. Let f: D C C— C be an analytic function on the domain D and
x € D. Suppose v C D is a smooth path parametrized by z(t), t € [a,b] with
z(a) =u, z(t) =z and z (b) = w where u, w € D. If f™ € A, (¢, ®,) for some
Opn, ®n € C, ¢,, # P, then we have the equality

n—1
@) [1G)d= Y g O @ [ =0+ () -
v k=0 ’

2 (n+1)

and the remainder satisfies the bound

1 n n
< 5 [P0 — 9, / |z — ul |dz|+/ |z —wl|" |dz] | .
2n! Vo Vo w

: _ $,t®n
Proof. From the equality (2.8) we have for A = =25—" that

+ @ w1 @ = 2)"™] + On (@,7,6,, @)

(k4 1)!

k

n—1
@n) [ £@ =Y ot @) [ -0 () - 0]
v k=0

where

(4.8) Oy (z,7, ¢p, ) = (=" / (z —u)" <f(") (2) — W) dz
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Taking the modulus in (4.8) and taking into account that f(™) € A, (,,®,),

we have
1 P
0@ bm @l < | [ o= (50 () = 22 ) s

+%/ (z —w)" (f(")(z)—(b”—g(%)dz
T R GRICRE | [
v e (7 - S ) s
=§!/“|z—u|" f<"><z>—¢’"§—@”
T LR CRE

1
< |d — L _ n
<ol mV ezl + [ e |dz|],

u, x,w

which proves the desired inequality (4.6).

We also have:

Theorem 6. With the assumption of Theorem 5 and for 6 € C, we have

49 [ e A ,Hll), [6-1% £ (w) + (1~ 0) 9 ()] (w0 - )+
2 G
i G 0+ (1" (1= ) (w — )" + T, (7,0,6,,, %)

2 (n+1)!
and the remainder T, (v, 0, ¢,,, ®r) satisfies the bound

1 n n
(110) T2 (0,0,0, 8)1 < 190 =0,] [ 9= )" + (1) (= = 0"

1 n n
< g0 = 0l [0 [ 12—l 41101 [ Jo —ul” 0]
n: ¥ 5

< o5 [P0 — ¢, | max {[0], |1 —0[} /Hz—u|"+\z—w|"]|d2\ :
2n! .

In particular, for 6 = % we get

(4.11) Lf(z Z(k+1

LSt (ZD)" [1+(2—1)”] (w=w)"" + T (7, 6, )

(—1)F F0) (w) 4 £ (u)] (0 — W
2
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and the remainder T, (v, ¢,,, Pr) satisfies the bounds

1 n n
T (s &y o)l < |<I>n—¢n|/|(Z—U) + (2 —w)"||dz|
: ¥

1
< — — — " —w|" )
< 10—, [/ Iz = ul" +12 w|]|dz]

Proof. From the equality (2.16) for A = % we have

w12 [ 1¢)e= ; G [0V )+ (=) 1 )] =)
(_1)" ¢n +
2

T

L0+ ()" (1=0)] (w—w)" " + T (7,6, 6, ®n)
and the remainder T, (v, 6, ¢,,, ®,,) is given by

(4.13) T, (7,0, ¢y, Pn)
_ =D / 0(z—w)"+(1—6)(z—w)"] <f(”) (2) - W) dz.

n!

Taking the modulus in (4.13) and taking into account that f(™ € A, (¢,,, ®,), we
have

(4.14) [T, (7,0, ¢,,, ®n)|

1 , Py,
<o [ G- (1= 0) - )| [0 () - P2 ]
nl J, 2
< g0 = ul [ 10— 0"+ (1= 0) (=~ w12
which proves the first inequality in (4.10). The rest is obvious. O

5. BOUNDS FOR HOLDER’S CONTINUOUS DERIVATIVES

A function g : v € D C C — C — C'is Hélder continuous on -y with the constant

H >0andr e (0,1] if
[f () = f(w)| < H|z —w|

for all z, w € ~.
Theorem 7. Let f: D C C— C be an analytic function on the domain D and
x € D. Suppose v C D is a smooth path parametrized by z(t), t € [a,b] with
z(a) =wu, z(t) =z and z (b) = w where u, w € D. If f(™ is Hélder continuous on
v with the constant H, > 0 and r € (0,1]

