NORM INEQUALITIES FOR THE DIFFERENCE BETWEEN
WEIGHTED AND INTEGRAL MEANS OF OPERATOR
DIFFERENTIABLE FUNCTIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let f be a continuous function on I and A, B € SA; (H), the
convex set of selfadjoint operators with spectra in I. If A # B and f, as an
operator function, is Gateaux differentiable on

[A,B] = {(1—t)A+tB|te0,1]},

while p: [0,1] — R is Lebesgue integrable, then we have the inequalities
1 1 1
‘/ p(T)f((lfT)AJrTB)de/ p(T)dT/ F((1—7)A+7B)dr
0 0 0
1
S/lfr(l—'r) f_rp(s)ds_f(;—p(s)ds
0 — T

1—7
Lt fIp(s)ds [y p(s)ds
Sz/o I

1—7
Some particular examples of interest are also given.

va(lfr)AJJFB (B - A)H dr

||Vf(17T)A+TB (B - A)H dr

1. INTRODUCTION

A real valued continuous function f on an interval [ is said to be operator convex
(operator concave) on I if

(1.1) FA=XNA+AB) < (2)(1 =) f(A) +Af(B)

in the operator order, for all A € [0,1] and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I. Notice that a function f is
operator concave if — f is operator convex.

A real valued continuous function f on an interval I is said to be operator
monotone if it is monotone with respect to the operator order, i.e., A < B with
Sp(A),Sp(B) C I imply f(A) < f(B).

For some fundamental results on operator convex (operator concave) and oper-
ator monotone functions, see [9] and the references therein.

As examples of such functions, we note that f (¢t) = t" is operator monotone on
[0,00) if and only if 0 < r < 1. The function f (t) = t" is operator convex on (0, 00)
if either 1 <7 <2 or —1 < r < 0 and is operator concave on (0,00) if 0 < r < 1.
The logarithmic function f(¢) = Int is operator monotone and operator concave
on (0,00). The entropy function f (¢) = —tInt is operator concave on (0, 00). The
exponential function f (t) = e’ is neither operator convex nor operator monotone.
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In [5] we obtained among others the following Hermite-Hadamard type inequal-
ities for operator convex functions f: I — R

1
(1.2) f(A+B)§/O F((1=s)A+sB)yds < LA B

2 2 ’

where A, B are selfadjoint operators with spectra included in 1.
From the operator convexity of the function f we have

(1.3) f(A;B)siwulswusm+fwA+u@Bn
IESIL)

for all s € [0,1] and A, B selfadjoint operators with spectra included in I.

If p:[0,1] — [0,00) is Lebesgue integrable and symmetric in the sense that
p(l1—3s) =p(s) for all s € [0,1], then by multiplying (1.3) with p(s), integrating
on [0,1] and taking into account that

/p(s)f((l—s)A+sB)ds=/ () [ (sA+(1—s)B)ds,
0 0

we get the weighted version of (1.2) for A, B selfadjoint operators with spectra
included in I

(1.4) (A}@mgf(AgB)<A%@W@A+u—@BMs
< (/Olp(s)ds> w,

which are the operator version of the well known Féjer’s inequalities for scalar
convex functions.

For recent inequalities for operator convex functions see [1]-[7] and [10]-[19].

Let SA; (H) be the class of all selfadjoint operators with spectra in I. If A,
B € SA;(H) and t € [0,1] the convex combination (1 —¢) A + ¢B is a selfadjoint
operator with the spectrum in I showing that SA; (H) is convex in the Banach
algebra B (H) of all bounded linear operators on H. If f is continuous function on
1. By the continuous functional calculus of selfadjoint operator we conclude that
f((1—1t)A+tB) is a selfadjoint operator with spectrum in I.

A continuous function f : SA; (H) — B(H) is said to be Gdteaux differentiable
in A € SA; (H) along the direction B € B(H) if the following limit exists in the
strong topology of B (H)

(1.5) Vfa(B) :=lim FlA+ SB;) —f(4)

lim €B(H).
If the limit (1.5) exists for all B € B (H), then we say that f is Géateaux differentiable
in A and we can write f € G (A). If this is true for any A in an open set S from
SA; (H) we write that f € G(S).

