OPERATOR UPPER BOUNDS FOR DAVIS-CHOI-JENSEN’S
DIFFERENCE IN HILBERT SPACES

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we obtain several operator inequalities providing
upper bounds for the Davis-Choi-Jensen’s Difference

@ (f(A) - f(2(4))
for any convex function f : I — R, any selfadjoint operator A in H with the
spectrum Sp (A) C I and any linear, positive and normalized map ® : B(H) —

B(K), where H and K are Hilbert spaces. Some examples for convex and
operator convex functions are also provided.

1. INTRODUCTION

Let H be a complex Hilbert space and B (H), the Banach algebra of bounded
linear operators acting on H. We denote by By, (H) the semi-space of all selfadjoint
operators in B (H). We denote by BT (H) the convex cone of all positive operators
on H and by BTt (H) the convex cone of all positive definite operators on H.

Let H, K be complex Hilbert spaces. Following [1] (see also [12, p. 18]) we can
introduce the following definition:

Definition 1. A map ® : B(H) — B(K) is linear if it is additive and homogeneous,
namely
D (AA+ uB) =20 (A) + n® (B)

forany A\, pe C and A, B € B(H). The linear map ® : B(H) — B(K) is positive
if it preserves the operator order, i.e. if A € BT (H) then ® (A) € Bt (K ). We write
O e P[B(H),B(K)]. The linear map ® : B(H) — B(K) is normalised if it pre-
serves the identity operator, i.e., ® (1g) = 1x. We write ® € Py [B(H),B(K)].

We observe that a positive linear map ® preserves the order relation, namely

A < B implies ® (A) < @ (B)

and preserves the adjoint operation ® (A*) = ®(A)". If ® € Py [B(H),B(K)]
and Ole S A S ﬁlH, then OélK S (I)(A) S 51[{.

If the map ¥ : B(H) — B(K) is linear, positive and ¥ (1) € Bt (K) then by
putting ® = U2 (1) WU ~/2 (1) we get that & € Py [B(H),B(K)], namely
it is also normalised.

A real valued continuous function f on an interval I is said to be operator convex
(concave) on I if

fA=XNA+AB) < (2)(1-=A)f(A)+Af(B)
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for all A € [0, 1] and for every selfadjoint operators A, B € B (H) whose spectra are
contained in 1.
The following Jensen’s type result is well known [12, p. 22]:

Theorem 1 (Davis-Choi-Jensen’s Inequality). Let f : I — R be an operator convex
function on the interval I and ® € Py [B(H),B(K)], then for any selfadjoint
operator A whose spectrum is contained in I we have

(1.1) f(@2(A) <@ (f(4).

We observe that if U € B [B(H),B(K)] with ¥ (15) € Bt* (K), then by taking
O =U"12 (1) VT2 (1) in (1.1) we get

£ (U772 () W (A 02 (1)) < U7V (1) W (F (A) 2 (1),
If we multiply both sides of this inequality by ¥'/2 (15) we get the following Davis-
Choi-Jensen’s inequality for general positive linear maps
(12) W2 () £ (02 (1) W (A) UV (1) ) WY (1) W (F(A)).

Let C; € B(H), j =1,...,k be contractions with
k
(1.3) > CrCi=1n.
j=1
The map @ : B(H) — B (H) defined by [12, p. 19]
k
O (A):=) CjAC;
j=1

is a normalized positive linear map on B (H).
In this paper we obtain several operator inequalities providing upper bounds for
the Davis-Choi-Jensen’s Difference

O (f(A) - f(2(4))
for any convex function f : I — R, any selfadjoint operator A in H with the
spectrum Sp (A) C I and any linear, positive and normalized map ® : B(H) —
B (K), where H and K are Hilbert spaces. Some examples for convex and operator
convex functions are also provided.

2. MAIN RESULTS
We use the following result that was obtained in [5]:

Lemma 1. If f : [a,b] — R is a convex function on [a,b], then
(b—t)fa)+(t—a)f(b)
b—a
fL () — fi (a)
b

21) 0<

<(b-t)(t—a)

for any t € [a,b].
If the lateral derivatives f' (b) and f! (a) are finite, then the second inequality
and the constant 1/4 are sharp.