(5.1) /f )dz = i CEm] f(k) () [(w — )" () (e - u)kﬂ]

+

(n + 1)! {f(n) (u) (z = )"+ f) (w) (1) (w — )"*1} + 0, (2,7),
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where the remainder O,, (x,7) satisfies the bound

1 n—+r n—+r
(5.2) |0 (z,7)] < an l/ |z — ul + |dz|+/ |z — w + |dz|].
: Y

u,z Yz, w

In particular, if f is Lipschitzian on ~ with the constant L, > 0, then we have

the error bound
/ |z—u\"+1\dz|+/ Iz — w1 |z |
¥ v

u, T x,w

1
(53) 10w < L

Proof. From the identity (2.6) we have for \; = £ (u) and Ay = f) (w)

) [ G = Y Y @ [0 (1 - 0]
v k=0 '

(_1)’ﬂ+1

(n+1)! (@ —w)" 4 0 (2,7),

10 ) S w0 0 )

with the remainder O,, (z,~) given by

55) Onen) = [ [10 ) - 1 w]

u,x

SR [ [ - ] as

x,w

Taking the modulus in (5.5) and using the Holder continuity we have

Oute I < g [ [ [ ) = 1 )] 1=

iz n [ n n
- M\(z—w) £ () = £ (w)] |14z
- / BERCATRCE (u)] 2

1 n n n
o | [ () = £ (w)|1d2]

Y Yz w

1
< —H, / |zfu|”\zfu\r\dz|+/ |z —w|" |z —w|" |dz|
n! v Vow

1
— —H, [ [emeriad s [ e |dz|] ,
n: Vs Ve w

which proves the desired result (5.2). O

6. EXAMPLES FOR LOGARITHM AND EXPONENTIAL

Consider the function f(z) = 1, z € C\{0}. Then

k
f) (z) = % for £ >0, z € C\ {0}
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and suppose 7 C Cy is a smooth path parametrized by z (t) , ¢ € [a, b] with z (a) = u
and z (b) = w where u, w € Cy. Then

/j(z)dz—

for u, w € Cy.

Consider the function f(z) = Log(z) where Log(z) = In|z| + i Arg(z) and
Arg (z) is such that —7 < Arg(z) < w. Log is called the "principal branch" of
the complex logarithmic function. The function f is analytic on all of C, :=
C\{z+iy:x <0, y=0} and

f(z)dz= / % = Log (w) — Log (u)

Yu,w u,w

(=) (k —1)!

2k

F® () =

Suppose v C Cy is a smooth path parametrized by z (t), t € [a,b] with z (a) = u
and z (b) = w where u, w € Cy. Then
f(z)dz= / Log (z)dz =

/j(z)dz— 5
—sLog(l} - [ (Log () xds

, k>1, ze€ Cy.

u,w

= wLog (w) — uLog (u) — / dz

u,w

= wLog (w) —uLog (u) — (w —u),

where u, w € Cy.
Consider the function f (z) =exp(z), z € C. Then

f® (2) =exp(z) for k>0, z€ C

and suppose v C C is a smooth path parametrized by z (t), t € [a,b] with z (a) = u
and z (b) = w where u, w € C. Then

/f M—/ ﬂ@@:/ exp (2) dz = exp (w) — exp (1)

u,w u,w

We have by the equality (2.1) that

(6.1) /f (2) (w =)
' /; (k +1 il (@) [(w =)+ (1) (@ = )]
ek l/ Gow SO [ ) ) dz]

for n > 2.
Suppose v C Cy is a smooth path parametrized by z (t), t € [a,b] with z (a) = u,
z(t) = x and z (b) = w where u, z, w € Cy, then by writing the equality (6.1) for
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the function f (z) = %, we get the identity

() e ()

+(~1)
+/ (zZ;ﬁ)”dH/ Gow)

ZnJrl
u

(6.2) Log(w)— Log (u)

w-—u ! (—1)]c
oz +Z(k—|—1)

k=1

x x,w

for n > 2.
If we write the equality (6.1) for the function f (z) = Log(z), then we get the
identity

(6.3) wLog (w) —uLog (u) — (w — u)
_Log(@)(w-u) 423 l(w x)’““ e u)+]

xT

(52 e [ (552)'e]

@, w

for n > 2.

