REVERSE OPERATOR INEQUALITIES FOR DAVIS
DIFFERENCE OF CONVEX FUNCTIONS IN HILBERT SPACES

S. S. DRAGOMIR1,2

Abstract. In this paper we obtain several operator inequalities providing
upper bounds for the Davis difference

$$Pf(A)P - Pf(PAP)P$$

for any convex function $f : I \to \mathbb{R}$, any selfadjoint operator A in H with the
spectrum $\text{Sp}(A) \subset I$ and any orthogonal projection P. Some examples for
convex and operator convex functions are also provided.

1. Introduction

A real valued continuous function f on an interval I is said to be operator convex
(operator concave) on I if

$$f((1 - \lambda)A + \lambda B) \leq (\geq) (1 - \lambda)f(A) + \lambda f(B)$$

in the operator order, for all $\lambda \in [0,1]$ and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I. Notice that a function f is
operator concave if $-f$ is operator convex.

A real valued continuous function f on an interval I is said to be operator monotone if it is monotone with respect to the operator order, i.e., $A \leq B$ with
$\text{Sp}(A), \text{Sp}(B) \subset I$ imply $f(A) \leq f(B)$.

For some fundamental results on operator convex (operator concave) and oper-
ator monotone functions, see [10] and the references therein.

As examples of such functions, we note that $f(t) = t^r$ is operator monotone on $[0,\infty)$ if and only if $0 \leq r \leq 1$. The function $f(t) = t^r$ is operator convex on $(0,\infty)$
if either $1 \leq r \leq 2$ or $-1 \leq r \leq 0$ and is operator concave on $(0,\infty)$ if $0 \leq r \leq 1$.
The logarithmic function $f(t) = \ln t$ is operator monotone and operator concave
on $(0,\infty)$. The entropy function $f(t) = -t \ln t$ is operator concave on $(0,\infty)$. The
exponential function $f(t) = e^t$ is neither operator convex nor operator monotone.

For recent inequalities for operator convex functions see [1]-[9] and [11]-[20].

The following Davis-Jensen operator inequality is well know [4], see also [10, p.
10]:

Theorem 1. Let H be a Hilbert space and f be a real valued continuous function
on the interval I. Then f is operator convex on the interval I if and only if

$$Pf(PAP)P \leq Pf(A)P$$

for any selfadjoint operator A in H with the spectrum $\text{Sp}(A) \subset I$ and any orthogonal
projection P.

1991 Mathematics Subject Classification. 47A63; 47A99.

Key words and phrases. Selfadjoint bounded linear operators, Functions of operators, Operator
convex functions, Jensen’s operator inequality, Davis inequality.

1

Note that the expression $P g(P A P) P$ can be interpreted to make sense even if I does not contain 0. One way to do this is to extend g arbitrarily to $I \cup \{0\}$, use the Borel functional calculus to define $g(P A P)$, and note that $P g(P A P) P$ depends only on $g|I$.

We observe that from (1.2) we get

$$
(1.3) \quad \sum_{j=1}^{n} P_j f(P_j A_j P_j) P_j \leq \sum_{j=1}^{n} P_j f(A_j) P_j
$$

for any selfadjoint operators A_j in H with the spectra $\text{Sp}(A_j) \subset I$ and any orthogonal projection P_j, $j \in \{1, \ldots, n\}$.

If P_j, with $j = 1, \ldots, k$ are orthogonal projections satisfying the condition $\sum_{j=1}^{k} P_j = 1_H$ and B_j in H with the spectra $\text{Sp}(B_j) \subset I$, $j \in \{1, \ldots, n\}$, then we have

$$
(1.4) \quad f\left(\sum_{j=1}^{k} P_j B_j P_j\right) \leq \sum_{j=1}^{k} P_j f(B_j) P_j.
$$

This inequality is also a sufficient condition for the function f to be operator convex on I, see for instance [10, p. 10].

