REVERSE OPERATOR INEQUALITIES FOR DAVIS
DIFFERENCE OF CONVEX FUNCTIONS IN HILBERT SPACES

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we obtain several operator inequalities providing
upper bounds for the Davis difference

Pf(A)P—-Pf(PAP)P
for any convex function f : I — R, any selfadjoint operator A in H with the

spectrum Sp (A) C I and any orthogonal projection P. Some examples for
convex and operator convex functions are also provided.

1. INTRODUCTION

A real valued continuous function f on an interval [ is said to be operator convex
(operator concave) on I if

(L.1) F(A=XNA+AB) < (2)(1-X)f(A)+Af(B)

in the operator order, for all A € [0,1] and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I. Notice that a function f is
operator concave if — f is operator convex.

A real valued continuous function f on an interval I is said to be operator
monotone if it is monotone with respect to the operator order, i.e., A < B with
Sp(A),Sp(B) C I imply f(A) < f(B).

For some fundamental results on operator convex (operator concave) and oper-
ator monotone functions, see [10] and the references therein.

As examples of such functions, we note that f (¢) =¢" is operator monotone on
[0,00) if and only if 0 < r < 1. The function f (¢t) = ¢" is operator convex on (0, c0)
if either 1 <r <2 or —1 < r < 0 and is operator concave on (0,00) if 0 < r < 1.
The logarithmic function f (¢) = Int is operator monotone and operator concave
on (0,00). The entropy function f (¢t) = —tInt is operator concave on (0,00). The
exponential function f (t) = e’ is neither operator convex nor operator monotone.

For recent inequalities for operator convex functions see [1]-[9] and [11]-[20].

The following Davis-Jensen operator inequality is well know [4], see also [10, p.
10]:

Theorem 1. Let H be a Hilbert space and f be a real valued continuous function
on the interval I. Then f is operator convex on the interval I if and only if

(1.2) Pf(PAP)P < Pf(A)P

for any selfadjoint operator A in H with the spectrum Sp (A) C I and any orthogonal
projection P.
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Note that the expression Pg(PAP)P can be interpreted to make sense even if
I does not contain 0. One way to do this is to extend g arbitrarily to I U {0}, use
the Borel functional calculus to define g(PAP), and note that Pg(PAP)P depends
only on g;.

We observe that from (1.2) we get

(1.3) ZPf (P;A;P;) P<ZPf
Jj=1
for any selfadjoint operators A; in H with the spectra Sp (4;) C I and any orthog-
onal projection Pj, j € {1,...,n}.
If P;, with j = 1, ..., k are orthogonal projections satisfying the condition 2?21 P
1y and Bj in H with the spectra Sp (B;) C I, j € {1,...,n}, then we have

k k
(1.4) f ZPijPj §ZPJf(BJ)PJ
j=1 j=1

This inequality is also a sufficient condition for the function f to be operator convex
on I, see for instance [10, p. 10].
If we write the inequality (1.4) for B; = P;A;P;, j € {1,...,n} then we have

k k
> _PiPjAP;P; | < Pif (PA;F)P
=1 j=1
and since
k k k
> PjPjA;P;P; =Y P}A;P} =Y PA;P,
=1 =1 =
hence

k k
(1.5) Z : Z f(PjA; Py)

provided 2521 P; =1py.

If P;, with j = 1, ..., k are orthogonal projections satisfying the condition Zle P; =
1 and A; in H with the spectra Sp (4;) C I, j € {1,...,n}, then we have the fol-
lowing refinement of Jensen’s discrete inequality

k k n
(1.6) FAD_PAP | <D Pif(PjA;P) Py <> Pif (4;) P,
j=1 j=1 j=1
It is known that there are convex functions f for which the inequality (1.2) does

not hold, however one can obtain several operator inequalities providing upper
bounds for the difference

Pf(A)P— Pf(PAP)P

for any convex function f : I — R, any selfadjoint operator A in H with the
spectrum Sp (A) C I and any orthogonal projection P. Some examples for convex
and operator convex functions are also provided.
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2. MAIN RESULTS
We use the following result that was obtained in [5]:

Lemma 1. If f : [a,b] — R is a convex function on [a,b], then
ay o< 0DI@HG-010)

e e e AR )

for any t € [a,b].
If the lateral derivatives f' (b) and f! (a) are finite, then the second inequality
and the constant 1/4 are sharp.

