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Abstract

The concept of φh-convexity is extended for functions defined on closed φh-
convex subsets of linear spaces. Consequently, some double integral inequalities
of Hermite-Hadamard type defined on time-scaled linear spaces are established
for φh-convex functions.

1 Introduction

A well celebrated, fundamental inequality for a convex function f is the classical
Hermite-Hadamard’s inequality:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
, (1.1)

where a, b ∈ R with a < b.

It was first suggested by Hermite in 1881. But this result was nowhere men-
tioned in literature and was not widely known as Hermite’s result. A leading
expert on the history and theory of complex functions, Beckenbach [2], wrote
that the inequality (1.1) was proven by Hadamard in 1893. In general, (1.1) is
now known as the Hermite-Hadamard inequality. It has several extensions and
generalizations for univariate and multivariate convex functions and its classes
on classical intervals.

The concept of the theory of time scales was initiated by Stefen Hilger (see [10])
in order to unify and extend the the theory of difference and differential calculus
in a consistent way. In this theory, the delta and nabla calculus are introduced.
A linear combination of these delta and nabla dynamics, the diamond-α calculus
on time scales was developed by Sheng et al. [12]. Since the advent of this notion,
several authors have extended the classical Hermite-Hadamard inequality (1.1)
to time scales via the diamond-alpha dynamic calculus for univariate convex
functions (see Dinu [5]) and the references therein.
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Recently, Fagbemigun and Mogbademu [6] introduced the time-scaled version of
some classes of convex functions, including a more generalized class of φh-convex
function on time scales as given below:

Definition 1.1. [6] Let h : JT ⊂ T → R be a nonzero non negative function
with the property that h(t) > 0 for all t ≥ 0. A mapping f : IT → R is said to
be φh-convex on time scales if

f(λx+ (1− λ)y) ≤
(

λ

h(λ)

)s
f(x) +

(
1− λ

h(1− λ)

)s
f(y), (1.2)

for s ∈ [0, 1], 0 ≤ λ ≤ 1 and x, y ∈ IT.
Remark 1.1.

(i) If s = 1 and h(λ) = 1, then f ∈ SX(IT), i.e, f is convex on time scales
(see [5]).

(ii) If s = 1, h(λ) = 1, where λ = 1
2 , then f ∈ J(IT) is mid-point convex on

time scales (see [6]).

(iii) If s = 0, then f ∈ P (IT) is P -convex on time scales (see [6]).

(iv) If h(λ) = λ
s
s+1 , then f ∈ SX(h, IT) is h-convex on time scales (see [6]).

(v) If s = 1, h(λ) = 2
√
λ(1− λ), then f ∈ MT (IT) is MT -convex on time

scales (see [6]).

In a more recent paper, the authors [7] introduced a more general calculus of
diamond-φh dynamics for a single variable function on time scales as follows;

Definition 1.2. [7] Let h : JT ⊂ T → R be a real valued function, with the
property that h(t) > 0 for all t ≥ 0. The diamond-φh dynamic derivative of a
function f : T→ R in t ∈ T is defined to be the number denoted by f�φh (t)(when
it exists), with the property that for any ε > 0, there is a neighbourhood U of
m such that, for all n ∈ U, 0 ≤ s ≤ 1 and 0 ≤ λ ≤ 1, with µmn = σ(m)−n and
νmn = ρ(m)− n, where m,n ∈ Tkk, then,∣∣∣∣( λ

h(λ)

)s
[f(σ(m))− f(n)]νmn +

(
1− λ

h(1− λ)

)s
[f(ρ(m))− f(n)]µmn

−f�φh (t)µmnνmn

∣∣∣∣∣ < ε|µmnνmn|. (1.3)

Definition 1.3. [7]Let h : JT ⊂ T → R be a real valued function, with the
property that h(t) > 0 for all t ≥ 0. The diamond-φh integral of a function
f : T→ R from a to b, where a, b ∈ T is given by;∫ b

a

f(t) �φh t =

(
λ

h(λ)

)s ∫ b

a

f(t)∆t+

(
1− λ

h(1− λ)

)s ∫ b

a

f(t)∇t, (1.4)

2



for all s ∈ [0, 1], λ ∈ [0, 1] and h(t) > 0 ∀t ≥ 0 provided that f has a delta and
nabla integral on [a, b]T or IT.