If we write the inequality (1.4) for $B_j = P_j A_j P_j$, $j \in \{1, \ldots, n\}$ then we have

$$
f\left(\sum_{j=1}^{k} P_j A_j P_j \right) \leq \sum_{j=1}^{k} P_j f(P_j A_j P_j) P_j.
$$

and since

$$
\sum_{j=1}^{k} P_j P_j A_j P_j P_j = \sum_{j=1}^{k} P_j^2 A_j P_j^2 = \sum_{j=1}^{k} P_j A_j P_j,
$$

hence

$$
(1.5) \quad f\left(\sum_{j=1}^{k} P_j A_j P_j\right) \leq \sum_{j=1}^{k} P_j f(P_j A_j P_j) P_j,
$$

provided $\sum_{j=1}^{k} P_j = 1_H$.

If P_j, with $j = 1, \ldots, k$ are orthogonal projections satisfying the condition $\sum_{j=1}^{k} P_j = 1_H$ and A_j in H with the spectra $\text{Sp}(A_j) \subset I$, $j \in \{1, \ldots, n\}$, then we have the following refinement of Jensen’s discrete inequality

$$
(1.6) \quad f\left(\sum_{j=1}^{k} P_j A_j P_j\right) \leq \sum_{j=1}^{k} P_j f(P_j A_j P_j) P_j \leq \sum_{j=1}^{n} P_j f(A_j) P_j.
$$

It is known that there are convex functions f for which the inequality (1.2) does not hold, however one can obtain several operator inequalities providing upper bounds for the difference

$$
P f(A) P - P f(P A P) P
$$

for any convex function $f : I \to \mathbb{R}$, any selfadjoint operator A in H with the spectrum $\text{Sp}(A) \subset I$ and any orthogonal projection P. Some examples for convex and operator convex functions are also provided.
2. Main Results

We use the following result that was obtained in [5]:

Lemma 1. If \(f : [a, b] \to \mathbb{R} \) is a convex function on \([a, b]\), then

\[
0 \leq \frac{(b-t) f(a) + (t-a) f(b)}{b-a} - f(t) \leq (b-t) (t-a) \frac{f'_-(b) - f'_+(a)}{b-a} \leq \frac{1}{4} (b-a) \left[f'_-(b) - f'_+(a) \right]
\]

for any \(t \in [a, b] \).

If the lateral derivatives \(f'_- (b) \) and \(f'_+ (a) \) are finite, then the second inequality and the constant \(1/4 \) are sharp.

We have:

Theorem 2. Let \(f : [m, M] \to \mathbb{R} \) be a convex function on \([m, M]\) and \(A \) a self adjoint operator with the spectrum \(\text{Sp}(A) \subset [m, M] \). If \(P \) is an orthogonal projection, then

\[
P f(A) P - P f(PAP) P \leq \frac{f'_-(M) - f'_+(m)}{M-m} (MP - PAP) (PAP - mP) \leq \frac{1}{4} (M-m) \left[f'_-(M) - f'_+(m) \right] P.
\]

Proof. Utilising the continuous functional calculus for a selfadjoint operator \(T \) with \(0 \leq T \leq 1_H \) and the convexity of \(f \) on \([m, M]\), we have

\[
f(m (1_H - T) + MT) \leq f(m) (1_H - T) + f(M) T
\]

in the operator order.

If we take in (2.3)

\[
0 \leq T = \frac{A - m 1_H}{M - m} \leq 1_H,
\]

then we get

\[
f \left(m \left(1_H - \frac{A - m 1_H}{M - m} \right) + M \frac{A - m 1_H}{M - m} \right) \leq f(m) \left(1_H - \frac{A - m 1_H}{M - m} \right) + f(M) \frac{A - m 1_H}{M - m}.
\]

Observe that

\[
m \left(1_H - \frac{A - m 1_H}{M - m} \right) + M \frac{A - m 1_H}{M - m} = m (M1_H - A) + M (A - m 1_H) = A
\]

and

\[
f(m) \left(1_H - \frac{A - m 1_H}{M - m} \right) + f(M) \frac{A - m 1_H}{M - m} = f(m) (M1_H - A) + f(M) (A - m 1_H)
\]
and by (2.4) we get the following inequality of interest

\[(2.5)\]
\[f(A) \leq \frac{f(m)(M1_H - A) + f(M)(A - m1_H)}{M - m}.\]

