NEW TRAPEZOID TYPE RULES FOR APPROXIMATING THE
INTEGRAL OF ANALYTIC COMPLEX FUNCTIONS ON PATHS
FROM GENERAL DOMAINS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some new trapezoid type rules for ap-
proximating the integral of analytic complex functions on paths from general
domains. Error bounds for these expansions in terms of p-norms, Holder and
Lipschitz constants are also provided. Examples for the complex logarithm
and the complex exponential are given as well.

1. INTRODUCTION

Suppose v is a smooth path parametrized by z (t), t € [a,b] and f is a complex
function which is continuous on «. Put z (a) = u and z (b) = w with u, w € C. We
define the integral of f on v, , =7 as

b
/f(z)dz: f(2)dz ::/ f(z (1) 2 (t) dt.

We observe that that the actual choice of parametrization of v does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose
« is parametrized by z (t), ¢ € [a,b], which is differentiable on the intervals [a, c]
and [c, b], then assuming that f is continuous on v we define

(2)dz := (2)dz + f(z)dz

Yu,w Yu,v Yo, w

where v := z (¢). This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

b
f () |dz] = / F (2 ()12 ()] dt

and the length of the curve v is then

é(w)z/mw=/ab|z’<t>|dt.

Let f and g be holomorphic in G, an open domain and suppose v C G is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
by parts formula

(1.1) f(2)g (2)dz = f(w)g(w) = f(u)g(u) - / f'(2)g(2)dz.
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We recall also the triangle inequality for the complex integral, namely

(1.2) z)dz

< / F @ 1dz] < £ o £ ()

where [|f]l, o := sup.e, [ (2)] .
We also define the p-norm with p > 1 by

1= ([ 1762 Ipldzl) "

1£l = / 1 ()] |dz]

If p, ¢ > 1 with 1% + % =1, then by Holder’s inequality we have

For p =1 we have

£, < UL, -

In the recent paper [7] we established the following trapezoid type identity for
analytic functions on convex domains:

Theorem 1. Let f: D C C — C be an analytic function on the convex domain D.
Suppose v C D is a smooth path parametrized by z (t), t € [a,b] with z (a) = u and
z (b) = w where u, w € D. If A € C, then we have the weighted trapezoid equality

1) [ 1)z = Y Gy O @+ (0= ) O ()] =)
v k: 0

+Tn( 7’)’)’

where the remainder T,, (\,7) is given by
A

(1.4) T, (A7) := 7/( — )"t </ FOD1 = s)u+s2] (1 —s)" ds> dz
n!

L w)"™ ( / S~ )+ s2] (1 - sws) 2z

= n! ; <A (z — )" FOFD (1 — s)u + sz] dz> (1—s)"ds

P2 [ =™ O (= ssl ) (1o

n!
In particular, for A = % we have the trapezoid equality

(1.5) /f dZ* (k—|—1)

k=0
+ T (7)),

5 (w - u)k+l

f® () + (=" f® (w)]
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where the remainder T, () is given by

1
(1.6) T, (7): ! (z—u)"t! </ FO(1 = s)u+sz] (1—s)" ds> dz

RETA

0
+ % L (z —w)"*! (/01 FO(1 = s)w+s2] (1—5)" ds> dz
_ % 01 (/v (z— )" D (1 5)u + s2] dz> (1—s)"ds
o [ ( [t = sl ) (=)

We also have the error bounds [7]:

Theorem 2. Let f: D C C — C be an analytic function on the convex domain D
and x € D. Suppose v C D is a smooth path parametrized by z (t), t € [a,b] with
z(a) = u and z (b) = w where u, w € D. If f"+V) satisfies the condition

(1.7) ”f("+1)“ = sup ‘f(”ﬂ) (z)‘ <

D,OO ZED
for somen > 0 and X € C, then we have the representation (1.3) and the remainder
T, (N, 7y) satisfies the bound

(1.8) [T (A7)

1 n+1 n+1
el il W ) R T PR AR
CES] pee M) ;

1
(n+1)H

y [/|z—u|”+1|dz+/|z—w|”+1|dz].
Y Y
1

In particular, if X = 3, then we have the representation (1.5) and the remainder
T, () satisfies the bound

L9) 15,001 < gy [ | = e [ 1= ]

These results generalize the corresponding results for real functions of a real
variable, see [3], [2], [1] and [4]. For other recent results on trapezoid inequality see
5)-112].