If f is a continuous function on I, by utilising the continuous functional calculus
the corresponding function of operators will be denoted in the same way.

For two distinct operators A, B € SA; (H) we consider the segment of selfadjoint
operators

[A,B]:={(1—t)A+tB|te[0,1]}.
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We observe that A, B € [A,B] and [A,B] C SA; (H).
In the recent paper we obtained the following result:

Theorem 1. Let f be an operator convex function on I and A, B € SA; (H) , with

A#B. If f € G([A,B]) and p: [0,1] — R is a Lebesgue integrable function such
that

T 1
(1.6) %/0 p(s)dsgi/T p(s)ds for all T € (0,1),

then we have the inequalities

(1.7) UolTp(T)dr—;[p(r)dT] Via(B - A)

< [p@ s -naree- [

p(7)dr 1f((l —71)A+TB)dr
0 0 0

< [AlTp(T)dT—;Alp(T)dT} Vig(B—A4).

This inequality is equivalent to
17 1t
= [/0 p () dr — 5/0 p(T)dT} [Vfa(B—A)—Vfg(B— A
1 1 1
§/0 p(T)f((lfT)AJrTB)dT*/O p(T)dT/O f(1—=7)A+7B)dr

- Uolrpmdf_;/olp(f)dr] Vin(B=A)+Via(B-4)

<3[[ @i [ v i -2 -vias- ),

which implies for x € H, ||z|| = 1 that
1 1 1
<</ p(T)f((l—T)A+TB)dT—/ p(T)dT/ f(1=71)A+7B)dr
0 0 0

— [/OITP(T)dT—;/Olp(T)dT} Yin (B_A);VfA (B_A)>$7m>

<3[[ @i [ o] (95280~ Vi3 - a1en)

and by taking the supremum over = € H, ||z|| = 1, we get the norm inequality
1 1 1
‘/ p(T)f((lfT)A+TB)de/ p(T)dT/ f((QA=7)A+7B)dr
0 0 0
1 1 - B
[ -4 o] B2 100
0 0

2
L[t e
<[ =g [ p@ar] 19054~ Vha 5 - )
0 0
provided that f is an operator convex function on I, A, B € SA; (H), with A # B,

f€G([A,B]) and p : [0,1] — R is a Lebesgue integrable function such that the
condition (1.6) holds.
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Motivated by the above results, in this paper we establish norm inequalities for
the difference between the weighted integral mean and the integral mean in the case
of Gateaux and Fréchet differentiable functions of selfadjoint operators in Hilbert
spaces. Some examples for the class of functions

DW (0,00) := {f | IDF(A)|| = |If (A)|| for all positive operators A},

where Df(A) is the Fréchet derivative in A and f’ (A) is the operator function
generated by f’ and positive operator A, are also given. The case when f’ is
nonnegative and operator convex and the weight is symmetric is also analyzed.

2. NORM INEQUALITIES
We need the following preliminary result, see :

Lemma 1. Let f be a continuous function on I and A, B € SA; (H), with A # B.
If f € G([A, B]), then the auxiliary function ¢4 py is differentiable on (0,1) and

(2.1) Pap) ) =Vianaps (B—A).
Also we have for the lateral derivative that

(2.2) ¢(a,p) (0+) =V fa (B - A)
and

(2.3) SDI(A,B) (1-)=Vfs(B-4).

Proof. For the sake of completeness, we give here a short proof.
Let t € (0,1) and h # 0 small enough such that ¢t + h € (0,1). Then

o E+h) = v p @)

(2.4) -
_f(A—t=hA+(t+h)B)—f(1—t)A+1B)
h
_f((A=HA+tB+h(B—A) - f(1—t)A+1B)
- .