‘We have:

Theorem 2. Let f : [m, M] — R be a convex function on [m, M] and A a selfad-
joint operator with the spectrum Sp (A) C [m, M]. If P is an orthogonal projection,
then

(2.2) Pf(A)P— Pf(PAP)P
e (Afw) - m/+ ") (MP - PAP) (PAP - mP)
< 3 (M —m) [ () = £} (m)] P

Proof. Utilising the continuous functional calculus for a selfadjoint operator T" with
0 < T < 1y and the convexity of f on [m, M], we have

(2.3) fm Ay =T)+MT) < f(m) Qg —T)+ f(M)T

in the operator order.
If we take in (2.3)

A—mlH
<T=_"_""7"<
R
then we get
A—mlH A—mlH
2.4 1y — M
(24) f(m(H Mm)+ Mm>
A—mly A—mly
< _ - H LM H
7 (100 = ) g o) A

Observe that
A—ml A—ml
m <1H _ mH) Lo mla

M—-—m M —m
_m(MlH—A)+M(A—m1H)_A
= U —m =

and
f(m)(Mlg —A)+ f(M)(A—mlg)
M—m
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and by (2.4) we get the following inequality of interest

f(m) (Ml — A)+ f(M)(A—mly)
M—-m

If we multiply (2.5) to the left with P and to the right with P we get

f(m) (Ml —A)+ f (M) (A—mly)

(2.5) f(A) <

Pf(AP<P P
M—m
_fm)P(M1y —A)P+ f(M)P(A—mly)P
N M—m
_ f(m)(MP?— PAP) + f (M) (PAP — mP?)
B M—-m
_ f(m)(MP— PAP)+ f (M) (PAP —mP)
N M—m ’
which implies that
(2.6) Pf(A)P—-Pf(PAP)P
< f(m)(MP—PAP)+ f (M) (PAP —mP) _ Pf(PAP)P.
M—-m
By using (2.1) and the continuous functional calculus, we have
2.7) f(m)(MlH—PAP)+f(M)(PAP—m1H)_f(PAP)
M—m
< U‘JQ - ;’;+ () M1y — PAP) (PAP — miy)
< 5O —m) [£2 (1) = £ ()] L

If we multiply (2.7) to the left with P and to the right with P we get

f(m)(Mlyg — PAP)+ f (M) (PAP — mlg)
M—-—m

P

P—Pf(PAP)P
fL (M) — [} (m)

P(M1ly — PAP)(PAP —mlyg)P
< 2 (M —m) [fL (M) — fi (m)] P2,
namely, as above,

f(m) (MP — PAP) + f (M) (PAP — mP)

(2.8) Y — Pf(PAP)P
fL (M) — [} (m)
< Y m+ (MP — PAP) (PAP — mP)
< § (M —m) [72 (M) = £ (m)] P
By making use of (2.6) and (2.8) we get the desired result (2.2). O

Corollary 1. Let f : [m, M] — R be an operator convex function on [m, M| and
A a selfadjoint operator with the spectrum Sp (A) C [m, M]. If P is an orthogonal
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projection, then

(2.9) 0< Pf(A)P—Pf(PAP)P
< 200~ fi
< 3 (M —m) [72 (M) — 1 (m)] P

(MP — PAP) (PAP — mP)

We also have the following scalar inequality of interest:

Lemma 2. Let f: [a,b] — R be a convexr function on [a,b] and t € [0,1], then
(2.10) 2min {t,1 — t} [f(a);rf( ) ¢ (‘”b)]
<A =) f(a)+tf(0) = f((1—t)a+1td)

< 2max {t,1 — t} {f(a);f(b) —f (a;rbﬂ .

