EXTENSIONS OF STEKLOFF AND ALMANSI INEQUALITIES
TO THE COMPLEX INTEGRAL

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some extensions of Stekloff and Almansi
inequalities to the complex integral. Applications for bounding the complex
Cebysev functional are also given.

1. INTRODUCTION

It is well known that, see for instance [5], or [9], if u € C*([a,b],R), namely u
is continuous on [a, b] and has a derivative that is continuous on (a, b) and satisfies
u(a) = u(b) = 0, then the following Wirtinger type inequality is valid

(1.1) /bu2 war < _2“)2 /b ! () dt

™

with the equality holding if and only if u (t) = K sin {%_;)} for some constant
K eR.
If u € C'([a,b],R) satisfies the condition u(a) = 0, then also
b 2 b
4(b—
(1.2) / u? (t)dt < (72@/ [w (£)]” dt
a ™ a

w(t—a)

and the equality holds if and only if u (¢) = Lsin {2(177&)} for some constant L € R.

For some related Wirtinger type integral inequalities see [1], [3], [5] and [8]-[11].

In 1901, W. Stekloff, [13], proved that, if u € C* ([a,b],R) and fabu(t) dt =0,
then

(1.3) / bu2 (z)dx < ® _2“)2 / b [ (2))° da.

s

In addition, if u (a) = u (b), then, as proved by E. Almansi in 1905, [1], the inequality
(1.3) can be improved as follows

b —a? b )
(1.4) / u? (z) dx < (b4 2) / [v (z)]" da.

™

We can state the following result for complex functions A : [a,b] — C.

Theorem 1. If h € C* ([a,b],C) and [ h(t)dt = 0, then
b N2 b

(1.5) / b (2)[2 da < M/ W ()2 da.
a ™ a

1991 Mathematics Subject Classification. 26D15; 26D10.
Key words and phrases. Wirtinger’s inequality, Stekloff inequality, Almansi inequality, Griiss’
inequality.
1

RGMIA Res. Rep. Coll. 22 (2019), Art. 10, 10 pp. Received 30/01/19


e5011831
Typewritten Text
RGMIA Res. Rep. Coll. 22 (2019), Art. 10, 10 pp.     Received 30/01/19


2 S.S. DRAGOMIR

In addition, if h (a) = h(b), then

(1.6) /\h )W da <( ) /Ih’( ) da.

The proof follows by (1.3) and (1.4) applied for v = Reh and v = Im h and by
adding the corresponding inequalities.

In order to extend this result for the complex integral, we need some preparations
as follows.

Suppose v is a smooth path parametrized by z (t), t € [a,b] and f is a complex
function which is continuous on «. Put z (a) = u and z (b) = w with u, w € C. We
define the integral of f on v, , =~ as

Lf(z)dz Mf(z)dz:/abﬂz(t))z'

We observe that that the actual choice of parametrization of v does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose
7 is parametrized by z (t), ¢ € [a,b], which is differentiable on the intervals [a, c]
and [c, b], then assuming that f is continuous on v we define

f(z)dz = / f(z)dz+ f(z)dz

Yo,w

Yu,w

where v := z (¢). This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

RCLE —/ F )12 ()] dt

and the length of the curve + is then

() = / R / 12 ()] d.

Let f and g be holomorphic in G, and open domain and suppose v C G is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
by parts formula

(1.7) f(2)g (2)dz = f(w)g(w) = f(u)g(u) - f(2)g(2)dz.

Yu,w Yu,w

We recall also the triangle inequality for the complex integral, namely
[1@a| < [1r @I <181, o)
v ¥

where [[f[|, o := sup.e, [f (2)]-
We also define the p-norm with p > 1 by

p
1AL, = (/ e |”|dz|) .

1fl = / 1F (o)) |dz]
vy

(1.8)

For p = 1 we have
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If p, ¢ > 1 with %} + 2 =1, then by Holder’s inequality we have

£l 2 < LN 1, -

In this paper we establish some extensions of Stekloff and Almansi inequalities
to the complex integral. Applications for bounding the complex Cebysev functional
are also given.

2. SOME PRELIMINARY FACTS

‘We have:

Theorem 2. Let g : [a,b] — [g(a), g (b)] be a continuous strictly increasing func-
tion that is of class C* on (a,b).