In this paper we establish some new trapezoid type rules for approximating the
integral of analytic complex functions on paths from general domains. Error bounds
for these expansions in terms of p-norms, Holder and Lipschitz constants are also
provided. Examples for the complex logarithm and the complex exponential are
given as well.

<max {|Al, |1 = Al}

2. TRAPEZOID TYPE REPRESENTATION RESULTS

We have the following representation result for functions defined on non-necessarily
convex domains D.
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Theorem 3. Let f: D C C— C be an analytic function on the domain D and
x € D. Suppose v C D is a smooth path parametrized by z(z), t € [a,b] with
z(a) =u, z(t) =z and z (b) = w where u, w € D. Then we have the equality

@y fre ‘”‘n > gy [0 P @+ ) -0

—I-%/(w—z)"f(") (z)dz

forn > 1.

Proof. The proof is by mathematical induction over n > 1. For n = 1, we have to
prove that

@2 [J@d=@-n @) [ (@ f )

v

which is straightforward as may be seen by the integration by parts formula applied
for the integral

/7 (@ — 2) f' (2) dz.

Assume that (2.1) holds for “n” and let us prove it for “n 4+ 1”7. That is, we wish
to show that:

23 [red=3 m{(xw)’““f(’“)(U)+(*1)k(wf:c)"'“f"“)(w)}

(n+1) / (x—2)"" D (2) dz.

Using the integration by parts rule, we have
1 +1

24) — —2)" (n+1) d

T L AL

_ ﬁ / (@ — )" ( (=) dz
ey ] GRERAIC TRy KR AIOrY

(n+1)!

(n+ 1).
o= 0 @) = @™ )4 k) [ @2 )

= l/ (z—2)" f™ (2)dz

n!
1

_ m [(x — u)n—H f(n) (u) + (—1)" (w — m)n+1 f(n> (w)}
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which gives that

(2.5) %/ (x—2)" f™ (2)dz
= [ = @) (1) =) ) )]
o @ Y

From the induction hypothesis we have
(2.6) % / (x—2)" f™ (2)dz

— [ 1a:- 3 (kj p L= a0 @) (1) =) )]

v k=0 )

By making use of (2.5) and (2.6) we get

[166 =3 g [ 0™ 19 @+ 0 =) 10 )]

v k=0 '

- [ =™ )+ (1) =2 ()]

(n+1
1 n n
MCES] /7<w—z> T (2) dz,

which is equivalent to (2.3). O

Corollary 1. With the assumptions of Theorem 8 we have

e [ 1e- > G [0 I @+ 0 w0 )
+ w _il_ ] [)\1 (z—u)" T+ x (=) (w m)nﬂ}
—|—% (x —2)" [f(”) (z)—)\l} dz—i—% (x —2)" [f(”) (z)—)\g] dz

for any A1, Ao € C.

In particular, we have the representation
@8) [ fe)d- S [l )+ (1) - 0 5 ()]

’ . = (k+1)!

