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Abstract

In this paper, double integral calculus via the diamond-¢; dynamic integral for
two-variable functions on time scales is introduced to prove Hermite-Hadamard
type integral inequalities for the generalized class of ¢j-convex functions. Also,
a two-dimensional Hermite-Hadamard-type integral inequality for this class of
convex functions on time scales is established. Our work generalizes and refines
proofs of corresponding results for some known classes of functions.

1 Introduction

The inequality

a+b f(a) + f(b)

) S/bf(x)dl‘ﬁ(b—a)2, a,beR a<b, (1.1)

<b—a>f(

holds for any convex function f defined on R. It was first suggested by Her-
mite in 1881. But this result was nowhere mentioned in literature and was not
widely known as Hermite’s result. A leading expert on the history and theory of
convex functions, Beckenbach [1], wrote that the inequality (1.1) was proven by
Hadamard in 1893. In general, (1.1) is now known as the Hermite-Hadamard
inequality. It has several extensions and generalizations for univariate, bivari-
ate and multivariate convex functions and its classes on classical intervals(see
Dragomir [5]) with recent extensions to time scales(see [4, 10, 13]).

The concept of the theory of time scales was initiated by Stefen Hilger [9] in
order to unify and extend the theory of difference and differential calculus con-
sistently. In this theory, the delta and nabla calculus for single and two-variable
functions are introduced (see [2,3,8]). A linear combination of these delta and
nabla dynamics, the diamond-« calculus on time scales was developed by Sheng
et al.[12]. Since the advent of this notion, several authors have extended many
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classical mathematical inequalities to time scales via the diamond-alpha dy-
namic calculus for univariate, bivariate and multivariate functions (see [4, 10,
11, 13]).

Nwaeze [10], employed Theorem 3.9 of Dinu [4] for a univariate function on time
scales to prove the following Hadamard’s type result, via the combined diamond-
« dynamics, extending (1.1), for functions defined on a rectangle, that are con-
vex on the coordinates.

Theorem 1.1.[10] Let a,b,z € T1,¢,d,y € To, witha < b,c < dand f : [a, b] x
[c,d] — R be such that the partial mappings f, : [a,b] = R, fy(u) = f(u, )
and f, : [c,d] = Rf,(v) := f(x,v) defined for all y € [¢,d] and = € [a,b], a
continuous and convex. Then the following inequalities hold

1 ! /bf(xs)o x+1/df(t )o
2 b—a . ) « (e} d_c . a?y ay
D
b—a d_ //fa:yoaxoay

(
1
)(d

< ﬁ/a [(d—sa)f(z, ¢)+ (80 —c)f(x, d)]oqx
1 d
T (ba)()/c [(b—ta)f(a,y) + (ta —a)f(b, y)] ©ay.

(1.2)

b
where t, = 71 [ toat, and s, = -

Recently, the authors [6] introduced the time-scaled version of some classes of
convex functions, including a more generalized class of ¢,-convex function on
time scales thus;

Definition 1.1.[6] Let A : J; C T — R be a nonzero non negative function
with the property that h(t) > 0 for all ¢ > 0. A mapping f : It — R is said to
be ¢p-convex on time scales if

rowt - < () 10+ () fo 0

for s €10,1],0 <A <1 and z,y € I.
Remark 1.1.

(i) If s =1 and h(X) = 1, then f € SX(I7), i.e, f is convex on time scales
(see [5, 12]).

(i) If s = 1, h(\) = 1, where A = %, then f € J(Ir) is mid-point convex on
time scales (see [6]).

(iii) If s =0, then f € P(It) is P-convex on time scales (see [6]).



(iv) If h(N) = A
(see [6]).

(v) If s = 1 and h(A) = 23/A(1 = A) for A > 0, then f € MT(It) is MT-

convex on time scales (see [6]).