(i) If f € C* ([a,b],C) with —L& < € Ly [a,b] and fjf(t) g (t)dt =0, then

/g/
b /
(2.1) / F () g () dt < [g / ‘f .
(ii) In addition, if f (a) = f (b), then we have the better znequality
lg( \f '
(2.2) / ()2 (1) dt < 4772 / "

Proof. (i) We write the inequality (1.5) for the function h = f o ¢~ ! on the interval
[ (a) g (b)] to get

9(b) , Cala)? [9®) e
(2.3) / }(fog_l) (z)| dz < M/ ’(fog_l) (z)‘ dz,

(a) & (a)
provided
g(b)
/ fog t(z)dz=0.
g(a)
If f: [c,d] — C is absolutely continuous on [c,d], then fog™!:[g(c),g(d)] — C
is absolutely continuous on [g (¢), g (d)] and using the chain rule and the derivative
of inverse functions we have
R0 (oY D= (er ) () () (9= L)
(297" (2)
for almost every (a.e.) z € [g(c),g (d)].
Using the inequality (2.3) we then get

9(b) —a(a)? [9®
(25) / }(fog_l) (z)|2d2§ (g(b) 29( )) /

(a) &

provided fgg((j) fog t(z)dz=0.
Observe also that, by the change of variable t = g=1 (2), 2 € [g(a), g (b)], we
have z = ¢ (t) that gives dz = ¢’ (¢) dt,

9(b) b
/ fog_l(z)dxz/ f )R (t)dt
g(a) a
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and
9(b) L 9 b 5,
(2.6 L (e @fa= [rwrd o
g(a a
We also have
2
L/““ (fog™) (=) dz__/* Ok MO
ey | (g 0971 (2) o 19" () ' (t)
By making use of (2.5) we get (2.1).
(ii) The inequality (2.2) follows by (2.2) in a similar way. O

If w : [a,b] — R is continuous and positive on the interval [a, b] , then the function
W :[a,b] — [0,00), W () := [ w(s)ds is strictly increasing and differentiable on
(a,b). We have W' (z) = w (z) for any = € (a,b).

Corollary 1. Assume that w : [a,b] — (0,00) is continuous on [a,b] and f €

C*([a,b],C).
()If\FELg[ab andff w (t)dt =0, then

b 2 b2
(2.7) / (¢ dt<1< / w(s)ds> |fw<(?)| dt

(ii) In addition, if f (a) = f(b), then we have the better inequality

. b 2 b 2
(2.8) vah&%s@(éﬂwﬁ a%%“

3. INEQUALITIES FOR COMPLEX INTEGRAL

We have the following extensions of Stekloff and Almansi inequalities to the
complex integral:

Theorem 3. Let f be analytic in G, a domain of compler numbers and suppose
v C G is a smooth path parametrized by z (t), t € [a,b] from z (a) = u to z (b) = w
and z' (t) # 0 for ¢ € (a,b).

) If [ f (2)|dz| = 0, then

1 ,
(3.1) [ueri < 5em [1r e,
(ii) In addition, if f (u) = f(w) =0, then
1 ,
(32) [P < gz o [ 15 @F i,
Proof Consider the function h (t) = f (2 (¢)) and w (t) = |2’ (¢)|, t € [a,b]. Then

(i)
()= (f (=) = f' (2 (1) # (t) for t € (a,b) . Also

/f ) |2 (t)] dt = /f )|dz| = .
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By utilising the inequality (2.7) for these choices, we get

[reo |dt<</ 76 ds>/f’ 0,
L </b E (s)ds> /b 7 (= (Q,)';'f/ OF

(/ 12 (s ds> /|f P12 (1) dt,
which is equivalent to (3.1).

(ii) Follows by the corresponding result from Corollary 1. g

We have the following reverses of Schwarz inequality:

Corollary 2. Let h be analytic in G, a domain of complex numbers and suppose
v C G is a smooth path parametrized by z (t), t € [a,b] from z (a) = u to z (b) = w
and z' (t) #0 for t € (a,b). Then

1 ) 1 2
@33) 02 7o [P =| 5 [ el
In addition, if h (u) = h (w) =0, then

< 500 [ WP 1zl

34) 0= o5 [P el - \g(lv)/wh@da

Proof. First, observe that

2
1 , 2
< — .
< gt O) [ W e

2
] |dz|

5(17)/7 [|h(z)|22Re (h(z)g(lv)/vh(y)dy> +'£(17)/7h(y)dy
1

2 1 -
- é(ﬂ/)/Wh(zN |dz| — 2 Re W/Wh(z) |dz|£(7)[Yh(y) |dy|)
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f'(z) =W () and by (3.1) we get

[er-sg5 fr

e0) [ @
and by (3.5) we get the desired result (3.3).
The second part follows by (3.2). O

4. CompLEX CEBYSEV FUNCTIONAL

Suppose v C C is a piecewise smooth path parametrized by z(t), t € v from
z(a) =u to z(b) = w with w # w. If f and g are continuous on 7y, we consider the

complex Cebysev functional defined by
/ f(z)dz ! / (2)dz
—u/, w—u J, g '

We start with the following identity of interest:

dz—

Lemma 1. Suppose v C C is a piecewise smooth path parametrized by z (t), t € v
from z(a) = u to z (b) = w with w # u. If f and g are continuous on =, then

(4.1) D"/(fvg):% (f (2) = f(w)) (9 (2) = g (w)) dw | d=
2(w—u)” Jy \Jy

=WL(L(f(Z)—f(w))(g(Z)—g(w))d2> dw

1

3 (w — u)? /“//v(f (z) = f(w)) (9 () — g (w)) dzdw.