+ (nil)' |:(£C u)n+1 + (_1)n (w x)n+1:|

for any A € C.
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Proof. Observe that

1 1
- = _ )" f(n) il n ¢(n)
a) @ (z)dz+n!/7 (2= 2)" ) (2) da
== A (x—2) {f (z)—/\l]der)\la A (xr—2)"dz
—i—a : (x—2) [f (z)—)\g} dz—l—)\zm : (x—2)"dz
1 (z —u)"
- = _ ") () v
), o) 7 &) = ] d= 4+ CESD]
1 (w—z)"
il —_ A" | () _ _ynE
ta ) @-2) 70 (2) = de] dz + A2 (-1) CESVE
and by utilising the representation (2.1), we get the desired result (2.7). O

3. ERROR BOUNDS
‘We have:

Theorem 4. Let f : D C C — C be an analytic function on the domain D. Suppose
v C D is a smooth path parametrized by z (t), t € [a,b] with z(a) = u, z(t) =
and z (b) = w where u, x, w € D. Then we have the inequality

Af(z) dz

=Y G [ w0 )+ (1) w2 )]
k=0

(3.1)

LF], 5 maxzes o — 2",

1 (n) o\
7 (=) ldz] < — x L, (S = 211z
n wherep,q>1and%-{-%:17

1
Sj/lx—Z\"
nlJ,

forn > 1.

1P, oyl = 21" ]

Proof. Follows by the identity (2.1) and by Hélder’s integral inequality
max,e [z — z|" fv |f(n) (z)| |dz|,
JEEES
¥

AR (z)’ |dz| < (fv o = 2™ |dz|>1/p (fv £ @) ‘dz|>l/q

Wherep,q>1and%—|—%:1,

J, lz = 2|" |dz| max.c, |f) (2)].
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Suppose v C C is a piecewise smooth path parametrized by z(t), ¢t € v from
z(a) = u to z (b) = w. Now, for ¢, & € C and 7 an interval of real numbers, define
the sets of complex-valued functions

U, (¢,®) := {f:fyH(C\Re {(q)ff(z)) (m*$ﬂ >0 for each ze’y}
and

508 = {9l |- 23

2

'<;|<I>—¢| for each 267}.

The following representation result may be stated.

Proposition 1. For any ¢, ® € C, ¢ # ®, we have that U, (¢, ®) and A, (¢, P)
are nonempty, convexr and closed sets and

(3.2) U, (6,9) = A, (6, D).
Proof. We observe that for any w € C we have the equivalence
® 1
- 252 <Gl -0
2 2

if and only if
Re [( —w) (@ — )] > 0.
This follows by the equality

2

1 o+ @ =
4<I>—q§2—’w—2 =Re [(®—w) (W - ¢)]
that holds for any w € C.
The equality (3.2) is thus a simple consequence of this fact. ([

On making use of the complex numbers field properties we can also state that:
Corollary 2. For any ¢, ® € C, ¢ # ®,we have that

(33)  Uy(¢,®)={f:7—C| (Re® —Ref(2)) (Ref(2) - Reo)
+(Im®—Imf(2) (Imf(2) —Im¢) >0 for each z € v} .

Now, if we assume that Re () > Re (¢) and Im () > Im (¢) , then we can define
the following set of functions as well:

(3.4) Sy(,®):={f:7—C| Re(®) > Re [ (2) > Re(¢)
and Im (@) > Im f (z) > Im (¢) for each z € ~}.
One can easily observe that S, (¢, ®) is closed, convex and
(3.5) 0#85,(6,2) Uy (¢,2).
We have:

Theorem 5. Let f: D C C — C be an analytic function on the domain D. Suppose
v C D is a smooth path parametrized by z (t), t € [a,b] with z(a) = u, z(t) =
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and z (b) = w where u, z, w € D. If f(") ¢ A, (¢,,®,) for some ¢,, ®, € C,
@, # P, then we have the inequality

o) | [ 1
- (k+1 i [ =07 )+ () = 27 )
k=0
(n —11— 1! . JQF = [(w —u)" 4 (=1)" (w - x)nﬂ}
< gy 1n =0l [ lo ="l
forn > 1.