=1 for A > 0, then f € SX(h, Ir) is h-convex on time scales

More recently, Fagbemigun et al.[7] proved the following Hadamard’s type result
for the new class of ¢p-convex functions earlier introduced by the authors [6], for
a univariate function to obtain several generalizations of the Hermite-Hadamard
inequality (1.1) on time scales.

Theorem 1.2.[7] Let f : It — R be a continuous, nondecreasing ¢p-convex
function on I, a,b,t € It, with a < b. Then

1 Ty, — @

< ’ <b_x¢h, b 14
Fan) < 5ma [ 1000t < 50 @)+ =l p ), (1)

where 4, = ﬁ fftom t.

Remark 1.2. (i) When ¢, = a in (1.4), Theorem 3.9 of Dinu [4] is obtained.

(ii) Setting ¢, = 1 and using the relation (Q) of [7] in Theorem 1.2 gives inequal-
ity (5.1) of Dinu [4], which is the middle point Hermite-Hadamard inequality on
time scales.

(iii) The nabla integral version of Theorem 1.2 is obtained if we choose ¢;, = 0.

It is the purpose of this paper to extend inequality (1.1) to time scales via the
combined diamond-¢; dynamics, for a function of two variables.

2 Preliminaries

In the sequel, we shall need the following new definitions recently introduced in
[8].

Let Ty and Ty be two time scales with Ty x To = {(x,y) : € T1,y € T} which
is a complete metric space with the metric d defined by

d((z,y),(z,y) = (-2 P +@y—-y))%, V¥ (2,y),(c,y)eT xTa.

Let o4, pi, (i = 1, 2) denote respectively the forward jump operator, backward

jump operator, and the diamond-¢;, dynamic differentiation operator on T;.

Definition 2.1. Let f be a real-valued function on Ty x Ty, h: Jr C T —- R a

nonzero non negative function with the property that h(t) >0 forallt > 0. f

is said to have a partial o(4,) derivative %(wrt t1), at (t1,t2) € Ty x To,
h’1

if for each € > 0, there exists a neighbourhood Uty of t1 such that

(ﬁ)j[f(ﬁ(tl),h) — f(m,ta,)|utim

" <h(11—)\)\)) 1[f(P1(t1)7 ta) — f(m, to)lvtim — fOOmu (t, ta)ptymutym



< €|ptymutim|, (2.1)
for s € [0,1,0 < A < 1 and for all m € Uty, where Utym = o1(t1) — m,
vtym = p1(t1) — m.

Definition 2.2. Let f be a real-valued function on Ty xTy and h: Jy C T — R
an increasing function with the property that h(t) > 0 for all ¢ > 0. f is said

to have a "partial o(4,), derivative” %(wrt ta), at (t1,t2) € Ty x Ty, if for
h’'2

each € > 0, there exists a neighbourhood Uty of t5 such that
() 1/ (1, 02(t2) = £ (12, m)Jtom

+(h(11_—>\>\)>2[f(t17 pa(ta) = f(tr, m)lptam — fEO2 (ty, ta)ptamutam

< €|lutomutam|, (2.2)
for s €10,1],0 < A <1 and for all n € Utq, where Utom = o2(tz) — m,
vtam = pa(te) —m.

These derivatives are also denoted by f°“m1(t1, ta) and f#n)2 (¢, to) respec-
tively.

Before we define the double diamond-¢; dynamic integral, we shall employ the
following remark of [2].

Remark 2.1.[2] Let f be a real-valued function on Ty x Ts. If the delta (A) and
nabla (V) integrals of f exist on Ty X To, then the following types of integrals
can be defined:

(i) AA-integral over R = [a,b) x [c,d), which is introduced by using parti-
tions consisting of subrectangles of the form [«, 8) X [, 9);

(ii) VV-integral over R! = (a,b] x (c,d], which is introduced by using parti-
tions consisting of subrectangles of the form (o, 5] % (7, d];

(iii) AV-integral over R? = [a,b) x (c,d], which is introduced by using parti-
tions consisting of subrectangles of the form [«, 8) % (v, J];

(iv) VA-integral over R® = (a,b] x [c,d), which is introduced by using parti-
tions consisting of subrectangles of the form («, 8] x [y, 9).