Proof. For any z € y the integral f,y (f(2) = f(w)) (g (2) — g (w)) dw exists and
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The function I (z) is also continuous on -, then the integral fv I (z) dz exists and

[16ra= [ |w= 7@+ [ fwgw)d
Z)/f(w)dw—f(Z)/g(w)dw} &z
_ —u/f 2)dz + (w —u/f
e dw/ )dzf/ ()def(Z)dz
:2(w—u)/yf(z) 2)dz -2 /f dz/ 2)dz=2(w—u)’ Py (f.9),

which proves the first equality in (4.1).
The rest follows in a similar manner and we omit the details. O

Suppose 7 C C is a piecewise smooth path from z(a) = u to z(b) = w and
f v — C a continuous function on . Define the quantity:

2

4 P =g [ = o [ e

_ 1 ,U,L/ 2) |dz|
¢ v

L)y
Theorem 4. Suppose v C C is a piecewise smooth path parametrized by z (t), t € v
from z(a) = u to z (b) = w with w # u. If f and g are continuous on =, then

g?
('V)| [

Proof. Taking the modulus in the first equality in (4.1), we get

[([we=smnee—gw)in)

) (g (=) - g (w)) dw' dz] =

|dv| > 0.

‘We have:

(4.3) D (< (£ D] 1Py (9,902

1
|D’Y(fvg)|: 2
2w — ul

ST 3
2w v

Using the Cauchy-Bunyakovsky-Schwarz integral inequality, we have

[0 - £ @) 66 - g ) dul

<( [ —f(w)Ide>l/2 ( [ls) =g |dw|)1/2,
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which implies that
A

2|w ul® /(/'f w)l’ 'dw|>1/2 (/ 19 (2) =g (w)[? dw) |dz|

=: B.
By the Cauchy-Bunyakovsky-Schwarz integral inequality, we also have

[(fire-rwr |dw|)l/2 ( / 9()— g (w)P |dw|) |il|
< ( / ( [ = |dw|)1/2] |dz|)

: (/ ([l -stwPiaol) Tw)
SVAVECEEE) ldzl)m (f (196 orawr) )™

which implies that

1/2
(4.4) < (/ ||dw|) |dz|)
2|w u| ¥
1/2
(/ (/ 19() — g (w)]? dw) dz|) |
Now, observe that

5 [ ( [ - () vl ) a2
/(/ (|f< )2~ 2Re (£ (2) () + I ()P |dw|> a2

= ) et
L sl = 2e ([ £ @1l [ TThaud) £ [ 1 )P b

20) [ 17 () o - 2Re</; st (f £ |dw|)>

[ ) e = [ £ |dz] 262 (7) P, (1.7)
and, similarly

(46) / ( / 9) = 9 )l ) 1@ =26 ()P, (9.9).

1/2
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Making use of (4.5) and (4.6), we get

< oo RO P T R )P (09
2 =
= W_(Vu)' [Py (1. 1)) 1Py .90
which proves the desired result (4.3). O
Remark 1. For g = f we have
2

an DD =g [P (5 [ 1e)

v
and by (4.8) we get

42( )

(48) Dy (1D < P (1)

For g = f we have

49) D, (f,]) = ﬁ/mzn?dz_

~

1 1
w—u[Yf(Z)dzw—u[Yf(z)dz
and by (4.8) we get

2
(4.10) D, (5.0 < P (1)
lw —ul
‘We have

Theorem 5. Let f and g be analytic in G, a domain of complex numbers and
suppose v C G is a smooth path parametrized by z (t), t € [a,b] from z(a) = u to
z(b) =w and 2’ (t) # 0 fort € (a,b). Then we have

(517 P 1ael) " (10 @R ael)

1/2
3 (L1 () |dz] g () |dz|
(4.11) |D, (f,9)| < %62 () £(7) ng(u) f(w), ) ( )

L1 @R 1aE) " (b P )
i 1 () = [ (w) and g{w) = g (w),

where € () := L0 >,

Proof. From (3.3) we have

0< P, (1.7) < 240 / ()

T
and

1
0<P,(9.3) < 50 0) [ Id () Il
Y

which together with the inequality (4.3), produce the first inequality in (4.11).
The rest follows in a similar way and we omit the details. (Il
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