Remark 1.2.[7]

(i) The inequality (1.4) reduces to the diamond-α integral defined by Sheng
et al. [12], if s = 1, h(λ) = 1 and λ = α. Thus, every diamond-α integrable
function on T is diamond-φh integrable but the converse is not true (see
[7]).

(ii) If f is diamond-φh integrable for 0 ≤ s ≤ 1, and 0 ≤ λ ≤ 1, then f is both
∆ and ∇ integrable.

The inequality (1.1) was equally extended to time scales by the authors [7],
using the new class of univariate φh-convex function of [6] to obtain several
generalizations of the Hermite-Hadamard inequality on time scales. We present
one of such results

Theorem 1.1. [7] Suppose that
(i) f : IT → R is a continuous φh-convex function on IT;

(ii) p, q ∈ (0, 1), such that p+ q = 1;

g ∈ C(IT,R) is symmetric with respect to pa+ qb = γ on
[a, b], for all a, b ∈ IT, that is,

g(γ − qt) = g(γ + pt), for all t ∈ [0, b− a].
Then

f(px+ qy) ≤ p
∫ γ
a
f(t)g(t) �φh t∫ γ
a
g(t) �φh t

+ q

∫ b
γ
f(t)g(t) �φh t∫ b
γ
g(t) �φh t

≤ pf(x) + qf(y). (1.5)

The two-variable time scales delta, nabla and diamond-α calculi were introduced
by Albrandth and Morian[1], Bohner and Guseinov [3,4], Guseinov [9] and Özkan
and Kaymakçalan [11] respectively.

Özkan and Kaymakçalan [11] gave the following definition of a partial �α1
deriva-

tive;

Definition 1.4. [11] Let f be a real-valued function on T1×T2. We say that f

has a partial �α1 derivative ∂f(t1,t2)
�α1

t1
(with respect to t1) if for each ε > 0, there

exists a neighbourhood Ut1 (open in the relative topology of T1) of t1 such that∣∣∣∣∣α1[f(σ1(t1), t2)− f(s, t2, )]µt1s

+(1− α1)[f(ρ1(t1), t2)− f(s, t2)]νt1s− f�α1 (t1, t2)µt1sνt1s

∣∣∣∣∣ < ε|µt1sνt1s|,

(1.5)

for all s ∈ Ut1, where Ut1ms = σ1(t1)− s, νt1s = ρ1(t1)− s.
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The �α2
partial derivative was respectively defined (see [11]).

Motivated by the recent results of these authors; Fagbemigun and Mogbademu [6],
Fagbemigun et al. [7] and Özkan and Kaymakçalan [11], we discuss the following
new concepts of Fagbemigun and Mogbademu [8].

2 Preliminaries

In the sequel, we shall need the following new definitions recently introduced in
[8].

Let T1 and T2 be two time scales with T1×T2 = {(x, y) : x ∈ T1, y ∈ T2} which
is a complete metric space with the metric d defined by

d((x, y), (x
′
, y

′
)) = ((x− x

′
)2 + (y − y

′
)2)

1
2 , ∀ (x, y), (x

′
, y

′
) ∈ T1 × T2.

Let σi, ρi, (i = 1, 2) denote respectively the forward jump operator, backward
jump operator, and the diamond-φh dynamic differentiation operator on Ti.
Definition 2.1. Let f be a real-valued function on T1 × T2, h : JT ⊂ T→ R a
nonzero non negative function with the property that h(t) > 0 for all t ≥ 0. f

is said to have a partial �(φh)1 derivative ∂f(t1,t2)
�(φh)1

t1
(wrt t1), at (t1, t2) ∈ T1 × T2,

if for each ε > 0, there exists a neighbourhood Ut1 of t1 such that∣∣∣( λ
h(λ)

)s
1
[f(σ1(t1), t2)− f(m, t2, )]µt1m

+

(
1− λ

h(1− λ)

)s
1

[f(ρ1(t1), t2)− f(m, t2)]νt1m− f�(φh)1 (t1, t2)µt1mνt1m

∣∣∣∣∣
< ε|µt1mνt1m|, (2.1)

for s ∈ [0, 1], 0 ≤ λ ≤ 1 and for all m ∈ Ut1, where Ut1m = σ1(t1) − m,
νt1m = ρ1(t1)−m.

