REVERSE JENSEN INTEGRAL INEQUALITIES FOR CONVEX
FUNCTIONS AND POSITIVE LINEAR MAPS IN C*-ALGEBRAS

S. S. DRAGOMIR!:2

ABSTRACT. Let A and B be unital C*-algebras. In this paper we obtain several
operator inequalities providing upper bounds for the difference

[oca@nane-1([ o @),

where f : I — R is a convex function defined on an interval I , (¢;)ier is
a unital field of positive linear mappings ¢, : A — B defined on a locally
compact Hausdorff space T with a bounded Radon measure g and (z¢)ier is
a bounded continuous field of selfadjoint elements in A with spectra contained
in I. Several Hermite-Hadamard type inequalities are given. Some examples
for convex and operator convex functions are also provided.

1. INTRODUCTION

Let T be a locally compact Hausdorff space and let A be a C*-algebra. We
say that a field (x¢)ier of operators in A is continuous if the function ¢ — x; is
norm continuous on 7. If in addition y is a Radon measure on T and the function
t+— ||z is integrable, then we can form the Bochner integral [}, x¢dpu (t), which is
the unique element in A such that

e(f xtdmt)) — [ eidnt

for every linear functional ¢ in the norm dual A*, cf. [13, Section 4.1].

Assume furthermore that there is a field (¢,)icr of positive linear mappings ¢,
: A — B from A to another C*-algebra B. We say that such a field is continuous if
the function ¢ — ¢, (x) is continuous for every x € A. If the C*-algebras are unital
and the field ¢ — ¢, (1) is integrable with integral [. ¢, (1) du (t) = 1, we say that

(¢;)ter is unital.
A continuous function I — R is said to be operator convex if

F(A=XNz+Xy) <(L=A)f(2)+Af(y)
for any selfadjoint elements x, y in A with spectra Sp (z) and Sp (y) contained in
1.
The following Jensen’s integral inequality has been obtained in [12]:

Theorem 1. Let f: I — R be an operator convex function defined on an interval
I, and let A and B be unital C*-algebras. If (¢,)ier is a unital field of positive
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linear mappings ¢, : A — B defined on a locally compact Hausdorff space T with a
bounded Radon measure p, then the inequality

(1.1) £([seran®) < [ o @

holds for every bounded continuous field (x¢)ier of selfadjoint elements in A with
spectra contained in I.

The discrete case is as follows [15]:

(S e0) < Smen s

for operator convex functions f defined on an interval I, where ¢, : A — B, i €
{1,...,n} are unital positive linear maps, z;, i € {1,...,n} are selfadjoint elements
in A with spectra contained in I and w; >0, i € {1,...,n} with Y. w; = 1.

Also, if f : I — R is operator convex on I and a; € A, i € {1,...,n} with
Yo a*a; =1, then [13]

f (i: a*xiai> < ia*f (zi)a
i=1 i=1

where x;, i € {1,...,n} are selfadjoint elements in A with spectra contained in I.
For various reverse inequalities related to these results see [15], [13], [8] and
[12]. For related inequalities for operator convex functions see [1]-[3], [9]-[11] and
[16]-[20].
It is known that there are convex functions f for which the inequality (1.1) does
not hold, however one can obtain several operator inequalities providing upper
bounds for the difference

/¢t (z¢)) dp (¢ (/d)txtdu >

for any convex function f : I — R, (¢;)ter and (2¢)ter as in Theorem 1. Several
Hermite-Hadamard type inequalities are given. Some examples for convex and
operator convex functions are also provided.

2. SOME HERMITE-HADAMARD TYPE INEQUALITIES

Let T' = [0,1] and p be the Lebesgue measure on the interval [0, 1] . Assume that
the field (¢;)¢c(0,1) of positive linear mappings ¢, : A — B is continuous and unital,

ie. fo ¢, (1)dt =1 and z, y selfadjoint elements in A with the spectra in I. Then
by taking iEt =(1—t)xz+ty, t €0,1] we get from (1.1) that

(2.1) (/ o, (1 —1t)x +ty) dt) /(ﬁt (1 —t)z+ty))dt.
We have

A@«vwxﬂwﬁ=éu—w@mm+lt@@w
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By the operator convexity of f we also have