If we multiply (2.5) to the left with \(P\) and to the right with \(P\) we get

\[Pf(A)P \leq P \left[\frac{f(m)(M1_H - A) + f(M)(A - m1_H)}{M - m} \right]P\]
\[= \frac{f(m)P(M1_H - A)P + f(M)P(A - m1_H)P}{M - m}\]
\[= \frac{f(m)(MP^2 - PAP) + f(M)(PAP - mP^2)}{M - m}\]
\[= \frac{f(m)(MP - PAP) + f(M)(PAP - mP)}{M - m},\]

which implies that

\[(2.6)\]
\[Pf(A)P - Pf(PAP)P \leq \frac{f(m)(MP - PAP) + f(M)(PAP - mP)}{M - m} - Pf(PAP)P.\]

By using (2.1) and the continuous functional calculus, we have

\[(2.7)\]
\[\frac{f(m)(M1_H - PAP) + f(M)(PAP - m1_H)}{M - m} - f(PAP)\]
\[\leq \frac{f'_-(M) - f'_+(m)}{M - m} (M1_H - PAP)(PAP - m1_H)\]
\[\leq \frac{1}{4} (M - m) [f'_-(M) - f'_+(m)] 1_H.\]

If we multiply (2.7) to the left with \(P\) and to the right with \(P\) we get

\[P \left[\frac{f(m)(M1_H - PAP) + f(M)(PAP - m1_H)}{M - m} \right]P - Pf(PAP)P\]
\[\leq \frac{f'_-(M) - f'_+(m)}{M - m} P(M1_H - PAP)(PAP - m1_H)P\]
\[\leq \frac{1}{4} (M - m) [f'_-(M) - f'_+(m)] P^2,\]

namely, as above,

\[(2.8)\]
\[\frac{f(m)(MP - PAP) + f(M)(PAP - mP)}{M - m} - Pf(PAP)P\]
\[\leq \frac{f'_-(M) - f'_+(m)}{M - m} (MP - PAP)(PAP - mP)\]
\[\leq \frac{1}{4} (M - m) [f'_-(M) - f'_+(m)] P,\]

By making use of (2.6) and (2.8) we get the desired result (2.2). \(\square\)

Corollary 1. Let \(f : [m, M] \to \mathbb{R}\) be an operator convex function on \([m, M]\) and \(A\) a selfadjoint operator with the spectrum \(\text{Sp}(A) \subset [m, M]\). If \(P\) is an orthogonal
projection, then

\begin{align}
0 \leq Pf(A)P - Pf(PAP)P \\
\leq \frac{f'_-(M) - f'_+(m)}{M - m} (MP - PAP) (PAP - mP) \\
\leq \frac{1}{4} (M - m) [f'_-(M) - f'_+(m)] P.
\end{align}

We also have the following scalar inequality of interest:

Lemma 2. Let \(f : [a, b] \to \mathbb{R} \) be a convex function on \([a, b]\) and \(t \in [0, 1] \), then

\begin{align}
2 \min \{ t, 1 - t \} \left[\frac{f(a) + f(b)}{2} - f \left(\frac{a + b}{2} \right) \right] \\
\leq (1 - t) f(a) + tf(b) - f((1 - t) a + tb) \\
\leq 2 \max \{ t, 1 - t \} \left[\frac{f(a) + f(b)}{2} - f \left(\frac{a + b}{2} \right) \right].
\end{align}

The proof follows, for instance, by Corollary 1 from [6] for \(n = 2, p_1 = 1 - t, p_2 = t, t \in [0, 1] \) and \(x_1 = a, x_2 = b \).