The proof follows, for instance, by Corollary 1 from [6] for n = 2, p; = 1 — ¢,
pe=t,t€[0,1 and 1 = a, x5 = .

Theorem 3. Let f : [m, M] — R be a convex function on [m, M] and A a selfad-
joint operator with the spectrum Sp (A) C [m, M]. If P is an orthogonal projection,
then

[t (o)

1 1
<2(M m)P — P‘ —2m+M)1H‘P>

f(m)(MP— PAP)+ f (M) (PAP —mP)
M—-—m

2vom;fwn_f(m+M>}
1
(

1

<

—Pf(A)P

IN

and

(2.12) Q[Wf<m+M)]

2
1 1
x (2(M—m)P—P’PAP—2(m+M)1H‘P)

_ [(m)(MP — PAP) + f (M) (PAP — mP)

— Pf(PAP)P

|

=
|

3

IA

QVUm;fM@_f<m+M>}

1 1
X (Q(M—m)P+P’PAP—2(m—|—M)1H‘P).
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Proof. We have from (2.10) that
(2.13) 2<1_‘t_;’) [f(m)-Ff(M)_f(m—kM)}
)

2
<@ =) f(m)+tf (M) = f((1=t)m+iM)

<2(;+’t_;‘) [f(m);f(M)_f(m;Mﬂ’

for all t € [0,1].
Utilising the continuous functional calculus for a selfadjoint operator 1" with
0 <T <1y we get from (2.13) that

(2.14) 2 [f(m);f() f (m;M)] (21H— ‘T— ;1HD
<A-=-T)f(m)+Tf(M)—f(Q-=T)m+TM)

10 (2] (-

).

in the operator order.
If we take in (2.14)

o= A g
-m
then, like in the proof of Theorem 2, we get
M M
o1 p[Lm 00y (medr)]

x <;(M—m)1H—'A—;(m+M)1HD

) () ] (0) (4
s [ ron _;n(mMﬂ

- f(4)

2 2
y (;(M_m)1H+'A—;(m+M)1HD.

If we multiply (2.15) to the left with P and to the right with P and by taking
into account that P2 = P, then we get

[T ()

1
< (M —m)P — P‘ —=(m+ M) IH‘P>

2
_ m) (P~ PAIJDW—I—{n(M (PAP—mP) _ s p
Fm)+f (M) (m+M
o e |

1 1

which proves (2.11).
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Like in (2.15) we get

2[f(m);f( ) f<m+M)]

X (;(M—m)lH—‘PAP—;(m‘*‘M)lHD
_ f(m) (M1y — PAP) + f (M) (PAP — m1py)
= M—-—m

SRR E

— f(PAP)

1 1

and if we multiply it to the left with P and to the right with P and by taking into
account that P? = P, then we get

2[f(m)+f(M) _f<m+M)]

2 2
1 1
x (2(M—m)P—P’PAP—2(m+M)1H‘P)

< f(m)(MP — PAP)+ f (M) (PAP — mP)
M —m

[ ()

(1 (M—m P+P‘PAP;(m+M)1H‘P>

— Pf(PAP)P

| /\

which proves (2.12). O

Corollary 2. Let f : [m, M] — R be an operator convex function on [m, M) and
A a selfadjoint operator with the spectrum Sp (A) C [m, M]. If P is an orthogonal
projection, then

iy o[ LTG0 (ne )]

2 2
X (;(M—m)P—P’A—;(m+M)1H’P)

_ [ (m)(MP — PAP) + f (M) (PAP — mP)

< Y —Pf(A)P

Sf(m)(MP_PAi)\;+f(M)(PAP_mP)—Pf(PAP)P
f(m)+ f(M) m+ M

gQ{ 2 f< 2 ﬂ

x (;(M—m)P+P’PAP—;(m+M)1H‘P).