Since f € G ([A, B]), hence by taking the limit over A — 0 in (2.4) we get
oy PAB) (t+h) —pun @)

Pap ) = }Ll_m 3
_ f(A-t)A+tB+h(B—A))—f((1-t)A+1tB)
=l h

= vQ(lft)AthB (B—A4),
which proves (2.1).
Also, we have

¢a,p) (h) — o p)(0)

Pam (04) = i, h
oy SA=R)ALRB) — f(4)
h—0+ h
_ . J(A+h(B-A4)-f(4) _
-, i = VI B -4

since f is assumed to be Gateaux differentiable in A. This proves (2.2).
The equality (2.3) follows in a similar way. a
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We also need the following identity that is of interest in itself:

Lemma 2. Let f be an operator convex function on I and A, B € SA; (H), with
A#%B. If fe€G([A,B]) and g : [0,1] — C is a Lebesque integrable function, then
we have the equality

1 1 1
(2.5) /Og(r)f((l—r)A+rB)dr—/0 g(T)dT/O f((1=7)A+7B)dr
:/0 T(1- (f 9(s)ds _ Jo gf)d8> Viamases (B — A)dr.

1—7
Proof. Integrating by parts in the Bochner’s integral, we have
T 1
| et e+ [ =1 ()

1

— roam (7) - / o (Dt — (1~ 1) g (7) — / o (B)dt

T

1
=p(a,p) (1) — /O Pa,p) () dt

that holds for all 7 € [0,1].
If we multiply this identity by ¢ (7) and integrate over 7 in [0,1], then we get

1 1 1
(2.6) / 0 (r) Poap (r) dr — / g(r)dr / oo (B)dt

-/ () ( [ tetam @ dt) i+ [ o) ( / Dl dt) dr.

Using integration by parts, we get

(27) / 9@ ([t @ at) ar
/(/ i @) a( [ aas)
< i g(s ) (/OTtSD/(A,B) (t) dt) 1
/o (/OTQ )T<P(AB)( )dr

0
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0t ( AB)()dt)dT
/ </ t—1 SO(AB)()dt)d(/OTg(S)dS>
( so(AB)()d)(/ng(s)ds)l
+/O (/079(8) d$> (T = 1) ¢a,p) (T)dr
- [ 1 ([ 95 (7= Dt (),

which proves the identity

0

(2.9) / 0 (7) Piap) (r)dr - / o (r)dr / oo (1) dr

-/ 1 ( / () ds) Tl (1) dr
+f 1 ([ a@as) =1 ¢ta ()0r

Now, observe that

/01 (/TIQ(S)dS)T@/(A,B) (T)dT‘i‘/Ol (/Jg(s)ds) (7_1)4,0/(A¢B)(T)dT
:/01T</Tlg(8)d8>"D/(A,B)(T)dT_/Ol(l_T) (/079( )ds> @(AB)( T)dr

:/0 (11— (f lgjids s gis) ds) Pla,p) (1) dT

and by (2.9) we obtain the desired equality (2.5). O

Remark 1. It is well known that, if f is a C'-function defined on an open in-
terval, then the operator function f(X) is Fréchet differentiable and the derivative
Df(A)(B) equals the Gdteauz derivative V fa (B). So for functions f that are of
class C* on I we have the equality

1 1 1
(2.10) /0g(T)f((l—T)A+TB)dT—/Og(T)dT/O f(1—71)A+71B)dr

:/17(1 (fg ds—f‘;gf)d8>Df((l—T)A+rB)(B—A)dT.

1—71

for A, B € SA;(H), where g : [0,1] — C is a Lebesgue integrable function on
[0,1].