Theorem 3. Let \(f : [m, M] \to \mathbb{R} \) be a convex function on \([m, M]\) and \(A \) a self-adjoint operator with the spectrum \(\text{Sp}(A) \subset [m, M] \). If \(P \) is an orthogonal projection, then

\begin{align}
2 \left[\frac{f(m) + f(M)}{2} - f \left(\frac{m + M}{2} \right) \right] \\
\times \left(\frac{1}{2} (M - m) P - \frac{1}{2} (m + M) 1_H \right) P \\
\leq \frac{f(m) (MP - PAP) + f(M) (PAP - mP)}{M - m} - Pf(A)P \\
\leq 2 \left[\frac{f(m) + f(M)}{2} - f \left(\frac{m + M}{2} \right) \right] \\
\times \left(\frac{1}{2} (M - m) P + P \left| A - \frac{1}{2} (m + M) 1_H \right| P \right)
\end{align}

and

\begin{align}
2 \left[\frac{f(m) + f(M)}{2} - f \left(\frac{m + M}{2} \right) \right] \\
\times \left(\frac{1}{2} (M - m) P - \frac{1}{2} (m + M) 1_H \right) P \\
\leq \frac{f(m) (MP - PAP) + f(M) (PAP - mP)}{M - m} - Pf(PAP)P \\
\leq 2 \left[\frac{f(m) + f(M)}{2} - f \left(\frac{m + M}{2} \right) \right] \\
\times \left(\frac{1}{2} (M - m) P + P \left| PAP - \frac{1}{2} (m + M) 1_H \right| P \right).
\end{align}
Proof. We have from (2.10) that
\begin{equation}
2 \left(\frac{1}{2} - t^2 \right) \left[f(m) + f(M) - f \left(\frac{m + M}{2} \right) \right]
\leq (1 - t) f(m) + tf(M) - f((1 - t)m + tM)
\leq 2 \left(\frac{1}{2} + t^2 \right) \left[f(m) + f(M) - f \left(\frac{m + M}{2} \right) \right],
\end{equation}
for all \(t \in [0, 1] \).

Utilising the continuous functional calculus for a selfadjoint operator \(T \) with \(0 \leq T \leq 1_H \) we get from (2.13) that
\begin{equation}
2 \left[\frac{f(m) + f(M)}{2} - f \left(\frac{m + M}{2} \right) \right] \left(\frac{1}{2} \left| T - \frac{1}{2} 1_H \right| \right)
\leq (1 - T) f(m) + Tf(M) - f((1 - T)m + TM)
\leq 2 \left[\frac{f(m) + f(M)}{2} - f \left(\frac{m + M}{2} \right) \right] \left(\frac{1}{2} \left| 1_H - \frac{1}{2} 1_H \right| \right),
\end{equation}
in the operator order.

If we take in (2.14) \(0 \leq T = \frac{A - m 1_H}{M - m} \leq 1_H \), then, like in the proof of Theorem 2, we get
\begin{equation}
2 \left[\frac{f(m) + f(M)}{2} - f \left(\frac{m + M}{2} \right) \right]
\times \left(\frac{1}{2} (M - m) 1_H - \left| A - \frac{1}{2} (m + M) 1_H \right| \right)
\leq \frac{f(m)(M 1_H - A) + f(M)(A - m 1_H)}{M - m} - f(A)
\leq 2 \left[\frac{f(m) + f(M)}{2} - f \left(\frac{m + M}{2} \right) \right]
\times \left(\frac{1}{2} (M - m) 1_H + \left| A - \frac{1}{2} (m + M) 1_H \right| \right).
\end{equation}