Definition 2.2. Let f be a real-valued function on T1×T2 and h : JT ⊂ T→ R
an increasing function with the property that h(t) > 0 for all t ≥ 0. f is said

to have a ”partial �(φh)2 derivative” ∂f(t1,t2)
�(φh)2

t2
(wrt t2), at (t1, t2) ∈ T1×T2, if for

each ε > 0, there exists a neighbourhood Ut2 of t2 such that∣∣∣( λ
h(λ)

)s
2
[f(t1, σ2(t2)− f(t1, m)]µt2m

+

(
1− λ

h(1− λ)

)s
2

[f(t1, ρ2(t2)− f(t1, m)]νt2m− f�(φh)2 (t1, t2)µt2mνt2m

∣∣∣∣∣
< ε|µt2mνt2m|, (2.2)

for s ∈ [0, 1], 0 ≤ λ ≤ 1 and for all n ∈ Ut2, where Ut2m = σ2(t2)−m,
νt2m = ρ2(t2)−m.

These derivatives are also denoted by f�(φh)1 (t1, t2) and f�(φh)2 (t1, t2) respec-
tively.
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Before we define the double diamond-φh dynamic integral, we shall employ the
following remark of [3].

Remark 2.1.[̇3] Let f be a real-valued function on T1×T2. If the delta (∆) and
nabla (∇) integrals of f exist on T1 × T2, then the following types of integrals
can be defined:

(i) ∆∆-integral over R0 = [a, b) × [c, d), which is introduced by using parti-
tions consisting of subrectangles of the form [α, β)× [γ, ∂);

(ii) ∇∇-integral over R1 = (a, b] × (c, d], which is introduced by using parti-
tions consisting of subrectangles of the form (α, β]× (γ, ∂];

(iii) ∆∇-integral over R2 = [a, b) × (c, d], which is introduced by using parti-
tions consisting of subrectangles of the form [α, β)× (γ, ∂];

(iv) ∇∆-integral over R3 = (a, b] × [c, d), which is introduced by using parti-
tions consisting of subrectangles of the form (α, β]× [γ, ∂).

Now let Ū(f) and L̄(f) denote the upper and lower Darboux ∆-integral of f
from a to b ; U(f) and L(f) denote the upper and lower Darboux ∇-integral
of f from a to b respectively. Given the construction of U(f) and L(f), which
follows from the properties of supremum and infimum, we give the following
definition.

Definition 2.3. Let f be a real-valued function on T1 × T2, h : JT ⊂ T→ R a
nonzero non negative function with the property that h(t) > 0 for all t ≥ 0. If
f is ∆-integrable on R0 = [a, b)× [c, d) and ∇-integrable on R1 = (a, b]× (c, d],
then it is �φh -integrable on R = [a, b]× [c, d] and∫

R

f(t, k) �(φh)1 t �(φh)2 k =

(
λ

h(λ)

)s ∫ ∫
R0

f(t, k)∆1t∆2k

+

(
1− λ

h(1− λ)

)s ∫ ∫
R1

f(t, k)∇1t∇2k, (2.3)

for all s ∈ [0, 1], 0 ≤ λ ≤ 1 and t, k ∈ JT.

Since Ū(f) ≥ L̄(f) and U(f) ≥ L(f), we obtain the following result.