‘We have:
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Theorem 2. Let f : [m,M] — R be a convex function on [m,M] and A a self-
adjoint operator with the spectrum Sp (A) C [m,M]. If ® € By [B(H),B(K)],
then

22) B (f (4)) ~ £ (@ (4)
< FOZE O 1y — o () @) 1)
< 3 OF = m) [ (M) = £ (m)] 1

Proof. Utilising the continuous functional calculus for a selfadjoint operator T with
0 < T < 1p and the convexity of f on [m, M], we have

(2.3) fm(g =T)+MT) < f(m)(Ay =T)+ f(M)T

in the operator order.
If we take in (2.3)

AfmlH
<T= <1
0 M—m —
then we get
A—mlH A—mlH
24 1y — M
(24) f(m(H M—m)+ M—m>

A—mlH A—mlH

< 1) (1= 5 )+ A

— A—ml
m<1H_A mlH)+M mig

Observe that

M—-—m M —m
_m(MlH—A)+M(A—m1H)_A
= U —m =

and
7y (1= A7) g (o) S
_ Fm) (Mg — A) 4 £ (M) (A = mLy)

M—-m
and by (2.4) we get the following inequality of interest
[ (m) (Mg — 4) + J (M) (A— mln)
M —m
If we take the map ® in (2.5), then we get
f(m)(M1ly — A)+ f (M) (A—mly)

(2.5) f(A) <

o(f () <@ oL
[ m)® (ML — A) 1 [ (M)®(A—mlg)
M—m
_ S m) (MO (1) =@ (A) + f (M) (®(A) —mP (1u))
M—m

f(m) (Mlg —@(A) + f(M)(®(A) —mlk)
M—-—m ’
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which implies that
(2.6) ®(f(A) - f(2(A)

f(m) (M1g — @ (A)) + f (M) (P (A) —mlk)
- M—-m

—f(®(4)).

Since mlx < ®(A) < Mlg, then by using (2.1) for a = m, b = M and the
continuous functional calculus, we have

f(m) (M1g — @ (A)) + f (M) (@ (A) —mlk)

@) ) ~ (@A)
< EOUZI 0y a)) @ (4) — i)
< 3 O —m) [72 (M) — 1 (m)] 1
By making use of (2.6) and (2.7) we get the desired result (2.2). O

Corollary 1. Let f : [m, M| — R be an operator convex function on [m, M| and A a
selfadjoint operator with the spectrum Sp (A) C [m, M]. If ® € P [B(H),B(K)],
then

(2.8) 0<@(f(A4) - f(2(4)
(

IN

< 5 (M —m) [fL (M) = f} (m)] 1.

RNy

We also have the following scalar inequality of interest:

Lemma 2. Let f: [a,b] — R be a convex function on [a,b] and t € [0,1], then

(2.9) 2min {£,1— ¢} [f(a);f(b) _f (a—i—b)]
<(A=t)f(a)+tf(b)—f

{f(a)-‘r
2

((1—t)a+tb)
(

(23]

The proof follows, for instance, by Corollary 1 from [6] for n = 2, p; = 1 — ¢,
pe=t,t€[0,1 and 1 = a, x5 = .

< 2max {t,1 —t}

Theorem 3. Let f : [m,M] — R be a convex function on [m,M] and A a self-
adjoint operator with the spectrum Sp (A) C [m,M]. If ® € Py [B(H),B(K)],
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then
(2.10) Q[W_f<m+M)

(501 = m) 1= @ 4) = § on 4 30) 1]
)

f(m) (Mlg — @ (A) + [ (M) (®(A) —mlk)
M—-—m

—f(@(4)

IN IA

{f( m) + f (M) f<m;M>}

2
( (M — le+’ —(m+M)1KD

and

(2.11) Q[f(m)‘gf(M)_f<m—&2—M)]

X (;(M—m)lK—q)(‘A—;(m—&-M)lK'))

f(m) (Mlg —@(A) + f(M) (P (A) —mlk)
M—-m

p[Lmsn _y (medry]

—®(f(4)

IN IN

y (;(M—m)1K+<p<‘A—;(m+M)1HD>.

Proof. We have from (2.9) that

(2.12) 2<;_P_;D[f@w;fwﬂ_f<m;wﬂ}
<@ =) f(m)+tf (M) — f((1—t)m+tM)

o s ()]
for all t € [0,1].

