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Abstract

In this paper, double integral calculus via the diamond-φh dynamic integral for
two-variable functions on time scales is introduced to prove Hermite-Hadamard
type integral inequalities for the generalized class of φh-convex functions. Also,
a two-dimensional Hermite-Hadamard-type integral inequality for this class of
convex functions on time scales is established. Our work generalizes and refines
proofs of corresponding results for some known classes of functions.

1 Introduction

The inequality

(b− a)f

(
a+ b

2

)
≤
∫ b

a

f(x)dx ≤ (b− a)
f(a) + f(b)

2
, a, b ∈ R, a < b, (1.1)

holds for any convex function f defined on R. It was first suggested by Her-
mite in 1881. But this result was nowhere mentioned in literature and was not
widely known as Hermite’s result. A leading expert on the history and theory of
convex functions, Beckenbach [1], wrote that the inequality (1.1) was proven by
Hadamard in 1893. In general, (1.1) is now known as the Hermite-Hadamard
inequality. It has several extensions and generalizations for univariate, bivari-
ate and multivariate convex functions and its classes on classical intervals(see
Dragomir [5]) with recent extensions to time scales(see [4, 10, 13]).

The concept of the theory of time scales was initiated by Stefen Hilger [9] in
order to unify and extend the theory of difference and differential calculus con-
sistently. In this theory, the delta and nabla calculus for single and two-variable
functions are introduced (see [2, 3, 8]). A linear combination of these delta and
nabla dynamics, the diamond-α calculus on time scales was developed by Sheng
et al. [12]. Since the advent of this notion, several authors have extended many
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classical mathematical inequalities to time scales via the diamond-alpha dy-
namic calculus for univariate, bivariate and multivariate functions (see [4, 10,
11, 13]).

Nwaeze [10], employed Theorem 3.9 of Dinu [4] for a univariate function on time
scales to prove the following Hadamard’s type result, via the combined diamond-
α dynamics, extending (1.1), for functions defined on a rectangle, that are con-
vex on the coordinates.

Theorem 1.1.[10] Let a, b, x ∈ T1, c, d, y ∈ T2, with a < b, c < d and f : [a, b]×
[c, d] → R be such that the partial mappings fy : [a, b] → R, fy(u) := f(u, y)
and fx : [c, d] → Rfx(v) := f(x, v) defined for all y ∈ [c, d] and x ∈ [a, b], are
continuous and convex. Then the following inequalities hold

1

2

[
1

b− a

∫ b

a

f(x, sα) �α x+
1

d− c

∫ d

c

f(tα, y) �α y

]

≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y) �α x �α y

≤ 1

2(b− a)(d− c)

∫ b

a

[(d− sα)f(x, c) + (sα − c)f(x, d)] �α x

+
1

2(b− a)(d− c)

∫ d

c

[(b− tα)f(a, y) + (tα − a)f(b, y)] �α y.

(1.2)

where tα = 1
b−a

∫ b
a
t �α t, and sα = 1

d−c
∫ d
c
s �α s.

Recently, the authors [6] introduced the time-scaled version of some classes of
convex functions, including a more generalized class of φh-convex function on
time scales thus;

Definition 1.1. [6] Let h : JT ⊂ T → R be a nonzero non negative function
with the property that h(t) > 0 for all t ≥ 0. A mapping f : IT → R is said to
be φh-convex on time scales if

f(λx+ (1− λ)y) ≤
(

λ

h(λ)

)s
f(x) +

(
1− λ

h(1− λ)

)s
f(y), (1.3)

for s ∈ [0, 1], 0 ≤ λ ≤ 1 and x, y ∈ IT.
Remark 1.1.

(i) If s = 1 and h(λ) = 1, then f ∈ SX(IT), i.e, f is convex on time scales
(see [5, 12]).

(ii) If s = 1, h(λ) = 1, where λ = 1
2 , then f ∈ J(IT) is mid-point convex on

time scales (see [6]).

(iii) If s = 0, then f ∈ P (IT) is P -convex on time scales (see [6]).
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(iv) If h(λ) = λ
s
s+1 for λ > 0, then f ∈ SX(h, IT) is h-convex on time scales

(see [6]).