Now let U(f) and L(f) denote the upper and lower Darboux A-integral of f
from a to b ; U(f) and L(f) denote the upper and lower Darboux V-integral
of f from a to b respectively. Given the construction of U(f) and L(f), which
follows from the properties of supremum and infimum, we give the following
definition.

Definition 2.3. Let f be a real-valued function on Ty x Ty, h: Jr C T —- R a
nonzero non negative function with the property that h(t) > 0 for all ¢ > 0 . If
f is A-integrable on R° = [a,b) x [¢,d) and V-integrable on R! = (a,b] x (c, d],



then it is ¢4, -integrable on R = [a, b] X [¢,d] and

)\ S
‘/Rf(t, k) O L O(pn)s K = (h()\)) / . flt, kE)A1tAqk

1-A
+ (h(l_)\)> / R f(t7 k)VltVQk, (23)
1,0< A <1andtke Jr.

0,
Since U(f) > L(f) and U(f) > L(f), we obtain the following result.

Theorem 2.1. Let f be a real-valued function on Ty x To, h: Jr CT — R a
nonzero non negative function with the property that h(t) > 0 for all t > 0 . If
f be ¢4, -integrable on R = [a, b] x [c, d], provided its delta (A) and nabla (V)
integrals exist, then

for all s € |

(i) If g5, = 1, f is AA-integrable on R? = [a,b) X [c,d);
(ii

) If ¢, = 0, f is VV-integrable on R! = (a, b] x (¢, d];
(iii) If ¢5 = 3, f is AA-integrable and VV-integrable on R® and R!
)

(iv) If ¢ = a, f is double o4-integrable on R = [a, b] X [c, d).

3 Two-dimensional Hermite-Hadamard type in-
equalities for ¢,-convex functions on the co-
ordinates

Consider the bi-dimensional time scale interval I? : [a,b], X [c,d]}, in T? with
a<b, c<d.
Definition 3.1. Let h: J7 C T — R be a non zero non negative function with
the property that h(¢) > 0 for all ¢ > 0 . A monotonically increasing function
f: I3 — Ron I2 is ¢p,-convex on time scale co-ordinates if the partial mappings
fy : [a”b]IT - R, fy(u> = f(uay>7 Vye [c’dhlr
and
Jo: [Cad]hr - R, fx(v) = f(xvv)v Ve [CL?b]I’T
are continuous and ¢j,-convex.
Definition 3.2. Let h: Jp C T — R be a non zero non negative function with
the property that h(t) > 0 for all £ > 0 . A monotonically increasing function
[ I3 — R is ¢p,-convex on time scale co-ordinates if the inequality

FOz+ (1 =Ny, tu+ (1 —1t)v)

(i) (i) 70+ (sty) (=) s




-2\ [/ t\° 1=t \"/ 1-Xx\°
() () 700+ (=p) (resy) 700
holds for s € [0,1], 0 < A\, ¢ <1 and z,y € It and (z,u), (x,v), (y,u), (y,v) €

2.
Thus the mapping f : I2 — R is ¢j-convex in IZ if the following inequality:

(1__)\)\)> flu, v) (3.1)

A S
FOz+(1=Nu, Ay+(1-A)v) < (h(A)) flx, y)+ (hl
holds for all (z, y), (u, v) € I3, s € [0,1] and 0 < X < 1.

We state and prove the following Lemma

Lemma 3.1. Every ¢p-convex mapping f : I2 — R on I2 is ¢p-convex on the
co-ordinates.

Proof. Suppose that the mapping f : I — R is ¢p,-convex in I2 by (4.4).
Consider the partial mapping

fw : [C, dh’ﬂ' - R, fw(’U) = f(l’,?]).
Then for all s € [0,1], 0 < A <1 and f(u,v) monotonically increasing functions
on Iy, we have

s = () o+ () )
() (G () ()
() 0+ () s

- (i) 1 (=)

which shows ¢p-convexity of f..