‘We have:
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Theorem 2. Let f be an operator convex function on I and A, B € SA; (H) , with
A#B. If feG([A, B]) and p: [0,1] — R is a Lebesgue integrable function, then
we have the inequality

1 1 1
(2.11) ‘/Op(r)f((lT)A+7'B)d7'/0p(7')d7'/0 f(1—71)A+7B)dr

1 . f:p(s)dsifoTp(s)ds
<[ ra-n :

1—-7
- 1/1 f:p(s)ds B fOTp(s)ds
—4 /) 1—7 T
Proof. If we take the norm in the equality (2.5) written for p = g, we have

’/0 p(T)f((l—T)A+TB)dT—/O p(T)dT/O f(l=7)A+7B)dr
<[ |ra-n (fflpfslds Ly pf)ds> Vi rasen (B = A)
0

:/017'(1—7') Jop(s)ds [y p(s)ds

1—7 T
and since 7 (1 — 7) < % for 7 € [0,1], hence (2.11) is proved. O

|V fa-rasrs (B—A)| dr

va(lfr)AJrTB (B - A)H dr

dr

IVfa—ryarrs (B—A)|dr

Remark 2. For functions f that are of class C* on I we have the inequality

1 1 1
(2.12) ‘/Op(r)f((lT)A+7'B)d7'/0p(7')d7'/0 f((=7)A+7B)dr

1 f:p(s)ds pr(s)ds
<IB-Al [ - el
x |Df (1 —7)A+7B)|dr
1 ! S S 4 S S
<qlim-al [ | PRy pr g4k rm)ar

for all A, Be SA; (H).

Corollary 1. With the assumptions of Theorem 2 and if

sup ||V fiu—rasrp (B—A)|| < oo,
T€[0,1]



8 S. S. DRAGOMIR
then
(2.13) H/o p(T)f((l—T)A+TB)dT—/0 p(T)d’T‘/O f(1—7)A+7B)dr

< sup ||vf(1—T)A+TB (B — A)H
76[0,1]

X/Ol’]'(].—’f)

< sup HVf(lfr)Aer (B - A)H
76[0,1]

1
o

dr

lep(s) ds B fOTp(s) ds
1—7 T

f_rl p(s)ds . Jo p(s)ds

1—7 T

dr

1/r 1 le p(s)ds JJ p(s)ds
X [ﬂ(r+1,r+1)] (fo = — 7
wherer, ¢ > 1, %—&-

q l/q
dT)

1 _ 1.
=1

1—-7 !

le p(s)ds . fo’— p(s)ds

1
6 SUPref0,1]

where B is the Beta function
1
/B(xay) :/ tx71 (lit)yil dta z, y>0
0
Remark 3. For functions f that are of class C* on I we have the inequality

(2.14) H/Olp(T)f(u—7)A+TB)dT—/Olp(T)dT/Olf((l—T)A+TB)dT

<|[B— A sup IDf((1=7)A+7B)|
T7€|0,

X/O (1) lepisids_fopis)ds

<|[B—A| sup [[Df((1-7)A+7B)
T€[0,1]

dr

dr

lfl Slp(s)ds [ p(s)ds
4 J0O 1—7 T

[ip(s)ds  J7 p(s)ds

1—7 T

W Blr+1rt o (fol

q 1/q
dT)

where r, ¢ > 1, %—}—

Q=

le p(s)ds . jOT p(s)ds
1—7 T

1
6 SUPreo,1]

forall A, Be SA; (H).

)

Corollary 2. With the assumptions of Corollary 1 and if p : [0,1] — R is a
Lebesgue integrable function such that

T 1
(2.15) %/ p(s)ds < %/ p(s)ds for all T € (0,1),
0 - T
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then we have

(2.16) ’/Olp(T)f((l—T)A+TB)dT—/01p(T)dT/01f((1—T)A+TB)dT

! 1
< SU.p va(l T)A+71B (B A)H A <T - 2> p(T) dr.

T€[0,1

Proof. From (2.13) we have

(2.17) ’/0 p(T)f((l—T)A+TB)dT—/0 p(T)d’T‘/O f((A=7)A+7B)dr
< sup ||vf(1—T)A+TB (B - A)H

T€[0,1]
X/lT(]. ds_fOTp(s)ds
0

= sup vau na+rs (B—A)|

T€[0,1

1 f p(s)ds f p(s)ds
x/or(l < 1_T 9 - )dr.