Theorem 2.1. Let f be a real-valued function on T1 × T2, h : JT ⊂ T → R a
nonzero non negative function with the property that h(t) > 0 for all t ≥ 0. If
f be �φh -integrable on R = [a, b] × [c, d], provided its delta (∆) and nabla (∇)
integrals exist, then

(i) If φh = 1, f is ∆∆-integrable on R0 = [a, b)× [c, d);

(ii) If φh = 0, f is ∇∇-integrable on R1 = (a, b]× (c, d];

(iii) If φh = 1
2 , f is ∆∆-integrable and ∇∇-integrable on R0 and R1

(iv) If φh = α, f is double �α-integrable on R = [a, b]× [c, d].
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3 Double integral inequalities of Hermite-
Hadamard type for φh-convex functions

Here, we obtain double integral inequalities of Hermite-Hadamard type in which
upper and lower bounds for the quantity

1

(b− a)(d− c)

∫ b

a

∫ d

c

f

(
px+ qy

p+ q

)
�(φh)1 q �(φh)2 p,

are provided for the generalized class of φh-convex functions (1.2), defined on
linear spaces of time scales.

Let XT be a vector space over the time-scaled field K and let x, y be monoton-
ically increasing functions in XT, x 6= y. Let the segment generated by x, y be
defined by

[a, b] : {(1− λ)x+ λy, λ ∈ [0, 1]}.
We consider the function f : [x, y]IT ⊂ T → R and the attached function
g(x, y) : [0, 1] ⊂ T→ R defined by

g(x, y)(λ) := f [(1− λ)x+ λy], λ ∈ [0, 1].

Note that f is φh-convex on [x, y] if and only if g(x, y) is φh-convex on [0, 1].

The concept of φh-convexity in Definition 1.1 can be extended for functions
defined on closed φh-convex subsets of the linear spaces in the same way as
on classical intervals by replacing the interval IT by the corresponding closed
φh-convex subset E of the linear space XT.

It is well-known that if (X, || · ||) is a normed linear space, then the function
f(x) = ||x||p, p ≥ 1 is convex on X.
Using the elementary inequality (a + b)s ≤ as + bs that holds for any a, b ≥ 0
and s ∈ [0, 1], we have for the function g(x) = ||x|| that

g(λx+ (1− λ)y) =

(
|| λ

h(λ)
x+

(1− λ)

h(1− λ)
y||
)s

≤
(

λ

h(λ)
||x||+ (1− λ)

h(1− λ)
||y||

)s
≤

(
λ

h(λ)
||x||

)s
+

(
(1− λ)

h(1− λ)
||y||

)s
≤

(
λ

h(λ)

)s
(||x||)s +

(
(1− λ)

h(1− λ)

)s
(||y||)s

=

(
λ

h(λ)

)s
g(x) +

(
(1− λ)

h(1− λ)

)s
g(y),

for any x, y ∈ XT, λ ∈ [0, 1] and h a non zero non negative function with the
property that h(t) > 0 for all t ≥ 0, which shows that g is φh-convex on IT.
With this concept, an equivalent definition to definition 1.1 is given as follows.
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Definition 3.1. Let h be a non zero non negative function with the property
that h(t) > 0 for all t ≥ 0. Then inequality (1.2) can be re-written as

f

(
px+ qy

p+ q

)
≤

( p
h(p) )

sf(x) + ( q
h(q) )

sf(y)

p+ q
, (3.1)

for all p, q ≥ 0 with p+ q > 0, s ∈ [0, 1] and x, y ∈ IT.

We can now establish double Hermite-Hadamard-type integral inequalities for
the class of φh-convex functions on time scales linear spaces.