IN

By a similar argument, the partial mappings
fyila b = R, fy(u) = f(u,y), is also ¢p-convex for all

€[0,1], 0 < A <1 and f(v,r) monotonically increasing functions on It goes
likewise and the proof is omitted.

Note that in some special cases, some co-ordinated ¢p-convex functions may not
necessarily be ¢p,-convex on time scales.

With the aid of Lemma 3.1, we first discuss and establish a double integral
inequality of Hermite-Hadamard type for a ¢p-convex function on time scale
co-ordinates.

Theorem 3.1. Let h: Jy C T — R be a non zero non negative function with
the property that h(t) > 0 for all t > 0 . Let f : I? — R be a continuous
and an integrable ¢,-convex function with respect to the function ¢; on the



co-ordinates on I2. Then for any a,b,c,d > 0, with b > a,d > c and s € [0,1],
< I (a,b;c,d)

f(Mg,,Ng,) < b—a)d—-c
ot * Inty(a,b;c,d) 1—t \° Inn(a,bsc,d)
: (h(t)) (b—a)(d—c) +<h(1—t)> (b—a)(d—c)
41, ,(a,b; ¢, d)
= 7(1)701)((170)7 (3.2)

where My, = fabuom uw and Ny, = f;}v Oy U,
I (a,b;c,d)
b pd
— [ [ 50w+ (- N Mty + (1= ONa,) 0, y 00,
a c
IM,y(a7b; c, d)

- [ () o (i) ) oo

In,nv(a,b;c,d)
b pd s s
A 1—A
_/a /C f <<h()\)> z+ (h(l—A)) M(zSh,Nth)) Cop L Oy Y,
d

b d
L (a,bie,d) = / / F(6(2), ) 9pn 00, 1.

Proof. (A) To show the first inequality in (3.2).
We have that,

an

1 b
f(M¢h,)’N¢h)) <f (ba/ [)“T"" (1 - )‘)M¢h]7N¢h)> Cpp T

1 b
= m/a f(/\x—i_(l_)‘)Mdﬁdeﬁh)) Oy, T

1 b

b—a/,

IN

1 d
f <)\$ +(1- A)Mtﬁh’ ﬂ/ [ty + (1 - t)N¢h] b y) Oy T

1

b d
1
< b—a/a [d—c/c f()\x+(1—)\)M¢h,ty+(l _t)N¢h,)<>¢h y‘| <>¢h x.

This proves the first inequality in (3.2).
Then by Definition 3.2, we have that

I
b_a/ [d_c/ F Az + (1= 2) My, ty + (1= )Ng, ) 0, y] Oy T




< (o) wa ) (e (o) o () eow) )
11—t \°
i (h(l—t))
[ () o ) v

satisfying the second inequality in (3.2).
Thus from the right hand side of (*), we have

() o (22 () o () )

+
VR
=
e
||
-~ |
N—
~——

a0\ ¢
d—cJ, (h(ll_)\)) My, M¢h,)> Oop Y Cpp, T
t s 1 d Y s 1 b
h(t)> Xd_CA [<h()\)> b—a/a f($7y)<>¢hy<>¢hz
AN b
) 52, £ o e

" dic/cd[<h(§>)s-bfa/abfw(x),N%)%hw

d
(
(
(7).