We also have

Corollary 3. Let f: [m,M] — R be a convex function on [m, M) and A a selfad-
joint operator with the spectrum Sp (A) C [m, M| . If P is an orthogonal projection,
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then
(2.17) Pf(A)P—Pf(PAP)P

[f(m)ﬂ;f(M) _f<mﬂ;M)}
1
3

P+P’PAP—;(m+M)1H‘P>

(o

Proof. From (2.6) we have

(2.18) Pf(A)P— Pf(PAP)P

< f(m)(MP— PAP)+ f(M)(PAP —mP)
M—m

IN

w1>V““§“M)f<ijﬂp

— Pf(PAP)P

and from (2.12) we have

f(m)(MP— PAP)+ f (M) (PAP —mP)
M—-m

o[ L s )y (meary]

— Pf(PAP)P

2
1 1
X (2(M—m)P+P‘PAP—2(m+M)1H‘P>.

which produce the desired result (2.17). O

Remark 1. If f : [m, M] — R is an operator conver function on [m,M], A a
selfadjoint operator with the spectrum Sp (A) C [m, M] and P is an orthogonal
projection, then

(2.19) Pf(A)P—Pf(PAP)P
(=)

\ /\

<; P+P‘PAP—;(m+M) ’P)
o [LOVEIO0 _ (medrY]

We also have [5]:

Lemma 3. Assume that f : [a,b] — R is absolutely continuous on [a,b]. If f' is
K -Lipschitzian on [a,b], then

(2.20) (1= ) £ (a) + £ (b) —
< SK(b—1)(—a) <

fF(1=1t)a+1td)
L 2
3 K (b—a)

for allt €10,1].
The constants 1/2 and 1/8 are the best possible in (2.20).
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Remark 2. If f : [a,b] — R is twice differentiable and f" € Ly [a,b], then
(2.21) (L—=1) f (@) +tf (b) = f (1 — ) a+1D)]
L 1
< 51 w0 O =D (=) < G 17 g 1,00 (b= )"

where || f"[|14.4,00 = €SUPeiap |f” (1) < 0. The constants 1/2 and 1/8 are the
best possible in (2.21).

We have:

Theorem 4. Let f : [m,M] — R be a twice differentiable convex function on
[m, M] with || f"|| (. a1),00 7= €SSUPsem ) 7 (8) < 00 and A a selfadjoint operator
with the spectrum Sp (A) C [m, M]. If P is an orthogonal projection, then

)

(2.22) Pf(A)P— Pf(PAP)P

1
5 1" 11,00 (M P — PAP) (PAP — mP)

1
< 3 ||f//||[m,M},oo (M —m)* P,
Proof. From (2.21) and the continuous functional calculus, we get

f(m)(Mly —B)+ f(M)(B—mly)
M—-—m

1
3 1 Wm0 (M1 = B) (B —mlp)

(2.23) 0< — f(B)

IN

1 2
< g Hf//H[m,M],oo (M - m) 1574

where B is a selfadjoint operator with the spectrum Sp (B) C [m, M].
Therefore

M—-—m

1
5 1"l any o0 (M 151 = PAP) (PAP — m1p)

0<

— f(PAP)

IN

IN

1
18ty oo (M =) 11

if we multiply it to the left with P and to the right with P and by taking into
account that P? = P, then we get

f(m) (MP — PAP) + f (M) (PAP — mP)

< _
0= Y Pf(PAP)P
< % 1F " N a] 00 (M P — PAP) (PAP — mP)
1
S g ”-f//”[m,M],oo (M - m)2 P
and by (2.18) we get (2.22). 0

Corollary 4. Let f : [m,M] — R be an operator convex function on [m, M| and
A a selfadjoint operator with the spectrum Sp (A) C [m, M]. If P is an orthogonal
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projection, then

(2.24) 0< Pf(A)P— Pf(PAP)P

IA

1
3 1"l 11,00 (M P — PAP) (PAP — mP)

1
< 3 HfHH[m}M]}oo (M — m)2 P.