(v) If s = 1 and h(λ) = 2
√
λ(1− λ) for λ ≥ 0, then f ∈ MT (IT) is MT -

convex on time scales (see [6]).

More recently, Fagbemigun et al.[7] proved the following Hadamard’s type result
for the new class of φh-convex functions earlier introduced by the authors [6], for
a univariate function to obtain several generalizations of the Hermite-Hadamard
inequality (1.1) on time scales.

Theorem 1.2. [7] Let f : IT → R be a continuous, nondecreasing φh-convex
function on IT, a, b, t ∈ IT, with a < b. Then

f(xφh) ≤ 1

b− a

∫ b

a

f(t) �φh t ≤
b− xφh
b− a

f(a) +
xφh − a
b− a

f(b), (1.4)

where xφh = 1
b−a

∫ b
a
t �φh t.

Remark 1.2. (i) When φh = α in (1.4), Theorem 3.9 of Dinu [4] is obtained.

(ii) Setting φh = 1
2 and using the relation (Q) of [7] in Theorem 1.2 gives inequal-

ity (5.1) of Dinu [4], which is the middle point Hermite-Hadamard inequality on
time scales.

(iii) The nabla integral version of Theorem 1.2 is obtained if we choose φh = 0.

It is the purpose of this paper to extend inequality (1.1) to time scales via the
combined diamond-φh dynamics, for a function of two variables.

2 Preliminaries

In the sequel, we shall need the following new definitions recently introduced in
[8].

Let T1 and T2 be two time scales with T1×T2 = {(x, y) : x ∈ T1, y ∈ T2} which
is a complete metric space with the metric d defined by

d((x, y), (x
′
, y

′
)) = ((x− x

′
)2 + (y − y

′
)2)

1
2 , ∀ (x, y), (x

′
, y

′
) ∈ T1 × T2.

Let σi, ρi, (i = 1, 2) denote respectively the forward jump operator, backward
jump operator, and the diamond-φh dynamic differentiation operator on Ti.
Definition 2.1. Let f be a real-valued function on T1 × T2, h : JT ⊂ T→ R a
nonzero non negative function with the property that h(t) > 0 for all t ≥ 0 . f

is said to have a partial �(φh)1 derivative ∂f(t1,t2)
�(φh)1

t1
(wrt t1), at (t1, t2) ∈ T1 × T2,

if for each ε > 0, there exists a neighbourhood Ut1 of t1 such that∣∣∣( λ
h(λ)

)s
1
[f(σ1(t1), t2)− f(m, t2, )]µt1m

+

(
1− λ

h(1− λ)

)s
1

[f(ρ1(t1), t2)− f(m, t2)]νt1m− f�(φh)1 (t1, t2)µt1mνt1m

∣∣∣∣∣
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< ε|µt1mνt1m|, (2.1)
for s ∈ [0, 1], 0 ≤ λ ≤ 1 and for all m ∈ Ut1, where Ut1m = σ1(t1) − m,
νt1m = ρ1(t1)−m.

Definition 2.2. Let f be a real-valued function on T1×T2 and h : JT ⊂ T→ R
an increasing function with the property that h(t) > 0 for all t ≥ 0. f is said

to have a ”partial �(φh)2 derivative” ∂f(t1,t2)
�(φh)2

t2
(wrt t2), at (t1, t2) ∈ T1×T2, if for

each ε > 0, there exists a neighbourhood Ut2 of t2 such that∣∣∣( λ
h(λ)

)s
2
[f(t1, σ2(t2)− f(t1, m)]µt2m

+

(
1− λ

h(1− λ)

)s
2

[f(t1, ρ2(t2)− f(t1, m)]νt2m− f�(φh)2 (t1, t2)µt2mνt2m

∣∣∣∣∣
< ε|µt2mνt2m|, (2.2)

for s ∈ [0, 1], 0 ≤ λ ≤ 1 and for all n ∈ Ut2, where Ut2m = σ2(t2)−m,
νt2m = ρ2(t2)−m.

These derivatives are also denoted by f�(φh)1 (t1, t2) and f�(φh)2 (t1, t2) respec-
tively.