Suppose v C C is a smooth path parametrized by z (t), t € [a,b] with z (a) = u,
z(t) = « and z(b) = w where u, z, w € C. If we write the equality (6.1) for the
function f (z) = exp z, then we get

(6.4) exp(w)—exp(u) = (w—u)exp ()

+exp (2) ;1 ﬁ [(w —a)" (-1 (@ - u)k'H}
+ (—nl')" / (z —u)" exp zdz + / (z —w)" exp zdz]

for n > 2.
From the identity (2.12) we get

w — u)

©65) [ 1()ae= LI

n—1

2n/!

L[ (=D 9 (w) + fO) (u) :
+k2::1(k+1)! 2 ](w_“)H
+ S [le-w+ w1 )

for n > 2.
Suppose v C Cy is a smooth path parametrized by z (t), t € [a,b] with z (a) = u
and z (b) = w where u, w € Cy, then by writing the equality (6.5) for the function
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fz)= %, we get the identity

w+u

(6.6) Log(w)— Log(u) = o (w—u)
n—1 k
1 uk-i-l + (_1) wk+1 ft1
* Z (k+1) Qubtlwhk+1 (w—u)
k=1

YL

2 an+1

for n > 2.
By writing the equality (6.5) for the function f (z) = Log (z), we get the identity

(6.7) wLog(w) —uLog(u) — (w—u) 5 (w—u)
O N D LSV .
+ = (k+1)k l 2ukwk (=)™

e

2n Zn

for n > 2.

Suppose v C C is a smooth path parametrized by z (t), t € [a,b] with z (a) = u
and z(b) = w where u, w € C. If we write the equality (6.5) for the function
f (2) = exp z, then we get

exp (w) +exp (u)

(6.8) exp(w)—exp(u) = 5 w — u)
[t (—=1)" exp (w) + exp (u) 41
+;(k+1)! 2 ](w_“)H
+ (;711? / [(z—=uw)" + (2 —w)"]exp () dz

for n > 2.
From the equality (6.2) we get

w—u

() " e (552

f [ kol
z —dz
Uy ‘Z|n+1 v ‘Z|n+1 ,

u,T T, w

(6.9) |Log(w)— Log (u) —

n—1 k
N (=D
; (k+1)

where u, z, w € Cy.
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If dys :=inf.e, _|2| and d, . := inf.c,  |z| are positive and finite, then by
(6.9) we get

w—u

(w x>k+1 (_Dk(x;?t)k“]
<

1
|z —u|" dz + — / |z —wl|" dz.
ditt / it )y,

u,T

(6.10) |Log(w) — Log (u) —

n—1

_Z k:+1

If dy, = infe,, , [2] € (0,00), then we also have

(6.11)

Log (w) — Log (u) —

From the equality (6.3) we get
(6.12) |wLog (w) —uLog (u) - (w — u)

st =< e (72) oo ()

1 n n
< — [/ dz+/ dz],
n v
where u, z, w € Cy.

If dys :=inf.e,, _|2| and d, . := inf.c,  |z| are positive and finite, then by
(6.12) we get

Z—U Z—Ww

u,x z,w

(6.13) |wLog (w) —uLog (u) — (w — u)
R e\ R
Log(z)(wu)zz_:(k+1)k[( - ) Jr(l)k( . )

1 1 1
S[ / |z — ul" dz + / |z—w|"dz].
no|di. Jy, At

T x,w

If dy, = inf,e,, , [2] € (0,00), then we also have

(6.14) |wLog (w) — uLog (u )—(w—u)

e S (45 e (55) ]

1 n
< [/ |zfu\"dz+/ |z — w| dz].
ndn ~

u,w u,T x,w
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Similar inequalities may be stated by the use of the equalities (6.6) and (6.7)
and we omit the details.
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