Utilising the continuous functional calculus for a selfadjoint operator T' with
0 <T <1y we get from (2.12) that

pay R [LEION (MY (L 1)
T)f(m)+Tf(M) - f(A-T)m+TM)

<@-
oI ()] ()

n the operator order.
If we take in (2.13)
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then, like in the proof of Theorem 2, we get

(2.14) 2V0m;fM@—f<m;M>}

x<;M_mnHﬁA_;m+Mn4>
f(m)(Mly —A)+ f (M) (A—mlyg)

< Y - f(4)
. SO0 (m M
A

5 m)ly + |A 2(m+M)1H>

Since mlg < ®(A) < M1k, then by writing the inequality (2.14) for ® (A)
instead of A we get (2.10).
If we take @ in (2.14), then we get

[ (1)

(;M mlH‘AQ(m+M )
-

f(m)(M1y —A)+ f(M)(A—mlg)
<® —of(A
< SR F(4)
<9 [ +fM@_f<m+M>}
2
1 1
x(I)(Q(M—m)lH—i—‘A—Q(m—&-M)lH ),
which is equivalent to (2.11). O
Corollary 2. Let f : [m, M] — R be an operator convez function on [m, M] and A a

selfadjoint operator with the spectrum Sp (A) C [m, M]. If ® € Py [B(H),B(K)],
then

(2.15) g[f(m);f(M)f<m;M)]

X (;(M—m)lK—QQA—;(m—&-M)lH‘))
f(m) (Mlg —@(A) + f(M) (2 (A) —mlk)

§ )+ 1 — B (7 (4))

< LM O = S+ 70D @A) = mlx) _ ;g )
f(m)+ f(M) m+ M

gg{ 2 f< 2 >}

« (;(M—m)lK+’<I>(A)—;(m—I—M)lKD.

We also have:
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Corollary 3. Let f : [m,M] — R be a convex function on [m, M] and A a self-
adjoint operator with the spectrum Sp (A) C [m,M]. If ® € Py [B(H),B(K)],
then

(2.16) @ (f(A) - f(2(4)

(m) (M1gx — @ (A)) + f (M) (P (A) —mlk)
< x2S 1) (@ (4))
and from (2.11) we have
f(m) (Mlg — @ (A)) + f (M) (@ (A) —mlk)
—rm (@)
f(m) + f (M) m+ M
<[ ()]
x (;(M—m)lK—F‘fI)(A)—;(m—I—M)lK )
which produce the desired result (2.16). O

Remark 1. If f : [m, M] — R is an operator conver function on [m,M], A a
selfadjoint operator with the spectrum Sp (A) C [m, M] and ® € Py [B(H) ,B (K)],
then

(2.17) 0<d(f (A)) f(®(4))
<2 [T IE0 ()]
(; 1K+' B (A) — & (m+ M) D
o [LIEL0N _y (n 0]

We also have [5]:

Lemma 3. Assume that f : [a,b] — R is absolutely continuous on [a,b]. If f' is
K -Lipschitzian on [a,b], then

(2.18) |(1—1)f(a) +tf(b) —
S%K(b—t)(t—a)é

F (1 —=t)a+tb)]
éK(b— a)’

for allt €10,1].
The constants 1/2 and 1/8 are the best possible in (2.18).
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Remark 2. If f : [a,b] — R is twice differentiable and f" € Ly [a,b], then
(2.19) (1=1) f(a) +tf (b) = f (1 —t) a+ D)

1 " 1 " 2
§ 5 ||f ||[a,b],oo (b - t) (t - a) S § ||f H[a,b],oo (b - a) )

where || f"||4 4,00 = €SSUPse(qp |f” (t)| < 00. The constants 1/2 and 1/8 are the
best possible in (2.19).

We have:

Theorem 4. Let f : [m,M] — R be a twice differentiable convex function on
[m, M with | f"|| (47,00 *= €SUPsem ) 7 (8) < 00 and A a selfadjoint operator
with the spectrum Sp (A) C [m, M]. If ® € Py [B(H), B (K)], then

(2.20) ®(f(A) - f(2(4))

17 Ny oo (ML — 8 (4)) (@ (4) — i )

IN

IN

1
18 0 O = ) L.
Proof. From (2.19) and the continuous functional calculus, we get

1

(2.21) 0<

IA

1
g Hf””[m,M],oo (M - m)2 lH

where B is a selfadjoint operator with the spectrum Sp (B) C [m, M].
If we use (2.21) for ® (A) we get

f(m) (Mlg — @ (A)) + f (M) (@ (A) - mlk)

(222) o< )+ - F(@(4)
< 17 sy e (M1 = ® (4)) (@ (4) — 1)
< 51 Ny (M =) L
Since
P (f(A) - f(2(4))
hence by (2.22) we get (2.20). O

Corollary 4. Let f : [m, M] — R be an operator convez function on [m, M] and A a
selfadjoint operator with the spectrum Sp (A) C [m, M]. If ® € Py [B(H), B (K)],
then

(223) 0 ®(f(4)~ £ (2 (4))
< 317y oo (ML = ® (4)) (@ (4) = 1)