If we multiply (2.15) to the left with \(P \) and to the right with \(P \) and by taking into account that \(P^2 = P \), then we get
\begin{equation}
2 \left[\frac{f(m) + f(M)}{2} - f \left(\frac{m + M}{2} \right) \right]
\times \left(\frac{1}{2} (M - m) P - P \left| A - \frac{1}{2} (m + M) 1_H \right| P \right)
\leq \frac{f(m)(MP - PAP) + f(M)(PAP - mP)}{M - m} - Pf(A)P
\leq 2 \left[\frac{f(m) + f(M)}{2} - f \left(\frac{m + M}{2} \right) \right]
\times \left(\frac{1}{2} (M - m) P + P \left| A - \frac{1}{2} (m + M) 1_H \right| P \right),
\end{equation}
which proves (2.11).
Like in (2.15) we get
\[2 \left[\frac{f(m) + f(M)}{2} - f\left(\frac{m + M}{2} \right) \right] \]
\[\times \left(\frac{1}{2} (M - m) 1_H - \left| PAP - \frac{1}{2} (m + M) 1_H \right| \right) \]
\[\leq \frac{f(m) (M1_H - PAP) + f(M) (PAP - m1_H)}{M - m} - f(PAP) \]
\[\leq 2 \left[\frac{f(m) + f(M)}{2} - f\left(\frac{m + M}{2} \right) \right] \]
\[\times \left(\frac{1}{2} (M - m) 1_H + \left| PAP - \frac{1}{2} (m + M) 1_H \right| \right). \]

and if we multiply it to the left with \(P \) and to the right with \(P \) and by taking into account that \(P^2 = P \), then we get
\[2 \left[\frac{f(m) + f(M)}{2} - f\left(\frac{m + M}{2} \right) \right] \]
\[\times \left(\frac{1}{2} (M - m) P - P \left| PAP - \frac{1}{2} (m + M) 1_H \right| P \right) \]
\[\leq \frac{f(m) (MP - PAP) + f(M) (PAP - mP)}{M - m} - Pf(PAP)P \]
\[\leq 2 \left[\frac{f(m) + f(M)}{2} - f\left(\frac{m + M}{2} \right) \right] \]
\[\times \left(\frac{1}{2} (M - m) P + P \left| PAP - \frac{1}{2} (m + M) 1_H \right| P \right), \]

which proves (2.12).

Corollary 2. Let \(f : [m, M] \to \mathbb{R} \) be an operator convex function on \([m, M]\) and \(A \) a selfadjoint operator with the spectrum \(\text{Sp}(A) \subset [m, M] \). If \(P \) is an orthogonal projection, then

\[2 \left[\frac{f(m) + f(M)}{2} - f\left(\frac{m + M}{2} \right) \right] \]
\[\times \left(\frac{1}{2} (M - m) P - P \left| A - \frac{1}{2} (m + M) 1_H \right| P \right) \]
\[\leq \frac{f(m) (MP - PAP) + f(M) (PAP - mP)}{M - m} - Pf(A)P \]
\[\leq \frac{f(m) (MP - PAP) + f(M) (PAP - mP)}{M - m} - Pf(PAP)P \]
\[\leq 2 \left[\frac{f(m) + f(M)}{2} - f\left(\frac{m + M}{2} \right) \right] \]
\[\times \left(\frac{1}{2} (M - m) P + P \left| PAP - \frac{1}{2} (m + M) 1_H \right| P \right). \]

We also have

Corollary 3. Let \(f : [m, M] \to \mathbb{R} \) be a convex function on \([m, M]\) and \(A \) a selfadjoint operator with the spectrum \(\text{Sp}(A) \subset [m, M] \). If \(P \) is an orthogonal projection,
then
\begin{equation}
Pf (A) P - Pf (PAP) P \leq 2 \left[\frac{f (m) + f (M)}{2} - f \left(\frac{m + M}{2} \right) \right]
\end{equation}
\times \left(\frac{1}{2} (M - m) P + P \left| PAP - \frac{1}{2} (m + M) H \right| P \right)
\leq 2 (M - m) \left[\frac{f (m) + f (M)}{2} - f \left(\frac{m + M}{2} \right) \right] P.