Since, like in (2), we have the equality

/017(1 (f 1p_Td3 forpis)‘“) dr:/olfp(T)dT_;/olp(T)dT’

hence by (2.17) we get (2.16). O

d
1—T T

Remark 4. For functions f that are of class C* on I and p satisfying the condition
(2.15), we have the inequality

(2.18) ’/Olp(f)f(u—T)A+TB)dT—/Olp(f)dT/Olf(u—T)A+TB)dT

1
<5l sw 107 (-0 A+B)] [ (7-3)prar
T€[0,1] 0

forall A, Be SA; (H).

Corollary 3. With the assumptions of Theorem 2 we have

(2.19) ’/Olp(f)f(u—T)A+TB)dT—/Olp(T)dT/Olf(u—T)A+TB)dT

1 T 1
< sup 7'/ p(s)ds—/ p(s)ds/ HVf(l,T)AJrTB(B—A)HdT
refo,1]1 Jo 0
SE su f p(s)ds fo
4 E[O 1] 1_T
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Proof. We have

/017(1—T)

le p(s)ds B fOT p(s)ds

1_+ ”vf(l—T)AJrTB (B - A)H dr

s)ds
< sup |7(1-— fo / ||Vf(1 na+rB (B —A) || dr
T7€[0,1] 1 - T
1 T
- s I / p)ds—(1-7) [ pls)ds ] L1950 nien (8- 4)]ar
7€[0,1] T 0 0
1 T 1
= sup T/ p(s)ds —/ p(s)ds / IV fa—ratrn (B — A)| dr.
refo,1] | Jo 0 0
Also
s)d ’ d
sup |7(1— 5 fO p(s)ds
T7€[0,1] 1 -7
< L f p(s)ds B Jop(s)ds
4 6[0 1] 1—7 T
and the inequalities in (2.19) are proved. O

Remark 5. For functions f that are of class C' on I we have the inequalities

[ o sa-nasmar- [ o [ r-nacrp
<|1B - A| sup

1 T
7'/ p(s)ds—/ p(s)ds
7€[0,1] 0 0

1
x/ IDf((1—7)A+7B)|dr
f p(s)ds fOTp(s)ds

1—7'

(2.20) ’

IIB Al su
re[o 1]

1
D 1—7)A+7B)|| dr
></0|| F(1—m)AtrB)|
forall A, Be SA; (H).

3. EXAMPLES FOR SOME GENERAL CLASSES OF FUNCTIONS

Let f be a real function that is n-time differentiable on (0, 00), and let f(™ be
its n-th derivative. Let f also denote the map induced by f on positive operators.
Let D™f(A) be the n-th order Fréchet derivative of this map at the point A. For
each A, the derivative D™ f(A) is a n-linear operator on the space of all Hermitian
operators. The norm of this operator is defined as

D" f(A)]l := sup {D" f(A) (By, .., Bu) | [|Bill = ... = [|Bnl| = 1}

We consider the following class of functions defined on (0, o) for a natural n > 1,

DM (0, 00) := {f | ID"f(A)| = Hf(”) )H for all positive operators A} .
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It is known (see for instance [10]) that every operator monotone function is in
D™ (0,00) for all n = 1, 2,.... Also the functions f(t) = t", n = 2, 3, ..., and
f(t) = expt are in DM (0,00). None of these are operator monotone. Moreover,
the power function f(t) = t? is in D™ (0, 00) if p is in (—o0, 1] or in [2, 00), but not
if p is in (1,v/2). Also that the functions f(t) = expt and f(t) = t?, —oo < p < 1,
are in the class D™ (0,00) for all n = 1, 2, ..., and that for p > 1 the function
f(t) = t? is in the class D™ (0,00) for all n > [p + 1], where [-] is the integer part
(see for instance [10] and the references therein).