Before we define the double diamond-φh dynamic integral, we shall employ the
following remark of [2].

Remark 2.1.[̇2] Let f be a real-valued function on T1×T2. If the delta (∆) and
nabla (∇) integrals of f exist on T1 × T2, then the following types of integrals
can be defined:

(i) ∆∆-integral over R0 = [a, b) × [c, d), which is introduced by using parti-
tions consisting of subrectangles of the form [α, β)× [γ, ∂);

(ii) ∇∇-integral over R1 = (a, b] × (c, d], which is introduced by using parti-
tions consisting of subrectangles of the form (α, β]× (γ, ∂];

(iii) ∆∇-integral over R2 = [a, b) × (c, d], which is introduced by using parti-
tions consisting of subrectangles of the form [α, β)× (γ, ∂];

(iv) ∇∆-integral over R3 = (a, b] × [c, d), which is introduced by using parti-
tions consisting of subrectangles of the form (α, β]× [γ, ∂).

Now let Ū(f) and L̄(f) denote the upper and lower Darboux ∆-integral of f
from a to b ; U(f) and L(f) denote the upper and lower Darboux ∇-integral
of f from a to b respectively. Given the construction of U(f) and L(f), which
follows from the properties of supremum and infimum, we give the following
definition.

Definition 2.3. Let f be a real-valued function on T1 × T2, h : JT ⊂ T→ R a
nonzero non negative function with the property that h(t) > 0 for all t ≥ 0 . If
f is ∆-integrable on R0 = [a, b)× [c, d) and ∇-integrable on R1 = (a, b]× (c, d],
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then it is �φh -integrable on R = [a, b]× [c, d] and∫
R

f(t, k) �(φh)1 t �(φh)2 k =

(
λ

h(λ)

)s ∫ ∫
R0

f(t, k)∆1t∆2k

+

(
1− λ

h(1− λ)

)s ∫ ∫
R1

f(t, k)∇1t∇2k, (2.3)

for all s ∈ [0, 1], 0 ≤ λ ≤ 1 and t, k ∈ JT.

Since Ū(f) ≥ L̄(f) and U(f) ≥ L(f), we obtain the following result.

Theorem 2.1. Let f be a real-valued function on T1 × T2, h : JT ⊂ T → R a
nonzero non negative function with the property that h(t) > 0 for all t ≥ 0 . If
f be �φh -integrable on R = [a, b] × [c, d], provided its delta (∆) and nabla (∇)
integrals exist, then

(i) If φh = 1, f is ∆∆-integrable on R0 = [a, b)× [c, d);

(ii) If φh = 0, f is ∇∇-integrable on R1 = (a, b]× (c, d];

(iii) If φh = 1
2 , f is ∆∆-integrable and ∇∇-integrable on R0 and R1

(iv) If φh = α, f is double �α-integrable on R = [a, b]× [c, d].

3 Two-dimensional Hermite-Hadamard type in-
equalities for φh-convex functions on the co-
ordinates

Consider the bi-dimensional time scale interval I2T : [a, b]IT × [c, d]IT in T2 with
a < b, c < d.

Definition 3.1. Let h : JT ⊂ T→ R be a non zero non negative function with
the property that h(t) > 0 for all t ≥ 0 . A monotonically increasing function
f : I2T → R on I2T is φh-convex on time scale co-ordinates if the partial mappings

fy : [a, b]IT → R, fy(u) := f(u, y), ∀ y ∈ [c, d]IT
and

fx : [c, d]IT → R, fx(v) := f(x, v), ∀ x ∈ [a, b]IT
are continuous and φh-convex.

Definition 3.2. Let h : JT ⊂ T→ R be a non zero non negative function with
the property that h(t) > 0 for all t ≥ 0 . A monotonically increasing function
f : I2T → R is φh-convex on time scale co-ordinates if the inequality

f(λx+ (1− λ)y, tu+ (1− t)v)

≤
(

t

h(t)

)s(
λ

h(λ)

)s
f(x, u) +

(
λ

h(λ)

)s(
1− t

h(1− t)

)s
f(x, v)
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+

(
1− λ

h(1− λ)

)s(
t

h(t)

)s
f(y, u) +

(
1− t

h(1− t)

)s(
1− λ

h(1− λ)

)s
f(y, v),

holds for s ∈ [0, 1], 0 ≤ λ, t ≤ 1 and x, y ∈ IT and (x, u), (x, v), (y, u), (y, v) ∈
I2T.