\textbf{Proof.} From (2.6) we have
\begin{equation}
Pf (A) P - Pf (PAP) P \leq \frac{f (m) (MP - PAP) + f (M) (PAP - mP)}{M - m} - Pf (PAP) P
\end{equation}
and from (2.12) we have
\begin{align*}
f (m) (MP - PAP) + f (M) (PAP - mP) & \leq 2 \left[\frac{f (m) + f (M)}{2} - f \left(\frac{m + M}{2} \right) \right] \\
& \times \left(\frac{1}{2} (M - m) P + P \left| PAP - \frac{1}{2} (m + M) H \right| P \right).
\end{align*}
which produce the desired result (2.17). \hfill \Box

\textbf{Remark 1.} If \(f : [m, M] \rightarrow \mathbb{R} \) is an operator convex function on \([m, M]\), \(A \) a selfadjoint operator with the spectrum \(\text{Sp} (A) \subset [m, M] \) and \(P \) is an orthogonal projection, then
\begin{equation}
0 \leq Pf (A) P - Pf (PAP) P \leq 2 \left[\frac{f (m) + f (M)}{2} - f \left(\frac{m + M}{2} \right) \right] \\
\times \left(\frac{1}{2} (M - m) P + P \left| PAP - \frac{1}{2} (m + M) H \right| P \right)
\leq 2 (M - m) \left[\frac{f (m) + f (M)}{2} - f \left(\frac{m + M}{2} \right) \right] P.
\end{equation}

We also have [5]:

\textbf{Lemma 3.} Assume that \(f : [a, b] \rightarrow \mathbb{R} \) is absolutely continuous on \([a, b]\). If \(f' \) is \(K \)-Lipschitzian on \([a, b]\), then
\begin{equation}
|(1 - t) f (a) + t f (b) - f ((1 - t) a + t b)| \leq \frac{1}{2} K (b - t) (t - a) \leq \frac{1}{8} K (b - a)^2
\end{equation}
for all \(t \in [0, 1] \).

The constants \(1/2 \) and \(1/8 \) are the best possible in (2.20).
Remark 2. If $f : [a, b] \to \mathbb{R}$ is twice differentiable and $f'' \in L_\infty [a, b]$, then
\begin{equation}
(2.21)
| (1 - t) f (a) + t f (b) - f ((1 - t) a + t b) | \\
\leq \frac{1}{2} \| f'' \|_{[a, b], \infty} (b - t) (t - a) \leq \frac{1}{8} \| f'' \|_{[a, b], \infty} (b - a)^2,
\end{equation}
where $\| f'' \|_{[a, b], \infty} := \text{essup}_{t \in [a, b]} | f'' (t) | < \infty$. The constants $1/2$ and $1/8$ are the best possible in (2.21).

We have:

Theorem 4. Let $f : [m, M] \to \mathbb{R}$ be a twice differentiable convex function on $[m, M]$ with $\| f'' \|_{[m, M], \infty} := \text{essup}_{t \in [m, M]} f'' (t) < \infty$ and A a selfadjoint operator with the spectrum $\text{Sp} (A) \subset [m, M]$. If P is an orthogonal projection, then
\begin{equation}
(2.22)
P f (A) P - P f (PAP) P \\
\leq \frac{1}{2} \| f'' \|_{m, M}, \infty (MP - PAP) (PAP - mP) \\
\leq \frac{1}{8} \| f'' \|_{m, M}, \infty (M - m)^2 P.
\end{equation}

Proof. From (2.21) and the continuous functional calculus, we get
\begin{equation}
(2.23)
0 \leq \frac{f (m) (M 1_H - B) + f (M) (B - m 1_H)}{M - m} - f (B) \\
\leq \frac{1}{2} \| f'' \|_{m, M}, \infty (M 1_H - B) (B - m 1_H) \\
\leq \frac{1}{8} \| f'' \|_{m, M}, \infty (M - m)^2 1_H
\end{equation}
where B is a selfadjoint operator with the spectrum $\text{Sp} (B) \subset [m, M]$.