+ (hl_)\)\)) f (Mg, , Ny, )] 04, y
() 1
(

(

X
| | =
)
T~
9
~
7N
7N
=
—| >
S~—
N————
w
8
+

IN

+

IN

_|_

( (11_/\/\)>Sd1c/cdf(j‘@:,y)%hy
)S (h(AA)>Sbia/abf(fﬂ’N¢h)<>¢hx

M (h(ll_—tt)>s (h(ll__AA))sf(Mm),Nm)- (3.3)

Also, from the first inequality in Theorem 1.3, ¢p-convexity of y on the co-
ordinates and using Lemma 3.1, we have

b
f(Mthﬂy) < ﬁ‘/a f(:c,y) Cpp T (34)

and

f x, N(p, / f x, y O Y- (35)



Integrating (3.4) and (3.5), we have

b d
><>¢hysm / / f@,9)op v (3.6)

And,

/fo¢h <>¢h$< b—a) _c//f$y<>¢hy' (3.7)
Using (3.4), (3.5),(3.6) and (3.7), we deduce that (3.3) becomes

(hft) (h(/\)\> b—a) _C//f“fy%hw%hy
)

l 1—A

’ <h(t) (1—)\) —C/ fM¢h»y)<>¢hy
1—t \° A

i (h(l_t) (h)\) b_a/a f(x,Ng,) 0¢, T

>

A
/T\

5|
She
-~ —
»

i) * () (=)

- (mcy S h(AA))S+(h(ll_—tw)s(h(ll_—t))s}
e ), [ e
oatia ), [ ooy

This proves the third inequality in (3.2).

(
) ()
" <h(11_—tt)>s h(11__A)>Sf<M¢mN¢h)
(
)

X

Theorem 3.2. Let h: Jpr C T — R be a non zero non negative function with
the property that h(t) > 0 for all t > 0 . Let f : I2 = [a,b]s, X [¢,d];, = R
be continuous, integrable and co-ordinated ¢p-convex on I2. Then for any
a,b,c,d >0, with b > a,d > ¢, the following inequalities hold

1| 1 I
21p—a f(x7M¢h)<>¢hx+E f(Ngw,y) 06, y

I.4(a,b;c d)
(b—a)(d—c)

IN

IA



d
< [ = NadI @) + (N, 2 ) o0, 1:(35)

b b
where My, = [Juog, u, Ng, = ['vog, v,

b pd
I, y(a,b;c,d) :/ / f(z,y) 0¢, T g, Y-

Proof. By Definition 3.1, we have

and

1 d— My My, .
(Mg ) < - Q" —2hTCf d.
£olMo) < 7= [ o) oo w < o fue + Tty

That is,
1 d
f(x7M¢h)§d / f(x’y>0¢hy
—c/,

M%fc
d—c

< d— Md’h

< (a0 +

f(x,d).

Integrating both sides of (3.9) over o4, x on [a, b]r,, we obtain

d M¢h /f:z:co%

My, —c
+b—2h /fl’d<>¢h

(3.9)

b b d
bia/f(‘r7M¢h)O¢h$§m//f($7y)<>¢’hx<>¢’hy

(3.10)

By a similar argument, for the partial mapping f, : [a,b] = R, fy(u) = f(u,y),

we obtain

b
f(Nquy) < ﬁ[l f(x,y) Cpp T

y_‘ ¢h
<L Z TR
S f(z,y) + b

Integrating both sides of (3.11) over ¢4,y on [a, b1, we get

1 d
f/ f(N¢h7y)<>¢'hy
CJe

d
1 b pd
m//f(%y)%hx%hy

y— Ny,
*@/MM

IN

IN

b—a

N -

10

Nd)%_a”f(x,y)-

(3.11)

(3.12)



Adding (3.10) and (3.12),we get the desired result (3.8).
Remark 3.1. If ¢, = @ Theorem 3.1 of Nwaeze [10] is recovered.
Remark 3.2. The case ¢, = 0 gives corollary 3.2 of Nwaeze [10].

Remark 3.3. If we choose ¢, = % and substitute the relation @ of Fagbemigun
et al. [7] in Theorem 3.2, we obtain corollary 3.3 of Nwaeze [10].

Remark 3.4. Corollary 3.4 of [10] is obtained if ¢, = 1 in Theorem 3.2.

Remark 3.5. If we take I, = It, = R in Theorem 3.2, we get the second and
third inequalities of Theorem 1.1 due to Dragomir [5].
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