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Abstract. In this paper, we provide a method to construct a continued fraction approximation based on a
given asymptotic expansion. We establish some asymptotic expansions for the harmonic number which
employ the nth triangular number. Based on these expansions, we derive the corresponding continued
fraction approximations for the harmonic number.
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1 Introduction

The Indian mathematician Ramanujan (see [1, p. 531] and [11, p. 276]) claimed the following
asymptotic expansion for the nth harmonic number:
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as n — oo, where m = n(n + 1)/2 is the nth triangular number and + is the Euler-Mascheroni constant.
Ramanujan’s formula (1.1) has been the subject of intense investigations and has motivated a large
number of research papers (see, for example, [2,4-10, 12, 13]).
Villarino [12, Theorem 1.1] first gave a complete proof of expansion (1.1) in terms of the Bernoulli
polynomials. Recently, Chen [5] gave a recursive relation for determining the coefficients of Ramanujan’s
asymptotic expansion (1.1), without the Bernoulli numbers and polynomials

a n — 00, (1.2)

1 o0
H,, ~ 3 In(2m) +7+;W’
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where the coefficients a, (¢ € N := {1,2,...}) are given by the recurrence relation
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Mortici and Villarino [10, Theorem 2] and Chen [2, Theorem 3.3] obtained the following asymptotic
expansion:

1 1 = Py
H,~=In(2 z — 9 . 1.4
2n<m+3)+7+§(2m+éy n— oo (1.4)

Moreover, these authors gave a formula for determining the coefficients p; in (1.4). From a computational
viewpoint, (1.4) is an improvement on the formula (1.2).
Chen [2, Theorem 3.1] obtained the following asymptotic expansion:

1 I & wy
H, ~ “In|(2 - E — ], , 1.5
7+2n<m+3+€_1(2m)g> n — 0o (1.5)

with the coefficients w, (¢ € N) given by the recursive relation

1 Syl V|
wi=—g5 wz=b2<e+1)—j§_jl< 20~ 2 )wj, (>2, (1.6)

where b; are given by

R

and B; are the Bernoulli numbers and the summation is taken over all nonnegative integers k; satisfying
the equation ky + 2kg + - - + jk; = j.
It follows from [3, Corollary 3.1] that

1

1 = 1
Hn—ln<n—|—>—7: 4817—|—O<6>, n — 0o. (1.8)
2 m+ g5 n

In this paper, we provide a method to construct a continued fraction approximation based on a given
asymptotic expansion. We establish some asymptotic expansions for the harmonic number which employ
the nth triangular number. Based on these expansions, we derive the corresponding continued fraction
approximations for the harmonic number. All results of the present paper are motivated by (1.1), (1.4),
(1.5) and (1.8).

The following lemma will be useful in pour present investigation.

Lemma 1.1. Let a; # 0 and

A(x)NZ—;, T — 00
j=1



be a given asymptotic expansion. Define the function B by

Then the function B(x) = a1 /A(x) has asymptotic expansion of the following form
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Proof. We can let
T+ Z Pl xr — 00,
j=0
where b; (for j € Ny := N U {0}) are real numbers to be determined. Write (1.10) as
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Equating coefficients of equal powers of x in (1 .11), we obtain

a2 ==Y axpibj g, § =0,

For j = 0 we obtain by = —az/aq, and for j > 1 we have

J
ajio = — Zak+1bj7k — arby, Jj=>1,
k=1

which gives the desired formula (1.9).

(1.9)

(1.10)

(1.11)

O

Lemma 1.1 provides a method to construct a continued fraction approximation based on a given

asymptotic expansion. We state this method as a consequence of Lemma 1.1.



Corollary 1.1. Let a; # 0 and
A(z) ~ Z a—;, T — 00
j=1

(1.12)

be a given asymptotic expansion. Then the function A has the following continued fraction approximation

of the form

ai

A(z) =~ , T — 00, (1.13)

b
T+ by + ! o
x + co +

T4do+ -

where the constants in the right-hand side of (1.13) are given by the following recurrence relations:

_ _b _ 1 J
Co=—%, G =3 (bj+2 +> 1 bk+lcj—k)

_ _a _ 1 J
bo=—-3%, bj=—5 (aj+2 + 2k ak-+1bj—k)

(1.14)

— _c¢ 1 (. J A
do=—3 dj=—g (CJ+2 +2 k= Ck+1dyfk)

Remark 1.1. Clearly, a; = b; = c; = d; = . ... Thus, the asymptotic expansion (1.12) = the
continued fraction approximation (1.13). Corollary 1.1 transforms the asymptotic expansion (1.12) into
a corresponding continued fraction of the form (1.13), and provides the system (1.14) to determine the

constants in the right-hand side of (1.13).

2 Main results

Theorem 2.1 transforms the asymptotic expansion (1.1) into a corresponding continued fraction of

the form (2.1).

Theorem 2.1. Let m = in(n + 1). As n — oo, we have

1
H, ~ 5 In(2m) + 7 + @ ; , 2.1
m + by + —
m + cg +
m-+do+ -
where
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Proof. Denote
1
A(m) =H,, — 3 In(2m) — 7.



It follows from (1.2) that

a 1 1 1 1 1
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2.3)

as m — oo, where the coefficients a; (¢ € N) are given in (1.3). Then, A(m) has the continued fraction

approximation of the form

ay

A(m):anéln@m)ffy% m — 00,

b1 ’
C1
m 4+ co +
m+dy+ -

m —+ by +

where the constants in the right-hand side of (2.4) can be determined using (1.14). Noting that

1 1 1 1 1 191

7T T 00 ®Te300 T 16800 T 23100 “°7 T 360360°

we obtain from the first recurrence relation in (1.14) that
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aj 3000’
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ay 700700000

We obtain from the second recurrence relation in (1.14) that

o b2 91
T Ty T 190

_ bs + bacy 16585
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Continuing the above process, we find

o _Cx_ 2357167
0 T 1638598’

The proof is complete.
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Remark 2.1. It is well known that

By,
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where By, are the Bernoulli numbers. Following the same method as was used in the proof of Theorem
2.1, we derive
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Theorem 2.2. Let m = %n(n + 1). The harmonic number has the following asymptotic expansion:

1 > Ty
Hnwln<n+2>+’}/+;W

WA 7 407 1943
=ln({n+ = — —
2) T T 48m T 3840m2 ' 322560m3  3440640m?
32537 25019737
- ... Q2.7

75694080m5  47233105920mS

as n — oo, where the coefficients ry (¢ € N) are given by the recurrence relation

£—1

1 1 1 , 2 —j
T = - 2"y 0> 2. 2.8
Ty T o Y 220+ 1) ; i (24 — 2+ 1) 0= 28
Proof. Denote
1 > r
I,=H,—In (n+2> —~ and J,,,:;m—g,

Let I,, ~ J, and
AIn = Ap41 — In ~ AJn = dJdny1 — Jn

as n — oo, where rp (¢ € N) are real numbers to be determined.
It is easy to see that
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and
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Direct computation yields
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and

Replacement of ¢ by 2¢ 4 1 in (2.13) yields
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Equating coefficients of the term (n + 1)~2¢~! on the right-hand sides of (2.9) and (2.14) yields
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For ¢ = 1in (2.15) we obtain ry = 4—18, and for ¢ > 2 we have

= 20— j 1
27+ g 2y = o ———
JZ::I i <2€ —2j+ 1> T = Sy

which gives the desired formula (2.8). O

Remark 2.2. We here gave the recursive relation (2.8) for determining the coefficients ry in expansion
(2.7), without the Bernoulli numbers and polynomials.

Remark 2.3. Denote

A*(m)=H, —In <n+;> - .

It follows from (2.7) that

re 1 17 407 1943
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as m — oo, where the coefficients ry (¢ € N) are given in (2.8). Following the same method as was used
in the proof of Theorem 2.1, we derive

1 A
H, ~In <n—|—>—|—’y+ s , (2.17)
2 m+ug + —
m+po+
mangd -
where
N 1T, 20m 117863
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Thus, we develop the approximation formula (1.8) to produce a continued fraction approximation.

Theorem 2.3. Let m = %n(n + 1). The harmonic number has the following asymptotic expansion:

1 1 L s
HnN21n<2m+3) +7+;W

U (oma LY P (O SR
T2 3) 777 720m2 T 45360m®  362880mt | 1197504m°
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(2.19)



as n — oo, with the coefficients sy given by

(2.20)

where ay are given in (1.3).

Proof. We find by (1.2) that, as n — oo,
1 1 1 1 1
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Noting that a; = %, we obtain, as n — 00,
1 1 = (-1)1Yy 1
H,~=In(2 - - —.
2n(m+3>+’y+£:22{a4 6i90 —";

The proof is complete. O

Theorem 2.4. Let m = in(n+1). As n — oo, we have

1
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mtag+

where

1 451 228764 21448004509

Pr="=m0 @7 7317520 P27 97505170 T 11990893824
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Proof. Denote

(2.22)

It follows from (2.19) that
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as m — 0o, where the coefficients s, (¢ € N) are given in (2.20).



Define the function G(m) by

52
F =
(m) Gom)
We obtain by (2.23) and Lemma 1.1 that
82 S2 S2 9 37 451 x
G = ~ = D — e e — J A
)= By ~ T2, sem ’"(zzil ) = G g A7)
where
228764 21448004509 3180925176497

A% (m) ~ - n
2750517Tm  144171099072m2 = 9082779241536m3
898929405728511653 2008288563825356198279

T 856033777956284928m " | 512336216106836520408m°

(2.24)

We then obtain L
F(m) ~ 720 . (2.25)
m? + Gm — iz + A (m)

Following the same method as was used in the proof of Theorem 2.1, we derive the continued fraction
approximation of A**(m) (we here omit the derivation of (2.26))

*% ~ D2
A (m) = R T (2.26)

mtgst -

as m — oo, where p; and g; (for j > 2) are given in (2.22). Substituting (2.26) into (2.25) yields
(2.21). O

Theorem 2.5. Let m = in(n + 1). As n — oo, we have

1 1 (e5]
H,~—-In|2m+ -+ 5 + 7, 2.27)
metBgt
where
gy Log 5326329 . 42684239
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Proof. Write (1.5) as
1 X de
2(H, —
e 7)~2m+§+;w, n — oo,

with the coefficients d; given by

, (2.29)



where wy are given in (1.6). Denote
1
A" (m) = e2(Hn=7) _omy — 3

We have, as m — oo,

oo

de
A*** ~ e
(m) ; —
_ 1 L 53 3929 n 240673 488481881
©180m - 22680m2  2721600m3 = 179625600m*  267478848000m5
8834570273  652512638837083 4 (2.30)
2521943424000mS  72026704189440000m7 = " '
Following the same method as was used in the proof of Theorem 2.1, we derive
aq
A (m) =~ = (2.31)

m+B3+ -

as m — oo, where o; and 3; are given in (2.28). We here omit the derivation of (2.31). Formula (2.31)
can be written as (2.27). O

3 Comparison

Define the sequences {un}TLEN’ {Un}nENs {xn}neN and {yn}nEN by
1 1
Hy ~ 5 n(2m) + 7 + - e = Uy, (3.1)
m+ 15 + 2100 ews
8339

91 391
m+1g5+ 2357167
™+ 1658598

1
H, ~In n+1 +9+ 48 = (3.2)
n -~ 2 v 17 — 2071 = Un, .
134400
m+ 80 + _ 15685119025

+ 117863 4+ — 63400182144

™M 165680 1 ,, 1 2312217133079747

1351320470432240

aq

1 1
H,~-In|2m+ - + 5 + v =x,, 3.3)
m+53+."
1 1 P1
Hy~-In(2m+ - | +~v+ = Yn, 34
2 ( 3) K m?2 + %m +aq1 + ﬁ Y
m+a3

where o; and §; (for 1 < j < 3) are given in (2.28), p; and g; (for 1 < j < 3) are given in (2.22).

It is observed from Table 1 that, among approximation formulas (3.1)-(3.4), for n € N, the formula
(3.4) would be the best one.

Table 1. Comparison among approximation formulas (3.1)-(3.4).
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n Hn_un Hn_vn (En_Hn Hn_yn

1 4.61559 x 1078 1.25202 x 10°%  5.1364 x 10°7  3.75796 x 10~ 7
10 9.65618 x 10717 5.65274 x 10~17  1.62639 x 10718  7.04292 x 10—20
100 1.98169 x 10730 1.19140 x 10730  3.98848 x 1073* 2.01636 x 10737

1000 2.11271 x 1074 1.27055 x 1074 4.29495 x 10759  2.19258 x 10~55

In fact, we have (by using the Maple software), as n — oo,

H,=u,+0n™ ), H,=v,+0®n™"), H,=z,+0n"'%, H,=y,+0n"*).

4 Conjecture

In view (1.1), (2.7), (2.19) and (2.30), we propose the following conjecture.
Conjecture 4.1. (i) Let ap (¢ € N) be given in (1.2). Then we have

(-1 'ay >0, (€N

and
2p a 1 2p+1 a
0 0
g — < H,—=In(2m) — v < E —,
=1 mt 2 neEm = =1 mt

where m = n(n+1)/2,n € Nand p € Ny := NU {0}.
(ii) Let ¢ (¢ € N) be given in (2.8). Then we have

(- 'y >0, (€N
and
2p r 1 2p+1 ,
Z [ Z [
e:1W <Hn1n<”+2) e =1 m’’

where m = n(n +1)/2,n € Nand p € Ny.
(iii) Let s¢ (¢ > 2) be given in (2.20). Then we have

(- tsg >0,  £>2

and
24 s 1 1 2q 13
Z 0 Z 0
427’774[<Hn21n<2m+3)’7<£2 W’

where m =n(n+1)/2,n € Nand ¢ € N.
(iv) Let d; (¢ € N) be given in (2.29). Then we have

(—1)£d5>0, £>1
and
2g—1 2q
1 1 Wy 1 1 Wy
—In|2 = — H, — —In(2 = — |,
2n<m+3+;me>< 7<2n<m+3+;me>
where m =n(n+1)/2,n € Nand ¢ € N.
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