Proposition 1. If f € DM (0,00), A, B > 0 and p : [0,1] — R is Lebesgue
integrable, then

(3.1) ‘/Olp(r)f((l—T)A+TB)dT—/Olp(T)dT/OIf((1—T)A+TB)dT
<ip-ap [ v Lpeds_Jipe
< If (L= 7) A+ B)| dr
< Lypoay [ | 2O BROS] g
and
(3.2) ‘/Olp(r)f((l—T)A—I—TB)dT—/Olp(T)dT/Olf((l—T)A+TB)dT

1 T
<||B — A sup T/ p(s)ds — / p(s)ds
refo1]1 Jo 0

x/o 1 (1= 7) A+ 7B)| dr

le p(s)ds B fOTp (s)ds

1—71

1
<~ [|B— Al sup
4 r€[0,1]

1
X / If (1—7)A+7B)|dr.
0
If p satisfies the condition (2.15), then we have the inequality

(3.3) ‘

/Op(T)f((l—T)A—i-TB)dT—/Op(T)dT/O f(1l=7)A+7B)dr

<B4l sw £ (1-n) A+ | (T—l)pmm.

T€[0,1] 2
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If f = exp, then
1 1
/ llexp((1 —t) A+tB)| dt < / exp ||((1 —t) A+ tB)| dt
0 0

1
< / exp [(1— £) | A]| +¢||B]] dt

Bll— A
Syt Al for (|B]| # 1A,

exp [|A]| for ||B|| = [|Al
and by (3.2) we have
(3.4)

‘/Olp(T)exp((l—T)A+7B)d7—/olp(7-)d7/01exp((1_T)A_H_B)dT

1 T
<15 Al swp 7 [ p)ds [ pis)ds
7€[0,1] 0 0

ex —exp||A
{ elBl—enl Al for | B|| £ 1A,
X
exp || Al for ||B]| = [|A]
1 T
< B A sup [fpE)ds  Jor()ds
4 T€[0,1] 1—-7 T

expl||B||—exp||A

{ SeiPl-oll Al for (||| # 1A,

X
exp ||A]| for ||B] = || 4|l

where p: [0,1] — R is Lebesgue integrable and A, B > 0.
Further, if we assume more about the function f we have:

Proposition 2. If f € DM (0,00) and f' is operator convex and nonnegative on

(0,00) and p: [0,1] — R is Lebesgue integrable, then for A, B > 0, we have

1 1 1
(3.5) ‘/Op(T)f((l—T)A-I-TB)dT—/Op(T)dT/O f(l=71)A+7B)dr

lep(s) ds Jo p(s)ds
1—17 T

1
< —||B—A|l sup
12 H || te(o,l)

U A+ (B

Proof. Since f’ is operator convex and nonnegative on (0, 00) then for A, B > 0 we
have

0< f(A-t)A+tB) < (1-t)f'(A) +tf (B)
for t € [0,1]. By taking the norm, we get
I (1 =t) A+tB)|| < (1 =) f'(A) +tf (B)]|
A=) A+l (B)

for t € [0,1].
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By the first inequality in (3.1) we have
1 1 1

‘/ p(T)f((lfT)A+TB)de/ p(T)dT/ f((Q=7)A+7B)dr
0 0 0

1 T

d d 1

< B A sup L2 Jorlo)ds | ra-n
ey 1—7 T 0

x|If (1 —=71)A+7B)|dr

1 T
d d
<A sup | 2D Jor ()l
T

te(0,1) 1—7

/0 TA=7) [ =) I QI+ B

1 T

| Tp(s)ds [T p(s)ds

= LA s |L o
12 t€(0,1) 1—7 T

LI+ 11 BT

which proves (3.5). O

Consider the function f(z) = z"on (0,00), where 0 <r <1 or 2 <r < 3. Then
by (3.5) we get

1 1 1
(3.6) /0 p(t) (1 —71)A+7DB) de/O p(T)dT/O (1—=7)A+7B) dr
T "p(s)ds "p(s)ds
< 18-l sup (FPE08 2O sy g
for A, B > 0.
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