Thus the mapping f : I2T → R is φh-convex in I2T if the following inequality:

f(λx+(1−λ)u, λy+(1−λ)v) ≤
(

λ

h(λ)

)s
f(x, y)+

(
1− λ

h(1− λ)

)s
f(u, v) (3.1)

holds for all (x, y), (u, v) ∈ I2T, s ∈ [0, 1] and 0 ≤ λ ≤ 1.

We state and prove the following Lemma

Lemma 3.1. Every φh-convex mapping f : I2T → R on I2T is φh-convex on the
co-ordinates.

Proof. Suppose that the mapping f : I2T → R is φh-convex in I2T by (4.4).
Consider the partial mapping

fx : [c, d]IT → R, fx(v) := f(x, v).

Then for all s ∈ [0, 1], 0 ≤ λ ≤ 1 and f(u, v) monotonically increasing functions
on IT, we have

fx(λu+ (1− λ)v) = f

(
x,

(
λ

h(λ)

)s
u+

(
1− λ

h(1− λ)

)s
v

)
= f

((
λ

h(λ)

)s
x+

(
1− λ

h(1− λ)

)s
x,

(
λ

h(λ)

)s
u+

(
1− λ

h(1− λ)

)s
v

)
≤

(
λ

h(λ)

)s
f(x, u) +

(
1− λ

h(1− λ)

)s
f(x, v)

=

(
λ

h(λ)

)s
fxu+

(
1− λ

h(1− λ)

)s
fxv,

which shows φh-convexity of fx.

By a similar argument, the partial mappings
fy : [a, b]IT → R, fy(u) := f(u, y), is also φh-convex for all
s ∈ [0, 1], 0 ≤ λ ≤ 1 and f(v, r) monotonically increasing functions on IT goes
likewise and the proof is omitted.

Note that in some special cases, some co-ordinated φh-convex functions may not
necessarily be φh-convex on time scales.

With the aid of Lemma 3.1, we first discuss and establish a double integral
inequality of Hermite-Hadamard type for a φh-convex function on time scale
co-ordinates.

Theorem 3.1. Let h : JT ⊂ T → R be a non zero non negative function with
the property that h(t) > 0 for all t ≥ 0 . Let f : I2T → R be a continuous
and an integrable φh-convex function with respect to the function φh on the
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co-ordinates on I2T. Then for any a, b, c, d ≥ 0, with b > a, d > c and s ∈ [0, 1],

f(Mφh , Nφh) ≤ Iλ,t(a, b; c, d)

(b− a)(d− c)

≤
(

t

h(t)

)s
IM,y(a, b; c, d)

(b− a)(d− c)
+

(
1− t

h(1− t)

)s
IM,N (a, b; c, d)

(b− a)(d− c)

≤ 4Ix,y(a, b; c, d)

(b− a)(d− c)
, (3.2)

where Mφh =
∫ b
a
u �φh u and Nφh =

∫ b
a
v �φh v,

Iλ,t(a, b; c, d)

=

∫ b

a

∫ d

c

f(λx+ (1− λ)Mφh , ty + (1− t)Nφh) �φh y �φh x,

IM,y(a, b; c, d)

=

∫ b

a

∫ d

c

f

((
λ

h(λ)

)s
x+

(
1− λ

h(1− λ)

)s
Mφh , y

)
�φh x �φh y,

IM,N (a, b; c, d)

=

∫ b

a

∫ d

c

f

((
λ

h(λ)

)s
x+

(
1− λ

h(1− λ)

)s
Mφh , Nφh)

)
�φh x �φh y,

and

Ix,y(a, b; c, d) =

∫ b

a

∫ d

c

f(φ(x), y) �φh x �φh y.

