AN EXTENSION OF OPIAL’S INEQUALITY TO THE COMPLEX
INTEGRAL
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ABSTRACT. In this paper we establish an extension of Opial inequality to the
case of complex integral of analityc functions.

1. INTRODUCTION

We recall the following Opial type inequalities:

Theorem 1. Assume that u : [a,b] C R — R is an absolutely continuous function
on the interval [a,b] and such that v’ € Lo [a,b].

(i) Ifu(a) =u(b) =0, then

(1.1) /|u |dt< _a/\u )2 dt,

with equality if and only if
. +b
c(t—a) ifa<t <42,

u(t) =
c(b—t) if 2 <t <,
where ¢ s an arbitrary constant;

(ii) Ifu(a) =0, then

(1.2) /|u |dt< _a/\u )2 dt,

with equality if and only if u (t) = c¢(t — a) for some constant c.

The inequality (1.1) was obtained by Olech in [9] in which he gave a simplified
proof of an inequality originally due in a slightly less general form to Zdzislaw Opial
[10].

Embedded in Olech’s proof is the half-interval form of Opial’s inequality, also
discovered by Beesack [1], which is satisfied by those u vanishing only at a.

For various proofs of the above inequalities, see [5]-[8] and [12].

In order to extend this result for the complex integral, we need some preparations
as follows.

Suppose v is a smooth path parametrized by z (t), t € [a,b] and f is a complex
function which is continuous on «. Put z (a) = u and z (b) = w with u, w € C. We
define the integral of f on v, , =~ as

b
/f<z>dz= f(2) dz :=/ f (1) () dt
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We observe that that the actual choice of parametrization of v does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose
7 is parametrized by z (t), ¢ € [a,b], which is differentiable on the intervals [a, c]
and [c, b], then assuming that f is continuous on v we define

/yuwf(z)dz::/%.vf(z)dz—i—/%wf(z)dz

where v := z (c) . This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

b
f(2)|dz] == / £z (017 (1) di

and the length of the curve 7 is then

() = / BGE / 1 @l

Let f and g be holomorphic in G, an open domain and suppose 7 C G is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
by parts formula

1) [ f@eEd=fwew - fwew - [ FEge)d

w,w Yu,w

We recall also the triangle inequality for the complex integral, namely

[yf(z) dz

where [|f[ = sup.e, |f (2)].
We also define the p-norm with p > 1 by

71 = ([ 1707 |dz|)1/p.

I£1,0 = [ 17 @)l
2l

(1.4)

< / £ @ 1dz] < £, £ ()

For p =1 we have

If p, ¢ > 1 with % + % =1, then by Holder’s inequality we have

11y < OIS, -

2. SOME PRELIMINARY RESULTS

We have the following refinement and generalization for complex valued function
of the Opial inequality:

Theorem 2. Assume that f : [a,b] — C are absolutely continuous on [a,b] and

f/ € L2 [a,b] .
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(i) If either f(a) =0 or f(b) =0, then

b 1/2 b 1/2
(2.1) /|f |dt<(/ <t—a>|f’<t>|2dt) (/ <b—t>f’<t>2dt>
b
<50 [ 17 @Fa

(ii) If f (a) = f (b) = O, then

(2.2) /|f ()] dt
< [/ K(t)lf’(t)l2dtr/2 Ub

a+b
—1
2

1/2
’(t)th]

1b—a/|f |dt

;J;

where

t—aifa<t< kb
K (t) =

—tif <t <.

Proof. (i) Since f (a) =0, then f (¢ f 1’ (s)ds for t € [a,b]. We have
(2.3) / () £ (0)]de
/ O 1f () dt = / (t— )2 |f (0]t — )~ 2| £ (1)

= [e-ar oo [ 1w

Using Cauchy-Bunyakovsky-Schwarz (CBS) inequality, we have

(24) A< ( / b (t=a)?|p <t>|]2dt>
([leorelfrosa)”
=</ab<t—a>|f'<t>2dt>l/2 (/j(t—a)—l /atf’(s)ds

By (CBS) inequality we also have
¢ 2
< [1f s

t 2
[ 1 s
which gives

(25) B<</:(t—a)|f |dt> (/ (/|f |ds)dt)2

1/2

2 1/2
dt) =: B.

(t—a
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Using integration by parts, we have

[ ([rera)as[rora- [ rore- oo o

and by (2.4) we get the first inequality in (2.1).
The last part follows by the elementary inequality

(2.6) \/OT/BS%(oA—ﬁ),a,ﬁZO.

(ii) If we write the inequality (2.1) on the interval [a, “52] , we have

a+b
2

(2.7) / () £ (0)] dt

< (/ (t—a)lf’(t)lzdt>l/2 (/ (“‘2”’—7:) f’(t)lzdt>1/2

and if we write the inequality (2.1) on the interval [“7“’, b] , we have

b
(2.8) / 1 (0) £ (0)] dt

< (/ (b—1)|f" <t>|2dt>l/2 (/ (-5 )17 <t>|2dt> "

2
If we add the inequalities (2.7) and (2.8) we get

b
/ () 1 (0)] de

a+b

g </ e (t)th>1/2 </ (5= -1 <t>2dt> :
i (/a; (b=1t)|f (t)|2dt> v (/a; (t— a;—b) o dt) 1/2

a+b

; , 1/2
V (t—a)lf'(t)\zdtJr/i (b—1)f <t>|2dt]

IN

a+b

2
a+b

[/ (S5 irwpas [ (1-950) |f'(t>2dt]
[/abmw' <t>|2dt] N V

where for the last inequality we used the elementary (CBS) inequality

1/2

X

1/2
iy <t>|2dt] ,

aB+8 < (@ +2) 2 (824637 o, B, 620,
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The last part follows by (2.6), namely

[ b <t>|f’<t>|2dt]1/2 /
VK )17 (0) dt+/ ““’—t]u dt]
=§/ab[f<<t>+ R H O dt - /|f ) dt,

a+b
—t
el

) 1/2
@t —t‘|f |dt]

l\')\»—t &

since

K () +

%(b—a) for t € [a,b].