1
< g ||fNH[m,M],oo (M - m)2 1k.
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3. SOME EXAMPLES

We consider the exponential function f (x) = exp (az) with a € R\ {0} . This
function is convex but not operator convex on R. If A is selfadjoint with Sp (A) C
[m, M] for some m < M and ® € Py [B(H),B(K)], then by (2.2), (2.16) and
(2.20) we have

(3.1) ® (exp (@A) — exp (a® (A))
<oZP (O‘J‘ﬁ - Z’;p (am) (M1g — @ (A)) (@ (A) — mlk)
< ia (M —m) [exp (aM) — exp (am)] 1 g,

(3.2) ® (exp (@A) — exp (a® (A))

<9 [exp(am) + f(aM) exp (am+M)}

2 2

(2 —m) 1k + @ (4) = E(m+ M) 1k
2 2

<2 (M —m) [exp(am) Hl(aM) (am—kMﬂ .

2 2
and
(3.3) O (exp (wd)) — exp (a® (A))
1 exp (aM) if a >0
§§a2 X (M1lg —®(A)) (®(A) —mlk)
exp (am) if a <0
1 exp (aM) ifa>0
§§042(M—m)2 x 1k.
exp (am) if a <0
The function f (z) = —Inx, z > 0 is operator convex on (0, 00) . If A is selfadjoint

with Sp (A) C [m, M] for some 0 < m < M and ® € Py [B(H),B(K)], then by
(2.8), (2.17) and (2.23) we have

(3.4) 0<In(®(A)) —®(In(A))
< 7 (M1y — @ (4)) (2 (4) —mlx) < ﬁ (M —m)? 1k,
(3.5) 0<In(®(A)) — @ (In(A))
<om (ZEH) (L - mytic o) - om0 14

gz(M—m)1n<m+M>1K

2vVmM

(3.6)  0<In(®(A))—d(n(A))
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We observe that if M > 2m then the bound in (3.4) is better than the one from
(3.6). If M < 2m, then the conclusion is the other way around.

The function f (z) = xInz, x > 0 is operator convex on (0, c0) . If A is selfadjoint
with Sp(A) C [m, M] for some 0 < m < M and ® € Py [B(H),B(K)], then by
(2.8), (2.17) and (2.23) we have

(3.7) 0< @ (Aln(A) — @ (A)In (®(A))

() =) gy g (a)) (@ (A) - mlg)

(
§2gnln(m)len(M) B <1m—|2—M> (m—;M)]
X (Q(M—m)lK—&-’(I)(A)—Q(m—i-M)lKD
<2(M—m) [mln(m)—;Mln(M) B (m;M)ln (m—;M)] L
and
(3.9) 0<®(Aln(A)) - (A)In (®(A))
< o (Mg — @ (4)) (@ (4) ~mlge) < o (M —m)* L

Consider the power function f(z) = 2", € (0,00) and r a real number. If
r € (—00,0]U[1,00), then f is convex and for r € [—1,0]U[L, 2] is operator convex.
If we use the inequalities (2.2), (2.16) and (2.20) we have for r € (—00,0] U [1, 00)
that

(3.10) D(A") — (P (A)"
Mrfl _mrfl
< TW (Ml —®(A)) (P (A) —mlg)
< iT(M —m) (M —=m" ) 1,
(3.11) D (A") = (2(4))
m-+ M" m+M\"
<25 ("5Y)]

< (500 =) i+ [ (4) = 301

o[ (2]
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and
(3.12) D (A") — (@ (A4)"
M™2 for r > 2

m"2 for r € (—o0,0] U [1,2)

% (Ml — & (4)) (@ () — mlx)
M2 forr>2

r(r—1) (M —m)? x g,
m" 2 for r € (—o00,0] U [1,2)

where A is selfadjoint with Sp (4) C [m, M] for some 0 < m < M and ® €

By [B(H),B(K)]. .

If r € [-1,0] U[1,2], then we also have 0 < ® (A") — (® (A))" in the inequalities
(3.10)-(3.12).

For r = —1 we have the inequalities
(3.13) ® (A7) - (®(4) "
< S (M1 = @ (4)) (2(4) — miz)

(3.14) 3 (A7) — (@A)

< s (0= m o) - m+ A1)

(M —m)*

= mM (m+ M)~
and
(315)  ®(a7) - (@(a)"

< =5 (M1 = () (B(4) — 1) < 1o (M =) i,

where A is selfadjoint with Sp (A) C [m, M] for some 0 < m < M and ¢ €
P [B(H),B(K)].
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