Proof. (A) To show the first inequality in (3.2).
We have that,

f(Mφh), Nφh)) ≤ f

(
1

b− a

∫ b

a

[λx+ (1− λ)Mφh ], Nφh)

)
�φh x

=
1

b− a

∫ b

a

f (λx+ (1− λ)Mφh , Nφh)) �φh x

≤ 1

b− a

∫ b

a

f

(
λx+ (1− λ)Mφh ,

1

d− c

∫ d

c

[ty + (1− t)Nφh ] �φh y

)
�φh x

≤ 1

b− a

∫ b

a

[
1

d− c

∫ d

c

f (λx+ (1− λ)Mφh , ty + (1− t)Nφh) �φh y

]
�φh x.

This proves the first inequality in (3.2).
Then by Definition 3.2, we have that

1

b− a

∫ b

a

[
1

d− c

∫ d

c

f (λx+ (1− λ)Mφh , ty + (1− t)Nφh) �φh y

]
�φh x
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≤
(

t

h(t)

)s
1

b− a

∫ b

a

(
1

d− c

∫ d

c

f

((
λ

h(λ)

)s
x+

(
1− λ

h(1− λ)

)s
Mφh , y

)
�φh y

)

+

(
1− t

h(1− t)

)s
× 1

d− c

∫ d

c

f

((
λ

h(λ)

)s
x+

(
1− λ

h(1− λ)

)s
Mφh ,Mφh)

)
�φh y �φh x, (∗)

satisfying the second inequality in (3.2).
Thus from the right hand side of (*), we have(

t

h(t)

)s
1

b− a

∫ b

a

(
1

d− c

∫ d

c

f

((
λ

h(λ)

)s
x+

(
1− λ

h(1− λ)

)s
Mφh , y

)
�φh y

)

+

(
1− t

h(1− t)

)s
× 1

d− c

∫ d

c

f

((
λ

h(λ)

)s
x+

(
1− λ

h(1− λ)

)s
Mφh ,Mφh)

)
�φh y �φh x

≤
(

t

h(t)

)s
× 1

d− c

∫ d

c

[

(
λ

h(λ)

)s
1

b− a

∫ b

a

f(x, y) �φh y �φh x

+

(
1− λ

h(1− λ)

)s
1

b− a

∫ b

a

f (Mφh , y) �φh x] �φh y

+

(
1− t

h(1− t)

)s
× 1

d− c

∫ d

c

[

(
λ

h(λ)

)s
· 1

b− a

∫ b

a

f (φ(x), Nφh) �φh x

+

(
1− λ

h(1− λ)

)s
f (Mφh , Nφh)] �φh y

≤
(

t

h(t)

)s(
λ

h(λ)

)s
1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y) �φh x �φh y

+

(
t

h(t)

)s(
1− λ

h(1− λ)

)s
1

d− c

∫ d

c

f(Mφh , y) �φh y

+

(
1− t

h(1− t)

)s(
λ

h(λ)

)s
1

b− a

∫ b

a

f (x,Nφh) �φh x

+

(
1− t

h(1− t)

)s(
1− λ

h(1− λ)

)s
f (Mφh), Nφh) . (3.3)

Also, from the first inequality in Theorem 1.3, φh-convexity of y on the co-
ordinates and using Lemma 3.1, we have

f(Mφh , y) ≤ 1

b− a

∫ b

a

f(x, y) �φh x (3.4)

and

f(x,Nφh)) ≤ 1

d− c

∫ d

c

f(x, y) �φh y. (3.5)
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Integrating (3.4) and (3.5), we have

1

d− c

∫ d

c

f(Mφh , y) �φh y ≤
1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y) �φh x. (3.6)

And,

1

b− a

∫ b

a

f(x,Nφh) �φh x ≤
1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y) �φh y. (3.7)

Using (3.4), (3.5),(3.6) and (3.7), we deduce that (3.3) becomes(
t

h(t)

)s(
λ

h(λ)

)s
1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y) �φh x �φh y

+

(
t

h(t)

)s(
1− λ

h(1− λ)

)s
1

d− c

∫ d

c

f(Mφh , y) �φh y

+

(
1− t

h(1− t)