3. SOME EXAMPLES

We consider the exponential function f (z) = exp (az) with o € R\ {0}. This
function is convex but not operator convex on R. If A is selfadjoint with Sp (A) C
[m, M] for some m < M and P is an orthogonal projection, then by (2.2), (2.17)
and (2.22) we have

(3.1) Pexp(aA) P — Pexp (a«PAP) P
exp (aM) — exp (am)
M—-—m

a (M —m) [exp (aM) — exp (am)] P,

IN
o

(MP — PAP) (PAP — mP)

<

I

(3.2) Pexp (aA) P — Pexp (aPAP) P

exp (am); flad) o (am ; Mﬂ

o

« (;(M—m)P+P‘PAP—;(m+M)1H‘P>

e [exp (am)2—|- fladt) (am;Mﬂ b

and

(3.3) Pexp(aA) P — Pexp (a«PAP) P
exp (aM) if a >0

1
< 5042 x (MP — PAP) (PAP — mP)
exp (am) if a <0
1 exp (aM) if >0
Sgaz(M—m)Q x P.
exp (am) if a <0
The function f () = —Inx, > 0 is operator convex on (0, 00) . If A is selfadjoint

with Sp (A) C [m, M] for some 0 < m < M and P is an orthogonal projection,
then by (2.9), (2.19) and (2.24) we have

(3.4) 0< Pf(A)P— Pf(PAP)P

<L (P - pPAP)(PAP —mP) < .

— (M —-m)*P
mM 4mM( m)” P,
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(3.5) 0< Pf(A)P—Pf(PAP)P
m+ M
<2In (2 FM)
x (;(M—m)P+P‘PAP—;(m+M)1H'P>
<2(M-m)ln <;”\/%> P
and
(3.6) 0< Pf(A)P— Pf(PAP)P

1 1 2
< —(MP —- PAP)(PAP —mP) < — (M — P.
- )(PAP —mP) < o (01— m)

We observe that if M > 2m then the bound in (3.4) is better than the one from
(3.6). If M < 2m, then the conclusion is the other way around.

The function f () = xInz, x > 0 is operator convex on (0, 00) . If A is selfadjoint
with Sp (A) C [m, M] for some 0 < m < M and P is an orthogonal projection,
then by (2.9), (2.19) and (2.24) we have

(3.7) 0< PAIn(A)P — PAPIn(PAP) P
In (M) —In(m)
M—-—m

(M —m) [In (M) — In (m)] P,

< (MP — PAP) (PAP — mP)
1
4

IN

(38) 0< PAIn(A)P— PAPIn(PAP)P

mln(m)J;Mln(M) 3 (m;M>1n<m;M)]

|

y (1(M—m)P+P‘PAP—;(m+M)1H’P)

2
<2 (M —m) [mln(m)—;Mln(M) B (m;M)ln (nz;Mﬂ P
?:13].(;) 0< PAIn(A)P — PAPIn(PAP) P

1 1 )
<—(MP—-PAP)(PAP —mP) < — (M — P.
<o )(PAP —mP) < (M —m)

Consider the power function f(z) = 2", x € (0,00) and r a real number. If
r € (—o0,0]U[1,00), then f is convex and for r € [—1,0]U[1, 2] is operator convex.
If we use the inequalities (2.2), (2.17) and (2.22) we have for r € (—00,0] U [1,00)
that

(3.10) PA"P — P(PAP)" P
Mrfl _ mrfl
< g7 _ _
<r M —m (MP PAP) (PAP mP)
1 r— r—
SET(M—m)[M Lm 1]P,
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(3.11) PA"P — P(PAP)" P
<9 m" 4+ M . m+ M
< 5 5
1 1
X (2(M—m)P+P’PAP— 2(m+M)1H‘P>
T Mr M T
<2(M —m) {m utc A <m+ ) ]P
2 2
and
(3.12) PA"P — P(PAP)" P
1 M"=2 forr > 2
< 3" (r—1)
m" =2 for r € (—o0,0] U [1,2)
x (MP — PAP) (PAP — mP)
1 M2 for r > 2
Sgr(r—l)(M_mf x P,

m" =2 for r € (—o0,0] U [1,2)

where A is selfadjoint with Sp (A) C [m, M] for some 0 < m < M and P is an
orthogonal projection.

If r € [-1,0]U[1,2], then we also have 0 < PA"P — P (PAP)" P in the inequal-
ities (3.10)-(3.12).
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