Theorem 3.1. Let h be a non zero non negative function with the property
that h(t) > 0 for all t ≥ 0. Let E φh-convex set in a linear space of a time scale
interval XT ⊂ T and f : E ⊆ XT → R be an integrable φh-convex function with
respect to the function φh defined on the set E with φh Lebesgue integrable
on [a, b]IT × [c, d]IT . Then, for any a, b, c, d ≥ 0, with b > a, d > c and for any
a, b, c, d ∈ E, s ∈ [0, 1], we have:

f

(
I(a, b; c, d)

(b− a)(d− c)
x+

I(c, d; a, b)

(b− a)(d− c)
y

)

≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c

f

(
px+ qy

p+ q

)
�(φh)1 q �(φh)2 p

≤
Ih(p)(a, b; c, d)

(b− a)(d− c)
f(x) +

Ih(q)(c, d; a, b)

(b− a)(d− c)
f(y), (3.2)

where

I(a, b; c, d) =

∫ b

a

(∫ d

c

(
p

p+ q

)
�(φh)1 q

)
�(φh)2 p,

I(c, d; a, b) =

∫ b

a

(∫ d

c

(
q

p+ q

)
�(φh)1 q

)
�(φh)2 p,

Ih(p)(a, b; c, d) =

∫ b

a

∫ d

c

(
p

h(p)

)s
p+ q

�(φh)1 q �(φh)2 p

and

Ih(q)(c, d; a, b) =

∫ b

a

∫ d

c

(
q

h(q)

)s
p+ q

�(φh)1 q �(φh)2 p,

for all p, q ≥ 0 with p+ q > 0 and x, y ∈ XT.

Proof. Consider the function gx,y : [0, 1] ⊂ T → R defined by gx,y(λ) =
f(λx + (1 − λ)y). This function is φh-convex on [0, 1] ⊂ T and by Jensen’s
double integral inequality of real functions on time scales, we have

gx,y

(∫ b

a

∫ d

c

(
p

p+ q

)
�(φh)1 q �(φh)2 p

)
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≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c

gx,y

(
p

p+ q

)
�(φh)1 q �(φh)2 p, (3.3)

which is equivalent to

f

∫ ba ∫ dc
(

p
p+q

)
�(φh)1 q �(φh)2 p

(b− a)(d− c)
x+

1−

∫ b
a

∫ d
c

(
p
p+q

)
�(φh)1 q �(φh)2 p

(b− a)(d− c)

 y



≤ f

∫ ba ∫ dc
(

p
p+q

)
�(φh)1 q �(φh)2 p

(b− a)(d− c)
x+

∫ b
a

∫ d
c

(
q
p+q

)
�(φh)1 q �(φh)2 p

(b− a)(d− c)
y

 .

By definition 3.1 and using a simple calculation, we have

f

∫ ba ∫ dc
(

p
p+q

)
�(φh)1 q �(φh)2 p

(b− a)(d− c)
x+

∫ b
a

∫ d
c

(
q
p+q

)
�(φh)1 q �(φh)2 p

(b− a)(d− c)
y


≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c

f

(
p

p+ q
x+

q

p+ q
y

)
�(φh)1 q �(φh)2 p

≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c

f


(

p
h(p)

)s
p+ q

x+

(
q

h(q)

)s
p+ q

y

 �(φh)1 q �(φh)2 p,
which proves the first part of Theorem 3.1.

Under the same assumption of definition 3.1, f is φh-convex. Thus, integrating
inequality (3.1) on the rectangle [a, b]IT × [c, d]IT over �(φh)1q �(φh)2 p gives∫ b

a

∫ d

c

f

(
px+ qy

p+ q

)
�(φh)1 q �(φh)2 p

≤ f(x)

∫ b

a

∫ d

c

(
p

h(p)

)s
p+ q

�(φh)1 q �(φh)2 p

+f(y)

∫ b

a

∫ d

c

(
q

h(q)

)s
p+ q

�(φh)1 q �(φh)2 p,

and the second part of inequality (3.2) is satisfied.

Theorem 3.2. Let h be a non zero non negative function with the property
that h(t) > 0 for all t ≥ 0. Let E be a φh-convex set in a linear space of a
time scale interval XT ⊂ T and f : E ⊆ XT → R be an integrable φh-convex
function with respect to the function φh defined on the set E with the mapping
[0, 1] : λ→ f((1− λ)x+ λy) Lebesgue integrable on [a, b]IT × [c, d]IT . Then for
all p, q ≥ 0, x, y ∈ E with p+ q > 0, s ∈ [0, 1] and x, y ∈ XT,
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2h( 1
2 )f

(
x+y
2

)
≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c

(
f

(
px+ qy

p+ q

)
+ f

(
px+ qy

p+ q

))
�(φh)1 q �(φh)2 p

≤ f(x+ f(y)

(b− a)(d− c)

∫ b

a

∫ d

c

�(φh)1q �(φh)2 p.