)s(
λ

h(λ)

)s
1

b− a

∫ b

a

f (x,Nφh) �φh x

+

(
1− t

h(1− t)

)s(
1− λ

h(1− λ)

)s
f (Mφh , Nφh)

≤ [

(
t

h(t)

)s(
λ

h(λ)

)s
+

(
t

h(t)

)s(
1− λ

h(1− λ)

)s
+

(
1− t

h(1− t)

)s(
λ

h(λ)

)s
+

(
1− t

h(1− t)

)s(
1− λ

h(1− λ)

)s
]

× 1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y) �φh x �φh y

≤ 4

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y) �φh x �φh y.

This proves the third inequality in (3.2).

Theorem 3.2. Let h : JT ⊂ T → R be a non zero non negative function with
the property that h(t) > 0 for all t ≥ 0 . Let f : I2T = [a, b]IT × [c, d]IT → R
be continuous, integrable and co-ordinated φh-convex on I2T. Then for any
a, b, c, d ≥ 0, with b > a, d > c, the following inequalities hold

1

2

[
1

b− a

∫ b

a

f(x, Mφh) �φh x+
1

d− c

∫ d

c

f(Nφh , y) �φh y

]

≤ Ix,y(a, b; c, d)

(b− a)(d− c)

≤ 1

2(b− a)(d− c)

∫ b

a

[(d−Mφh)f(x, c) + (Mφh − c)f(x, t4)] �φh x

+
1

2(b− a)(d− c)
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×
∫ d

c

[(y −Nφh)f(x, y) + (Nφh − x)f(x, y)] �φh y, (3.8)

where Mφh =
∫ b
a
u �φh u, Nφh =

∫ b
a
v �φh v,

and

Ix,y(a, b; c, d) =

∫ b

a

∫ d

c

f(x, y) �φh x �φh y.

Proof. By Definition 3.1, we have

fx(Mφh) ≤ 1

d− c

∫ d

c

fx(y) �φh y ≤
d−Mφh

d− c
fxc +

Mφh−c

d− c
fxd.

That is,

f(x,Mφh) ≤ 1

d− c

∫ d

c

f(x, y) �φh y

≤ d−Mφh

d− c
f(x, c) +

Mφh − c
d− c

f(x, d).

(3.9)
Integrating both sides of (3.9) over �φhx on [a, b]IT , we obtain

1

b− a

∫ b

a

f(x,Mφh) �φh x ≤
1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y) �φh x �φh y

≤ d−Mφh

(b− a)(d− c)

∫ b

a

f(x, c) �φh x

+
Mφh − c

(b− a)(d− c)

∫ b

a

f(x, d)�φh x. (3.10)

By a similar argument, for the partial mapping fy : [a, b]→ R, fy(u) := f(u, y),
we obtain

f(Nφh , y) ≤ 1

b− a

∫ b

a

f(x, y) �φh x

≤ y −Nφh
b− a

f(x, y) +
Nφh−x
b− a

f(x, y). (3.11)

Integrating both sides of (3.11) over �φhy on [a, b]IT , we get

1

d− c

∫ d

c

f(Nφh , y) �φh y

≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y) �φh x �φh y

≤ y −Nφh
(b− a)(d− c)

∫ d

c

f(x, y) �φh y

+
Nφh−x

(b− a)(d− c)

∫ d

c

f(x, y) �φh y. (3.12)
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Adding (3.10) and (3.12),we get the desired result (3.8).

Remark 3.1. If φh = α Theorem 3.1 of Nwaeze [10] is recovered.

Remark 3.2. The case φh = 0 gives corollary 3.2 of Nwaeze [10].

Remark 3.3. If we choose φh = 1
2 and substitute the relation Q of Fagbemigun

et al. [7] in Theorem 3.2, we obtain corollary 3.3 of Nwaeze [10].

Remark 3.4. Corollary 3.4 of [10] is obtained if φh = 1 in Theorem 3.2.

Remark 3.5. If we take IT1 = IT2 = R in Theorem 3.2, we get the second and
third inequalities of Theorem 1.1 due to Dragomir [5].
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