Therefore
\[0 \leq \frac{f (m) (M 1_H - PAP) + f (M) (PAP - m 1_H)}{M - m} - f (PAP) \]
\[\leq \frac{1}{2} \| f'' \|_{m, M}, \infty (M 1_H - PAP) (PAP - m 1_H) \]
\[\leq \frac{1}{8} \| f'' \|_{m, M}, \infty (M - m)^2 1_H \]
if we multiply it to the left with P and to the right with P and by taking into account that $P^2 = P$, then we get
\[0 \leq \frac{f (m) (MP - PAP) + f (M) (PAP - mP)}{M - m} - P f (PAP) P \]
\[\leq \frac{1}{2} \| f'' \|_{m, M}, \infty (MP - PAP) (PAP - mP) \]
\[\leq \frac{1}{8} \| f'' \|_{m, M}, \infty (M - m)^2 P \]
and by (2.18) we get (2.22). \qed

Corollary 4. Let $f : [m, M] \to \mathbb{R}$ be an operator convex function on $[m, M]$ and A a selfadjoint operator with the spectrum $\text{Sp} (A) \subset [m, M]$. If P is an orthogonal
projection, then

\begin{equation}
0 \leq Pf(A)P - Pf(PAP)P
\leq \frac{1}{2} \|f''\|_{[m,M],\infty} (MP - PAP)(PAP - mP)
\leq \frac{1}{8} \|f''\|_{[m,M],\infty} (M - m)^2 P.
\end{equation}

3. Some Examples

We consider the exponential function \(f(x) = \exp(\alpha x)\) with \(\alpha \in \mathbb{R} \setminus \{0\}\). This function is convex but not operator convex on \(\mathbb{R}\). If \(A\) is selfadjoint with \(\text{Sp}(A) \subset [m,M]\) for some \(m < M\) and \(P\) is an orthogonal projection, then by (2.2), (2.17) and (2.22) we have

\begin{equation}
P\exp(\alpha A)P - P\exp(\alpha PAP)P
\leq \frac{\alpha}{M - m} (MP - PAP)(PAP - mP)
\leq \frac{1}{4} \alpha (M - m) \exp(\alpha M) - \exp(\alpha m) P,
\end{equation}

\begin{equation}
P\exp(\alpha A)P - P\exp(\alpha PAP)P
\leq 2 \left[\frac{\exp(\alpha M) + f(\alpha M)}{2} - \exp\left(\frac{\alpha M}{2}\right) \right]
\times \left(\frac{1}{2} (M - m) P + P \left\lvert PAP - \frac{1}{2} (m + M) 1_P \right\rvert P \right)
\leq 2 (M - m) \left[\frac{\exp(\alpha m) + f(\alpha M)}{2} - \exp\left(\frac{\alpha m + M}{2}\right) \right] P
\end{equation}

and

\begin{equation}
P\exp(\alpha A)P - P\exp(\alpha PAP)P
\leq \frac{1}{2} \alpha^2 \begin{cases}
\exp(\alpha M) & \text{if } \alpha > 0 \\
\exp(\alpha M) & \text{if } \alpha < 0
\end{cases}
\times (MP - PAP)(PAP - mP)
\leq \frac{1}{8} \alpha^2 (M - m)^2 \begin{cases}
\exp(\alpha M) & \text{if } \alpha > 0 \\
\exp(\alpha m) & \text{if } \alpha < 0
\end{cases}
\times P.
\end{equation}

The function \(f(x) = -\ln x, x > 0\) is operator convex on \((0, \infty)\). If \(A\) is selfadjoint with \(\text{Sp}(A) \subset [m,M]\) for some \(0 < m < M\) and \(P\) is an orthogonal projection, then by (2.9), (2.19) and (2.24) we have

\begin{equation}
0 \leq Pf(A)P - Pf(PAP)P
\leq \frac{1}{mM} (MP - PAP)(PAP - mP)
\leq \frac{1}{4mM} (M - m)^2 P,
\end{equation}
(3.5) \[0 \leq Pf(A)P - Pf(PAP)P \]
\[\leq 2 \ln \left(\frac{m + M}{2\sqrt{mM}} \right) \]
\[\times \left(\frac{1}{2} (M - m) P + P \left| PAP - \frac{1}{2} (m + M) 1_H \right| P \right) \]
\[\leq 2 (M - m) \ln \left(\frac{m + M}{2\sqrt{mM}} \right) P \]

and

(3.6) \[0 \leq Pf(A)P - Pf(PAP)P \]
\[\leq \frac{1}{2m^2} (MP - PAP) (PAP - mP) \leq \frac{1}{8m^2} (M - m)^2 P. \]

We observe that if \(M > 2m \) then the bound in (3.4) is better than the one from (3.6). If \(M < 2m \), then the conclusion is the other way around.