3. WEIGHTED INEQUALITIES
We also have the following composite inequality:

Theorem 3. Let g : [a,b] — [g(a),g(b)] be a continuous strictly increasing func-
tion that is of class C' on (

a,b). Assume that f : [a,b] C R— C is an ab-
solutely continuous complex valued function on the interval [a,b] and such that
[gl‘gil/Q c L2 [a, b] .

(i) If f (a) =0 or then f (b) = 0, then

(3.1) /|f ()] dt
” RO oL\
< ( [ a9 T dt) JRCCRIOR= =

g (t)
L)

<

N =

< l/ab (; (g(b) —g(a)) - ’g(a);rg(b) _g(t)D I (t)|2dt] 1/2

g'(t)
lo@+g® 1 @R,
e i
<1y |f '
4
Proof. (i) Consider the function u := fog™! : [g(a ) g (b)] — R. The function u
is absolutely continuous on [g(a),g (b)], u(g(a)) = fog™t (g (a)) = f(a) =0or

u(g (b)) =fog t(g(b)=f(b)=0.
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Using the chain rule and the derivative of inverse functions we have

(fleg™h) (2)
(g og71)(2)

/

(3.3) (fog™) ()= (feg)(2)(¢7") (2) =

for almost every (a.e.) z € [g(a
If we apply the inequality (
[9(a),g(b)], then we get

)9 (0)]-
2.

1) for the function u = fog~!

on the interval

(flog™) (2)

R IE]

If we make the change of variable t = g=1 (2), 2 € [g(a), g (b)], then z = g (t),
dz = ¢ (t) dt,
/g(b) (f'eg7") (2)
g(a)

fos™ @D (o)

g(b) - (f/og—l) (2) L b - 7 (t) ,
J I O s | KR IO RO P ACEE
b ’ 2
P LAY 1O Y L PSRN Vi1
NGO R MR CORION P O
b / 2
= [ wo g0 L0k
and
Y 1O A V0 P A Vi
Lo [esme| == L 7@l 1 0= [ i «

By utilising (3.4), we then get the desired inequality (3.1).
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1

(ii) By using the inequality (2.2) for the function u = f o g~ on the interval

[9(a),g(b)], then we get
9(®) (f'og7") (2)
(3:5) /g(a) (g og™1)(2)

S{éi?(émao—gm»—wg“ﬁfﬂw_z

fog ' (2)

<3l -9 [

If we make the change of variable t = g7 ! (2), 2z € [g(a),g(b)], then by (3.5) we
get the desired result (3.2). O

If w : [a,b] — R is continuous and positive on the interval [a, b] , then the function
W :[a,b] — [0,00), W () := [ w(s)ds is strictly increasing and differentiable on
(a,b). We have W' (z) = w (z) for any z € (a,b).

Corollary 1. Assume that w : [a,b] — (0,00) is continuous on [a,b] and that
f ia,b) € R—C is an absolutely continuous complex valued function on the

interval [a,b] and such that 1/2 € Ly a,b)].

(i) If f(a) =0 or f(b) =0, then

(36) /If (t) f'(t)|dt
([ (o) ) (L () 0 )

L Gl
5/@ w(s)ds/a w (@) dt.

IN

(ii) If f (a) = f (b) =0, then

(3.7) /|f ()] dt
SUAUERES
[/

/bw(s)ds—/tw(s)ds |f/(t)|2dt -
t a w(t)

b ioras ! ror
/t w(s)ds /a w(s)ds w (@) dt]

1/bw "1/ ()]
4 w (¢)
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4. OpPIAL TYPE INEQUALITIES FOR COMPLEX INTEGRAL
We have the following Wirtinger type inequality for complex functions:

Theorem 4. Let f be analytic in G, a domain of compler numbers and suppose
v C G is a smooth path parametrized by z (t), t € [a,b] from z (a) = u to z (b) = w
and 2’ (t) # 0 for ¢ € (a,b).

(i) If f(u) =0 or f (w) =0, then

(4.1) /\f )|z
g(/ (u2) 1 (2 |dz|)1/2<// (o) I (2 |dz) "’

< 3¢ 0un) [ 17 P 1621

;_n

(ii) If f (u) = f (w) =0, then

(4.2) /\f )]z

U (€ (a) = 1 () = £ (1) ) 1F (2 )|2|dz|]1/2

1/2
¢ "(2)[|dz] .
(Vuw)Llf ()1 |
Pmof (i) Consider the function h (t) = f (2 (t)) and w (¢t) = |2’ (¢)|, ¢ € [a, b] Then

i)C (
()=(f(2()))—f’(()) '(t) for t € (a,b). Also h(a) = f(z(a)) = f(u) =0
or h(b) = f(2(b)) = f (w) = 0. By utilising the inequality (3.6) we get

<

N =

.N»—'

Since
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) O OF o
L1 @t ) FETE = [ eG)15 OF

by gl P o 2
[ DO, o,

hence by (4.3) we get the desired result (4.1).
(i) Follows in a similar way from (4.2). O

and
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