Proof. By φh-convexity of f ,

f(λx+ (1− λ)y) ≤
(

λ

h(λ)

)s
f(x) +

(
1− λ

h(1− λ)

)s
f(y) (3.4)

and

f((1− λ)φ(x) + λy) ≤
(

1− λ
h(1− λ)

)s
f(x) +

(
λ

h(λ)

)s
f(y) (3.5)

for any 0 ≤ λ ≤ 1, and s ∈ [0, 1].

Adding (3.4) and (3.5) gives

f(λx+(1−λ)y)+f((1−λ)x+λy) ≤
((

λ

h(λ)

)s
+

(
1− λ

h(1− λ)

)s)
[f(x)+f(y)].

(3.6)
By choosing λ = p

p+q and 1− λ = q
p+q in (3.6), we obtain

f

(
px+ qy

p+ q

)
+ f

(
qx+ py

p+ q

)
≤

 p
p+q

h
(

p
p+q

)
s

+

 q
p+q

h
(

q
p+q

)
s

[f(x) + f(y)]

(3.7)
for any p, q > 0 with p+ q > 0. Then the double integrals∫ b

a

∫ d

c

f

(
px+ qy

p+ q

)
�(φh)1 q �(φh)2 p

and ∫ b

a

∫ d

c

f

(
qx+ py

p+ q

)
�(φh)1 q �(φh)2 p

exists since the mapping [0, 1] : λ→ f((1− λ)x+ λy) is φh Lebesgue integrable
on [a, b]IT × [c, d]IT .
Hence, integrating inequality (3.7) on the rectangle [a, b]IT×[c, d]IT over �(φh)1q�(φh)2
p gives

1

(b− a)(d− c)

∫ b

a

∫ d

c

(
f

(
px+ qy

p+ q

)
+ f

(
px+ qy

p+ q

))
�(φh)1 q �(φh)2 p

≤ f(x) + f(y)

(b− a)(d− c)

∫ b

a

∫ d

c

 p
p+q

h
(

p
p+q

)
s

+

 q
p+q

h
(

q
p+q

)
s

�(φh)1 q �(φh)2 p,
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which is the second inequality of Theorem 3.2.
For the first part, we have, from the φh-convexity of f that for any z1, z2 ∈
E, λ = 1

2 , s = 1, h( 1
2 ) ≤ 1. Thus,

f

(
z1 + z2

2

)
≤ 1

2h( 1
2 )

(f(z1) + f(z2)). (3.8)

Choosing z1 = px+ qy
p+q and z2 = qx+ py

p+q in (3.8), then for any p, q ≥ 0, p+q > 0,
we get

f

(
x+ y

2

)
≤ 1

2h( 1
2 )

(
f

(
px+ qy

p+ q

)
+ f

(
qx+ py

p+ q

))
. (3.9)

Integrating (3.9) on the rectangle [a, b]IT × [c, d]IT over �(φh)1q �(φh)2 p gives the
first part of Theorem 3.2.
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(To appear).

[7] Fagbemigun, B. O., Mogbademu, A. A. and Olaleru J. O. (2019). Integral
Inequalities of Hermite-Hadamard type for a certain class of convex functions
on time scales. Publications de l’institute Matematique (In Review).

[8] Fagbemigun, B. O. and Mogbademu, A. A. (2019). Two-dimensional
Hermite-Hadamard type inequalities for a diamond-φh-convex functions
on the co-ordinates (Submitted).

[9] Guseinov, G. Sh. (2003) Integration on time scales, J. Math. Anal. Appl.,
285(2003), 107-127.

[10] Hilger, S. (1990). Analysis on measure chains-a unified approach to
continuous and discrete calculus. Results Math., 18, 18-56.

10
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