The function \(f(x) = x \ln x, x > 0 \) is operator convex on \((0, \infty)\). If \(A \) is selfadjoint with \(\text{Sp}(A) \subseteq [m, M] \) for some \(0 < m < M \) and \(P \) is an orthogonal projection, then by (2.9), (2.19) and (2.24) we have

(3.7) \[0 \leq PA \ln(A)P - PAP \ln(PAP)P \]
\[\leq \frac{\ln(M) - \ln(m)}{M - m} (MP - PAP) (PAP - mP) \]
\[\leq \frac{1}{4} (M - m) [\ln(M) - \ln(m)] P, \]

(3.8) \[0 \leq PA \ln(A)P - PAP \ln(PAP)P \]
\[\leq 2 \left[\frac{m \ln(m) + M \ln(M)}{2} - \left(\frac{m + M}{2} \right) \ln \left(\frac{m + M}{2} \right) \right] \]
\[\times \left(\frac{1}{2} (M - m) P + P \left| PAP - \frac{1}{2} (m + M) 1_H \right| P \right) \]
\[\leq 2 (M - m) \left[\frac{m \ln(m) + M \ln(M)}{2} - \left(\frac{m + M}{2} \right) \ln \left(\frac{m + M}{2} \right) \right] P \]

and

(3.9) \[0 \leq PA \ln(A)P - PAP \ln(PAP)P \]
\[\leq \frac{1}{2m} (MP - PAP) (PAP - mP) \leq \frac{1}{8m} (M - m)^2 P. \]

Consider the power function \(f(x) = x^r, x \in (0, \infty) \) and \(r \) a real number. If \(r \in (-\infty, 0] \cup [1, \infty), \) then \(f \) is convex and for \(r \in [-1, 0] \cup [1, 2] \) is operator convex. If we use the inequalities (2.2), (2.17) and (2.22) we have for \(r \in (-\infty, 0] \cup [1, \infty) \) that

(3.10) \[PA^r P - P (PAP)^r P \]
\[\leq r \frac{M^{r-1} - m^{r-1}}{M - m} (MP - PAP) (PAP - mP) \]
\[\leq \frac{1}{4} r (M - m) [M^{r-1} - m^{r-1}] P, \]
\begin{align}
PA^r P - P (PAP)^r P & \leq 2 \left[\frac{m^r + M^r}{2} - \left(\frac{m + M}{2} \right)^r \right] \\
& \times \left(\frac{1}{2} (M - m) P + P \right) \left(PAP - \frac{1}{2} (m + M) 1_H \right) P \\
& \leq 2 (M - m) \left[\frac{m^r + M^r}{2} - \left(\frac{m + M}{2} \right)^r \right] P
\end{align}

and
\begin{align}
PA^r P - P (PAP)^r P & \leq \frac{1}{2} r (r - 1) \left\{ \begin{array}{ll}
M^{r-2} & \text{for } r \geq 2 \\
m^{r-2} & \text{for } r \in (-\infty, 0] \cup [1, 2)
\end{array} \right. \\
& \times (MP - PAP) (PAP - mP) \\
& \leq \frac{1}{8} r (r - 1) (M - m)^2 \left\{ \begin{array}{ll}
M^{r-2} & \text{for } r \geq 2 \\
m^{r-2} & \text{for } r \in (-\infty, 0] \cup [1, 2)
\end{array} \right. \times P,
\end{align}

where A is selfadjoint with \(\text{Sp}(A) \subset [m, M] \) for some \(0 < m < M \) and \(P \) is an orthogonal projection.

If \(r \in [-1, 0] \cup [1, 2] \), then we also have \(0 \leq PA^r P - P (PAP)^r P \) in the inequalities (3.10)-(3.12).

References

1Mathematics, School of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.
E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

2School of Computational & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa