ON SOME ¢ CAPUTO FRACTIONAL CEBYSEV LIKE
INEQUALITIES FOR FUNCTIONS OF TWO AND THREE
VARIABLES

DEEPAK B. PACHPATTE

ABSTRACT. In this paper we obtain some 1) Caputo fractional Cebysev like
inequalities. Some new CebySev type inequalities involving functions of two and
three variables using 1) Caputo fractional derivatives definition are obtained.

1. INTRODUCTION

P.L. Cebysev in the year 1882 has proved the following interesting inequality:

b b b
bia/f(x)g(l“)dfv— bia/f@)dx bia/g(lﬂ)d:lj
< 25 6= 0 1 e -

where f, g are absolutely continuous functions defined on [a, b] and f’, ¢’ € Lla,b].

In last few decades many researchers have obtained various extensions and gen-
eralizations of above inequalities using various techniques see [9, 10]. Study of
inequalities have attracted the attention of researchers from various fields due to
its wide applications in various fields [5, §].

During last few years the subject of Fractional Calculus has been developed
rapidly due to the applications in various fields of science and engineering. Various
new definitions of fractional derivatives and integrals have been obtained by vari-
ous researchers depending on the applications such as Riemann liouville, Caputo,
Saigo, Hilfer, Hadmard, Katugampola and other See [2, 3, 6, 12]. Many results on
study of mathematical inequalities using various new fractional definitions such as
Conformable and generalized fractional integral were obtained in [4, 13]. Recently
in [7, 11, 14] the authors have obtained the results on Cebysev inequalities using
various fractional integral and derivatives definitions.

In [6] fractional derivative and integrals of a functions with respect to another
functions are defined. Recently in [1, 16] authors have studied the 1) Caputo and
v Hilfer fractional derivative of a function with respect to another functions and
its applications.
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Motivated from the above mentioned literature the aim of this paper is to obtain
1 Caputo fractional Cebysev inequalities involving functions of two and three
variables.

2. PRELIMINARIES

Now in this section we give some basic definitions and properties which are used
in our subsequent discussions. In [6, 12] the authors have defined the fractional
integrals and fractional derivative of a function with respect to another function
as follows.

Definition 2.1. [1, 6] Let I = [a,b] be an interval, « > 0, f is an integrable
function defined on I and v € C'(I) an increasing function such that ¢’ (z) # 0
for all x € I then fractional derivative and integral of f is given by

e / (¢ () f (1) dt
and

D)= (e ) L@

1 1 d\" . / o
“ o (Foa) / U () (6 (@) = ()" (0,

respectively. Similarly right fractional integral and right fractional derivative are
given by

s / W (@) - o @) ) dr
and

Dy f (x) = (—w%m)%)n L7 ()

1 1 d\" r / o
“T(n—a) (Wx)%) a/Wﬂ(W)—w(x)) £ () dt.

In [1] Almedia has considered a Caputo type fractional derivative with respect
to another function
Definition 2.2. [1] Let @ > 0, n € N, [ is the interval —co < a < b < o0,
f,v € C™(I) two functions such that 1 is increasing and ¢’ (x) # 0 for all x € I.
The left ¢)-Caputo fractional derivative of f of order « is given by

CDOYf (z) = [TV (wfl(x)%yf@)’
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and the right ¥-Caputo fractional derivative of f is given by

CDYVF (x) = I (— w,l(x) %)nf ().

For given o ¢ N
DS ) = iy [V O @@ =00y g
and
CDa,w _ 1 r / . n—a—=1/ 1\n r[n]
) = o [V O 0= e @y g g
In particular when « € (0,1) then
‘DY f(a) =

and

1

D) = F

/ (W (t) = ()™ f/(t)dt.

a

In [15] the author has defined the 1 fractional partial integral with respect to
another functions as
Definition 2.3. Let 0 = (a,b) and o = (a3, a9) where 0 < a3,y < 1. Also
put I = [a, k] x [b,m] where a,b and k, m are positive constants. Also let ¢ (.)
be an increasing positive monotone function on (a, k] x (b, m] having continuous
derivative ¢'(.) on (a, k] x (b,m]. Then the fractional partial integral is

B = Tyt | [ VOV
(W () =¥ ()" (¥ (y) — ¥ (t)* " dtds.

The Caputo fractional partial derivative is defined as follows
Definition 2.4. Let § = (a,b) and a = (v, ap) where 0 < ag, a5 < 1. Also put
I = [a, k] x [b,m] where a,b and a,b are positive constants. Also let ¢(.) be an
increasing function on (a, k] x (b, m] and ¥'(.) # 0 on (a, k] x (b, m]. The 1) Caputo
fractional partial derivative of functions of two variables of order « is given by

1 o
Y'(s)Y'(t) Oyox

CDg‘"pu (x,y) = [02—04;1# ( ) u(z,y).
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We use the following notation:

0%y,
C noy v
D = —
0 U(l’,y) 8¢yaa¢x" (xvy)
. We define the norm for a function of two variables as follows
|“D5e || =sup |D¥ s ()

Similarly as in Definition (2.3) and (2.4) we define the 1 fractional partial inte-
gral with respect to another functions and ¢ Caputo fractional partial derivative
of functions of three variables as follows
Definition 2.5. Let © = (a,b,¢) and a = (ay, a9, ag) where 0 < g, a9, a3 < 1.
Also put I = [a, k| X [b,m] x [¢,n] where a, b, c and k, m,n are positive constants.
Also let (.) be an increasing positive monotone function on (a, k] x (b, m| X [¢, n]
having continuous derivative ¢'(.) on (a, k] x (b,m] x (¢,n]. Then the fractional
partial integral is

e [ [ [
(W (x) =¥ ()™ (W (y) = (1) (¥ (=) — ¢ (r)* " drdtds.

Definition 2.6. Let 0 = (a,b,¢) and o = (aq, ag, a3) where 0 < ag,an, a3 < 1.
Also put I = [a, k] x [b,m] x [¢,n] where a, b, c and k, m,n are positive constants.
Also let 9(.) be an increasing function on (a, k] x (b,m] x (¢,n] and ¢'(.) # 0 on
(a, k] x (b,m] x (¢,n]. The ¢ Caputo fractional partial derivative of functions of
two variables of order « is given by

. . 1 o3
C’Daﬂl) _ 13*06710 ‘
o (0.2 = Lo T\ Gy 0 () =g ) 1)
We use the following notation:
O3y
CDOMZJ — P )
(C] U(Z‘,y,Z) a¢zaa¢yax°‘ (I’,y,Z)

We define the norm for a function of three variables as follows

|“D5* || =sup |°Dg"f (2.9.2)|.

3. CEBYSEV INEQUALITY INVOLVING FUNCTIONS OF TWO VARIABLES

Now we give the 1) Caputo fractional Cebysev inequality involving functions of
two variables as follows:
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Theorem 3.1. Let f, g : [a,{]x[b,m] — R be a continuous function on [a, {] x [b, m]

92 20 . .
and 071 979 _ exists continuous and bounded on [a,l] x [b,m] and o =
W Y* Oy T Oy Y0y
(Oél, 062)

[ [ @ matan - 56t it + Gl sl s

G(f(z,y) = 5 [f(a,y) + flz,m) + f(z,0) + f(L,y)]

> = po| =

[f(a,b) + fa,m) + f(I,b) + f(I,m)]

and
8201f _ 1
1 (Gt @) = o
0 (t,s) dsdt

x [ / / o (0 (5) () — V)™ Wly) — (s 5o

= [ @ ) ) =) m) = o) G ) s

[ [ 00 000 - s ) - v G s ds

I m
e [ e ) = v om) - v g

(t,s)dsdt]| .

Proof. From the given hypotheses for (z,y) € [a, (] x [b, m] we have

m / /y W (8 (s)
A N

W) =) ) 6D g

(t,s)dsdt
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)

[ Ops® >0 j
L et — et [ 8L
- / () i)~ w0 | % () = 5 (1)
= Wl - F D
:f(x>y>_f(a7y) _f(va)—i_f(a?b)'
Similarly we have
1 rr
vl AL
0
(W) = O () — V) G (1) dade
:—f(x,y)—f(a,m)—i—f(x,m)—l—f(a,y),
) oo
() = ()" () = 9(0) " G ()
= —f(@,y) = f(1,0) + [ (x,0) + f(L,y),
ar1—1 az—1 82af
(WD) = 0)" " Wlm) o) G (o1 d

= f(m,y) +f(lab) - f(xab) - f(lvy)
Adding the above identities we have
1f(z,y) — 2[f(a,y) + flz.m) + f(2.b) + F(L,y)]
+ [fa,b) + fla,m) + f(1,b) + f(l,m)]
1
(o) T ()
[ / / e S ) (W) = () (¢, )dsd

8¢8aa¢,to‘
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z d
[ v e @ = @) ) = ) g s
[ / / ay—1 az—1 aZaf
- [ v Ov @ o - e o) @ e e) T G s
z b
w [ [ov o -vo wm - eer 5wl .
o (3.6)
Similarly we have
dg(x,y) = 2[g(a,y) + g(z,m) + g(x,0) + g(I,y)]
+ [9(a,b) + g(a,m) +g(1,b) + g(I, m)]
1
a F (Oél)F(OéQ)
[//@%wwwﬂw@wwum“1@Mw—¢@»”1%i2ﬁaﬁmwt
a b
[ [ Ov @@ -vor e m - et g2 s

2c

[ [vOv e @0 - @) -0 s

6’¢sa8¢,ta

-
+//¢wov@ﬂwmwawnlwomw@wml%izﬂw@wﬁl
(3.7)
From (3.6) and (3.7) we have
o) = ) = 11 (o). 35)
for (x,y) € [a,1] x [b,m]. Similarly we have
o)~ Glaton) = 111 (50 en)) (39)

for (z,y) € [a,l] x [b,m].
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Multiplying (3.8) by g(z,y) and (3.9) by f(x,y) and adding them

2f(x,y)9(z,y) — g(x, y)G(f(2,y)) — f(2,y)G(g(7,y))

B 1 aZaf 1 82049
= ot (G tts)) e (Gon(t9) . 610

Integrating (3.11) over (z,y) € [a,l] x [b, m] we get

| [ 2ttt - ole )6 @) - £ )Glale, ) dyds
% f L g
a//|: (5wy“3w$"‘ >) 9@.u) + gf @)l (%y‘law"( ’y))}
(3.11)
From the properties of modulus we have
o2 f 1
# (g ) | < rrre
[ [0 @0 =0wr wm - @) |5 ) dsa
<@ W) = v @)™ @ m) = v ) D5, (3.12)
and we have
0%g 1
’H (&,,yaawxa oY )‘ ~ I'(an) I' ()
I m
[ [vw " ) = () | T 09 s
a b
< (W) = (@) (@ m) —v ) ||'D5g| - (3.13)

From (3.11), (3.12) and (3.13) we have

J

a

/ {f(x,y)g(fc,y) - % [G(f(z,9))g9(x,y) + G(g(x,y)) f(, y)]} dydz

m
b

m

L / |1 (5t ot [t (st L0

a b
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l

1 [T 1
<< {loC. D | v =7
Efa b/ {F(Oﬂ)r(%)
r 7 ! / ay;—1 as—1 82af
A [ 0w @ @@ =) @) =) G )| ds
La b
+ 1/ (2, 9)
[l m
<[ [ oo -0 e m - v
La b
0%
lﬁwsaﬁwta (t,s) dsdt] } dydz
< S @)~ (@) (b (m) - v ()
< [ [ Lt |op52s|_+ 10wl |05 _] v (314)

a b
which is required inequality.
2c 2
Theorem 3.2. Let f, g, G(f(2,9)), G(g(f(2.9)), g-ysgizm: aryssge e as in The-
orem 3.1 then

//{f(%y)g(x,y) —[G(f(z,9)9(z,y) + G(g(z,y)) f(z,y)

~G(f(z,y))G(g(z,y))]} dydx

(
AW W)~ @)™ @ (m) — 9 ()

for (z,y) € [a,l] x [b,m].
Proof. From (3.9) and (3.10) we have

]

CDg“ngoo . (3.15)

o) = 65 ) = 11 (5t e (3.10)
and
o) = Glole) = 11 5ol (on)). (3.17

for (z,y) € [a,l] x [b,m].
Multiplying left hand side and right hand side of (3.16) and (3.17) we have

f@,y)g(w,y) = [f (x,y) Glg(x,y)) + gz, y)G(f(2,y))]

1 aQaf 820(9
_ 1 , 1
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Integrating (3.18) over [a, ] x [b,m] and from the properties of modulus we get

I m
//Umwmww«wmmwmw+mmwmwm
b

S|

—G(f(z,y))G(g(z,y))} dydz|

I m
1 82049
16 A\ oo ea,0n . 1
a b

Now using (3.13), (3.14) in (3.19) we have

f(@,y)g(z,y) — [G(f(2,9)g9(z,y) + G(g(x,v)) f(z,y)

~G(f(z,y))G(g(z,y))]} dydx

< B0 -0 @) () - v 6))

which is required inequality.

‘D || |pivel| o 320

4. CEBYéEV INEQUALITY INVOLVING FUNCTIONS OF THREE VARIABLES

Now in our result we give the 1) Caputo fractional Cebysev inequality involving
functions of three variables. We use some notations as follows

Ap (,0,0)) = [p (a,b,) + plb,m, )]
— P (usb.) 4 p () + () +p (b, )]
i[p(avc)—l—p(kvn)+p(avn)+p(kvc)]
411[ (a,b,w) + p (k,m, w) +p (k,b,w) 4+ p(a,m,w)]
45 Ip(a,0,w) + p(h,v,w)
+%[ (u, b, w) + p (u, m, w)]
+ 5[ (,v,¢) +p v, m)] (4.1)

and

B ( O%p (u,v,w)>

3¢wa8¢va8¢ua
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1 nan o B
T T (o) T (a) T (a3) /b//w () () (1) (¥ (u) — o (1))

X (0 (0) =6 () (0 ) — 0 (1)) WSW< 5, ) didsds
(o T (ag) T (o) / / / v (r () = ()"

X () = 0 ()™ (@ ) = 0 (1) WSW (r, 1) didsdr

T / /m / 0 ()4 0) (0 ) = ()

0 () = 60" (0 ) = 6 (O Gt () dudsr

- T / [ [vowevmwm-smm

0 ) = 0 0 0) = 00 G T (st s

T / /m / U )4 0 (0 0) — 6 ()"

0 () = )" (0 ) = 0 0) (st s

- T / [ [ oo owm - v

0 ) = 0 6 0 0) = 0 (0)" B () dudsar

T / / / U ()0 (0 () = b ()

< (0= B O (0 0) = O Gt o () dudsar
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83ap

X (¢ (m) = () (¥ (n) =4 (1) Dot Dy s Dy

(r,s,t)dtdsdr.  (4.2)

Now we give our next result as

Theorem 4.1. Let f,g : [a, k] X [b,m] X [¢,n] — R be a continuous function on
[a,l] x [b,m] and o tagzzz o 0 3y tag:z;‘f e exists and continuous and bounded on
[a, k] x [b,m] X [¢,n]. Then

k n
/ / u, v, w)g(u, v, w)
C

[f (u,v,w)A (g(u, v, w)) + g(u,v,w)A (f(u,v, w))]] dwdvdu

\3

NN

IN

g\”CD'H

(k) = (@)™ (¢ (m) = (0))™ (¥ (n) — ¢ (c))™

(¥
/ lg(u, v, w)]
b

C

cD‘“/’fH + | f(u,v,w)|

°Dg wg” } dwdvdu, — (4.3)

where A, B are as given in (4.1), (4.2).
Proof. From the hypotheses we have for u,v,w € [a, k] X [b, m] X [c, n]

1 u ovow , | | N
T (o1) T (a2) T (e3) a/b/c/¢ (W ()0 () (¢ (w) — o ()

az—1 az—1 a3o¢f
(¥ (v) =¥ (s)) (¢ (w) = (1)) W(T, s, t)dtdsdr
1 [/ / / ai1—1
- W//‘” () (5) (8 ) = ()
(¥ (v) = (s)" 5’¢fa(;£ra (r,s,t)| dsdr
1 u v / / .
- m//w () (5) (8 ) = 4 ()
(4 (0) — ) ()" %fazi (s w)dsdr

1 I ! / a1—1
- W//¢ ("' () (¥ (u) — 9 ()
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(¥ (v) = ()™ af—ai (r, s, c)dsdr

- r(zl) /W (r) (¢ (u) = (r))™ %(r, 5, w) bdr
T Ty <1al) / () () (u) — o () ! (,f;f (r.0)| dr
- - (LI) / () (@ (u) — o ()" %_f (r, v, w)dr
T (1041) /w’ (r) (¢ (w) — o (r))> " g::; (r,b,w)dr
. (1%) / () (6 (w) = () aawf (r,v,)dr

* (Ll) / W (r) (¢ (w) = (r)™ 5;; (r,b, c)dr

r
= f(r7v’w)|z_ f(hbvw)':;_ f(T>U7C)|Z+ f(TabaC)|Z
f(u,v,w)—f(a,v,w)—f(u,b,w)—l—f(a,b,w)
u,v,¢) + f(a,v,¢)+ f(u,b,c)+ f(a,b,c).

|
-

Thus we have

f(u,v,w) = f(a,v,w)+ f(u,bw) — f(a,b,w)
+ f (u,v,¢) — f(a,v,¢) — f(u,b,¢c) — f(a,b,c)

u v ow

1 / / , R
[ ()T (ag) T (a) a/b/c/w (r)v' (s) " (1) (¥ (u) =4 (1))
C!2—1 Oég—l 83af
(Y (v) =¥ ()™ (W (w) =¥ (1)) m(r, s, t)dtdsdr, (4.4)

Similarly we have

f(uv,w) = f(u,v,n) + f(a,v,w) + f(u,b,w)
+ f(a,b,n) — f(a,b,w) — f(a,v,n) — f (v,b,n)

u v on

1 ’ / / o r a1—1
T / / / ) ()0 (1) (0 () — 6 (1)
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8304 f

(W (v) = (8))a2_1 (¥ (n) — (t))a3_1 m(r, s, t)dtdsdr,

f(u,v,w) = f(u,m,w)+ f(u,v,¢c)+ f (a,m,c)
+ f(a,v,w) — f(u,m,c) — f(a,m,w) — f(a,v,c)

u m w

1 ' ! ! — r a;—1
T ()T (a) T (as) a/v/c/¢ (r)Y' (s) " (t) (¢ (u) — 2 (1))
az—1 az—1 83“f
(¥ (m) = (s)) (¥ (w) = (1)) m(r, s, t)dtdsdr,

fu,v,w) = f(k,s,t)+ f(k,bc)+ f(u,v,¢)
+ f (u, b,w) — f (k,v,¢) = f(k,byw) — f(u,b,c)

1 E v ow / / | N
_ F(a1)F(a2)F(a3) u/b/c/w (T)w (3)¢ (t) (¢ (k) _w(r))

a3af
8¢t°<8¢sa8wra

(1 (V) — 1 () (¥ (w) — o () (r, s, t)dtdsdr,
f(u,v,w) = f(u,m,w)+ f(u,v,n)+ f (a,m,n)
+ f(a,v,w) — f (u,m,n) — f(a,m,w) — f(a,v,n)

u m n

1 ' ' ! a1—1
" ['(ap) T (a2) I' (a3) a/v/w/d’ (r)' ()" (t) (¢ (u) — 9 (1))
az—1 az—1 aSQf
(¥ (m) =1 (s)) (¥ (n) = (1)) m(h s, t)dtdsdr,

fu,v,w) = f(r,m,t) + f(u,v,0) + f (K, s,t)
+ f(k,m,c)— f(k,m,w)— f(k,v,c)— f(u,m,c)

k m w

1 / ' ! a1—1
T T (@) T (02) T (ag) u/v//%b (M (5) ¥ () (¥ (k) — ¥ ()
az—1 os—1 83af
(1 (m) — v (s)) (¢ (w) = (1)) m(r, s, t)dtdsdr,

f(uv,w) = f(kv,w)+ f(k,b,n)+ f(u,v,n)
+ f(u,b,t) — f(k,u,n) — f(k,b,w) — f (u,b,n)

(4.7)
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1 E v n / I | N
+ I'(a1) T () T' (as) u/b/w/¢ (r) (s) ' (t) (1 (k) — ¥ (1))

as—1 az—1 af}af
(¥ (v) =9 ()™ (¥ (n) =¥ (1) Byt By 57 Byr®
and

f(u,v,w) = f(k,m,n)+ f(kv,w)+ f(u,m,w)

+ f(u,v,n) — f(k,m,w) — f(k,v,n) — f(u,m,n)

(r,s,t)dtdsdr (4.10)

k m n
1 / / / _ oa1—1
et ] o e oes -ee)
as—1 az—1 aSaf
(¢ (m) =4 ()™ (¥ (n) =¥ (1)) m(ﬁ s, t)dtdsdr.  (4.11)
Adding the above identities we have
B 1 83af
f(u,v,w) —A(f (u,v,w)) = §B (8¢w0‘8¢v0‘8¢ua (u,v, w)) : (4.12)
for (u,v,w) € [a, k] x [b,m] x [c,n].
Similarly we have
(1, 0, 0) — A (uvw))—13< 0 (uvw)) (4.13)
g Y Y g ) ) - 8 awwaaw’vaad}ua ) ) ) *

for (u,v,w) € |a, k] x [b,m] X [c, n].
Now multiplying (4.12) and (4.13) by g(u,v,w) and f(u,v,w) respectively and
adding them we get
21 (w0, w) g (1, 0,0) — g (1,0, w) A (f (1, 0,)) — f (,0,0) A (g (1, 0,1))
1 a3af
- ég (u7 v, w) B <8¢w°‘8¢v‘18¢u“ (U, v, U)))
a3ag

8¢w0‘8¢v“8¢u0‘

+ éf (u,v,w) B ( (u,v,w)> : (4.14)

Integrating (4.14) over [a, k] X [b,m] X [¢,n] we have

[ ][ v g o) =5l e vw) A @ ow)
g (u,v,w) A(f (u,v,w))]] dwdvdu

aSaf
8ww°‘6wv°‘8wua

[g (u,v,w) B ( (u,v, w))
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—l—f(u,v,w)B( 09 (u,v,w))}. (4.15)

8¢w0‘8¢v0‘8¢u0‘
From the properties of modulus we have

a3af
B
’ (8¢waﬁ¢va8¢ua (u-0, w)) ‘

k m n

< / / / W O () () (@ (k) — o (1) ™ (9 (m) — 0 ()™

X (1 (n) = (£)™" W (r, s, t) dtdsdr
< (W () = (@)™ (& (m) =¥ ()™ (v (n) = v ()™ |“Dgs| _ (4.10)
and
dg
‘B (3ww°‘3w"‘3wu“ (u’v’w) ’

k m n

Sa//c/d/ ()" ()" (&) (¢ (k) =& (r)™ 7 (¥ (m) =4 ()™

az—1 83049
X (¢ (n) = (t)) Dot Dy s Dyt

< (¢ (k) = (a)™ (¢ (m) = (0))™ (¢ (n) = ¥ ()™

Now by substituting the values from equation (4.16) and (4.17) in (4.15) we get
the required inequality (4.3)

63o¢f 83ag .
Theorem 4.2. Let f, g, B0, 500, and B0, 50 be as in Theorem 4.1. Then

(r,s,t) dtdsdr

CDgWgHOO. (4.17)

n

/f/ (w,0,w) g (u,0,0) — [A(f (u,0,0)) g (u,0,0)
a b

c

A(g( w)) [ (w,0,w) = A(f (u,0,w)) A(g (u, v, w))| dwdvdu
= {0 () — (@)™ (@ (m) — ¥ ()" (& (n) — 0 ()}

- 64
|“pas] el .. (418
for (r,s,t) € [a, k] x [b,m] X [¢,n] and A, B are as given in (4.1), (4.2).
Proof. From (4.12) and (4.13) we have
F(w0w0) — A(f (0, w)) = 13 O () (4.19)
T T 8¢wa8¢va0¢u0‘ T '
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and

1

g (u,v,w) — A(g (u,v,w)) = = ( 9™y

%waﬁwvaawu@

8

for (u,v,w) € [a, k] x [b,m] x [c,n].
Multiplying left hand and right hand side of equation (4.19) and (4.20) we have

f (u,v,w)g (u,v,w) - [f (u7vvw) A(g (u7v7w>>
+ g (u,0,w) A(f (w0, w)) = A(f (u,0,w)) A(g (u,v,w))]
_ éB ( of (u,v,w)) B ( 0™ (u,v,w)) L 421)

dpwa@wva@wua 8¢wa8¢va8¢ua

(u,v,w)) . (4.20)

Integrating over [a, k] X [b, m] X [¢,n] and from the properties of modulus we have

k m n

[ [ 0w g ew 1 0w g o)

+g (u,v,w) A(f (u,v,w)) — A(f (u,v,w)) A(g (u,v,w))]]| dwdvdu

kK m n
1 aSaf
< — B
64 ///‘ (8¢w0‘8¢v°‘8¢,ua (u,v,w)>
a b c

aBaf
B . 4.22
(8¢wa8¢va6wua (u,v, w)) ‘ dwdvdu (4.22)

Using (4.16) and (4.17) in (4.22) we get the required inequality (4.18).

Remark: In this paper we have obtained the Cebysev inequality using Caputo
fractional deriative of a function with respect to another function for funtions of
two and three variables. If we put different values for ¢(z) then it reduces to var-
ious types of fractional Cebysev inequalities such as Riemann Liouville fractional,
Hadmard Fractional and Erdelyi-Kober fractional inequalities.

If we put ¢(z) = x then the above inequalities given in the theorems reduces to
Riemann-Liouville type fractional Chebysev inequality.

If we put ¥(z) = Inx then the above inequalities given in the theorems reduces to
Hadmard fractional type fractional Chebysev inequality.

If we put 1(z) = 27 then the above inequalities given in the theorems reduces to
Erdelyi-Kober type fractional Chebysev inequality.
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