Proof. By making use of the equality (2.8) and the fact that f(™) € A, (¢,,, ®,,) we
have

n—1
Pz =3 g [ = 19 )+ (1 =) O ()]
v k=0 ’
NS G e ACED
1 oo | e ¢, + Pn
<[ [ o - e
N T DY N sk L IR
<o [l el 50 @) - B s
‘I)n n
<o [l el 70 @) = B e < =] [ fo = e,

which proves the desired result (3.6). O

A function g : v € D C C — C — C is Holder continuous on v with the constant
H >0andre(0,1] if

If () = f(w)| < H |z —w["
for all z, w € ~.

Theorem 6. Let f: D C C— C be an analytic function on the domain D and
x € D. Suppose v C D is a smooth path parametrized by z(t), t € [a,b] with
z(a) =wu, z(t) =z and z (b) = w where u, w € D. If f(™ is Hélder continuous on
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v with the constant H, >0 and r € (0, 1], then

67 |[ 1
B 2 (k +1 1)! (=) ) (@) 4 (=) (w = 2) ! ) (w)]
“(f:i(ﬁ)' (2= w)"™ + (1) (w = )"
= ;.HnL & — 2" dz
and
(3.8) L f (=) d
_ ;:1) (ki o [(m — )" R () + (1) (w — )T R (w)}
o [ 0 @ =™ () () - )
< Lm, M o=l =l sl + | |x_z|n|z_w|r|dz|1 |

9 |[ 1)
- :2_:: G i 7 L =™ W )+ (1) =) O ()]
< ;'L,LL o 2 |
and
(3.10) /Yf (2) dz
_ :z::_: 0 i 0 [(:r: — )R () + (1) (w — 2)* B (w)}

g [ ) @ =0 ()" £ () (w =)

1 n n
< —H, / |z — 2" |z — u] |dz|+/ |z — 2" |z — w]||dz]| .
n! Vu,e Vo,w
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Proof. Using the identity (2.8) we get

Lf(z kz_: k+1'

)
f (z)
(n+1)!

|: u)kJrl f(k) (u) + (_1)k (,w — x)k+1 f(k) (’LU):|

+

(=)™ (1) (w - x)”“]

/ x—2z) f(") —fm (x)} dz
v

Since f(™ is Holder continuous on v with the constant H,, > 0 and r € (0, 1], then
k+1 k k+1
T =0 @+ D =) )

f ™ (2)
(n +1)!

<o [le-a e f<"><x>H|dz|

vy
l 37— |rL
n!

@ =™+ ()" - 2]

1 (2) = £ ()| |d2]
< *'Hn/|$*z|n+r|dz‘7
n: ~

which proves the desired result (3.7).
Using the identity (2.7) we also have

z Z_n_1; m—uk+1 ()u — kw—zk+1 ()w
Lf()d—kz_o(kﬂ)!k L () (1) (w0 — )7 ()]
oy [ @ =)™ ()7 £ ) (0= 2)" ]
b [ @ S ) - £ )] e
+ % (= 2)" [£™ (2) = 1 (w)]

Since f(") is Holder continuous on v with the constant H, > 0 and r € (0,1], then

G Lm0 )+ 0 =) O ()

@) @ =™ ()" ) () (= 2)"
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1 n n n
<o fe-ar [0 e -1 w]| i
™ Y
1 n n n
+= \(m—z) (£ () = £ ()] |t
’YZ‘ w
1 (n) (n)
== "R () = £ )
Yu,x
1 7L n n
TR / = 2|1 (2) = £ ()]
nt /s, .
1 n r n T
<—H, [/ |z — 2" |z — u] |dz|+/ |z — 2" |z — w] |dz|],
n! u,T Yz, w
which proves the desired result (3.9). O

4. EXAMPLES FOR LOGARITHM AND EXPONENTIAL

Consider the function f (z) = 1, z € C\ {0}. Then

k
£ () = (—Z}ilk’ for k > 0, = € C\ {0}

and suppose ¥ C C; is a smooth path parametrized by z (¢), t € [a,b] with z (a) = u
and z (b) = w where u, w € Cy. Then

[t@a= [ sea= [ F-Logw - Lo
¥ Vs ww
for u, w € Cy.

Consider the function f(z) = Log(z) where Log(z) = In|z| + i Arg(z) and
Arg (z) is such that —7 < Arg(z) < w. Log is called the "principal branch" of
the complex logarithmic function. The function f is analytic on all of C, :=
C\{z+iy:2 <0, y=0} and

(=D (k- 1)!
2k

¥ (z) =

Suppose v C C; is a smooth path parametrized by z (¢), t € [a,b] with z (a) = u
and z (b) = w where u, w € Cy. Then

/Wf(z)dz: %wf(z)dZZ/ Log (z) dz =

u,w

, k>1, z€Cy.

= zLog ()|, —/ (Log (2)) zdz

u,w

= wLog (w) — uLog (u) — / dz

u,w

= wLog (w) — uLog (u) — (w — u),

where u, w € Cy.
Consider the function f (2) = exp(z), z € C. Then

f® (2) =exp(z) for k>0, zeC
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and suppose v C C is a smooth path parametrized by z (), t € [a,b] with z (a) = u
and z (b) = w where u, w € C. Then

/ f(z)dz = f(z)dz = / exp (2) dz = exp (w) — exp (u) .

We have by the equality (2.1) that

@) [FEd=6 0@ w2 fw
+ kz:l m [(l‘ - u)k+1 f(k) (u) + (—l)k (’LU B z)k'H f(k) (w)}
+l/(x_z)nf(") (2)dz

n!

for n > 2.

Suppose v C Cy is a smooth path parametrized by z (t), t € [a, b] with z (a) = u,
z(t) = = and z (b) = w where u, z, w € Cp, then by writing the equality (4.1) for
the function f(z) = %, we get the identity

() ()]

+ (—1)”/7(”;:+Z1)ndz

(4.2) Log(w) — Log (u)
w—1u =1
=x< wu >+Z(k—|—1)

k=1

for n > 2.
If we write the equality (4.1) for the function f (z) = Log(z), then we get the
identity
(4.3) wLog(w) —uLog (u) — (w — u)
— (& — u) Log (u) + (w — o) Log (w)
1 Jgp et e
— (k+1)k uk wk

1 n—1 _ n
+( ) /(m Z) dz
n ~ z
for n > 2.

Suppose v C C is a smooth path parametrized by z (t), t € [a,b] with z (a) = u,
z(t) = x and z (b) = w where u, x, w € C. If we write the equality (4.1) for the
function f (z) = exp z, then we get

(4.4) exp(w)—exp(u) = (z —u)exp (u) + (w — ) exp (w)

! kz:l ﬁ {(x — )" exp (u) + (=1)" (w - 2)" T exp (w)}

+ % / (x—2)"exp(2)dz
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for n > 2.
Using the identity (4.2) we get

(4.5)  |Log (w) — Log (u) — (w . u>

n—1 1
-2 (k+1)

z—u\" w—az\"!
St |0 () ()

Y

where v C Cy is a smooth path parametrized by z(t), t € [a,b] with z(a) = u,
z(t) =z and z (b) = w where u, z, w € Cy.
If dy :=1inf.c, |z| € (0,00), then by (4.5) we get

(4.6)

Log () ~ Log () - (")
_Z | (m;u)m ¥ (w;>+]

1 / n
< — [ |z —2["dz.
AR

From (4.3) we also get

(4.7)  |wLog(w) — uLog (u) — (w — u) — (x — u) Log (u) — (w — z) Log (w)
+§ - [(—1)’“ Gow™ | (- x)kH]
— (k+1)k uk wk
<=
(4.8) |wLog(w) —uLog (u) — (w—u) — (x — u) Log (u) — (w — z) Log (w)
+§71 [(—1)’“ o™, (w_x)kH]
Pt (k+1)k uk wk

1
< — / |z — 2|" dz.
ndy J,

n

dz.

r—z

z

If d, :==inf.c, |z| € (0,00), then by (4.7) we obtain
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