(2.2) /aﬁt (1—t)z +ty) dt</ ¢ [(1=1) f (x) +tf (y)] dt
_ / [(1— 1) &y (f () + by (f ()] dt
0
:/ (1—t)¢t(f(x))dt+/ toy (f (y))dt
0 0

Therefore by (2.1) we obtain the Hermite-Hadamard type inequality

(2.3) f(/l(l—t)@( >dt+/ tmy)dt)

/ o (fF(1=t)z+ty))dt

g/o (1—1)o, (f (z ))dt+/ to, (f (y)dt

0

for z, y selfadjoint elements in A with the spectra in I, the field (¢;):cjo,1) of

positive linear continuous mappings ¢, : A — B with fo ¢, (1)dt = 1 and the
operator convex function f: I — R.
If we take ¢, = ¢, t € [0,1], a positive linear mapping with ¢ (1) = 1 and since

/01(1—t)¢t($)dt+/01t¢t(y)dt= (/01(1—t)dt>¢(x)+ (/Oltdt>¢(y)

_ 0@ o)
2

and

/0 (1= )6, (f () dt + / 16, (f (4)) dt

— </01 (1t)dt>¢>(f(:p))+ </01tdt)¢(f(y))

o @) o )
2 )

then by (2.3) we get

e g (HEE) < /¢ F -ttt < LY@ O G)

2

for x, y selfadjoint elements in A with the spectra in I, the positive linear mapping
¢ : A— B with ¢ (1) =1 and the operator convex function f: I — R.

However, this inequality is not as good as the following result obtained for Banach
algebras of operators [7], which can be also stated, with a similar proof, for the unital
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C*-algebras A and B

en (1) <)o (1 (5Y))

<(1_A)¢<f[(1_x)x2+(1+A)DHd)(f[(z—A)QxHyD

< o(f (A =tz +ty))dt

S A=Nz+2y)+ 1 =2 (f[y) + Ao (f (2))]
¢(f(2)+o(f (W)
2

IN

for x, y selfadjoint elements in A with the spectra in I, the positive linear mapping
¢ : A— B with ¢ (1) =1 and the operator convex function f: I — R.
Let a, b € A with a*a = b*b = 1 and define
¢y () = (1 —t)a"za +tb*xb, t € ]0,1] and = € A.

This field (¢;)¢e[0,1) is of positive linear continuous mappings with

1 1
/qﬁt(l)dt:/ [(1—t)a*1a+ th*1b] dt
0 0
1

“a+ b*b
:/ [(1—t)a*a+ th*b] dt = % ~1.
0

If we use the inequality (1.1) for this filed of positive linear mappings, we get

s </01 [(1— ) a*za + th*z.b] dt) < /01 [(1— ) a*f (21) a + to* f () 0] dt

namely

(2.6) f(a* < /0 1(1—t)xtdt>a+b* < /0 1txtdt> b)
<a (/Ol(l—t)f(xt)dt>a+b* </01tf(a:t)dt>b

for every bounded continuous field (x);c[o,1) of selfadjoint elements in A with spec-
tra contained in I.
If we take x; := (1 —t)x + ty, t € [0, 1], then

| a=nmar= [ a-nia-natuld=gas g

1 1 1 1
/tactdt:/ t[(1—t)z+tyldt =z + <y.
0 0 6~ 3
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Also, by the operator convexity of f we have

o </01(1—t)f(xt)dt>a:a* ([(1—t)f((1—t)x+ty)dt>a
<a* (/ ((1—t>2f<x>+<1—t>tf<y>)dt)a
1

and

b (/Oltf(xt)dt>b:b*(/Oltf((l—t)x+ty)dt)b
gb*(/01((1—t)tf(x)+t2f(y))dt)b
:%b*f(z)b+%b*f(y)b.
From (2.6) we get
f(a* (;)x—l—éy)a—&-b*( x+;y> )
§a*</01(1—t)f((1—tx+ty t>a+b*<0 ((1—t)x+ty)dt>b

< S0 f@)at sa fat b F ()bt 1bF ()b

—_

namely

e (5[ (557 v (557)1])
<a* (/01(1—t)f((1—t)x+ty)dt>a—i—b* (/Oltf((l—t)x—i-ty)dt)b

<o (ML) (102200,

where f is operator convex on I, a, b € A with a*a = b*b = 1 and =z, y are selfadjoint
elements with spectra in I.

3. MAIN RESULTS

The following result provides an operator inequality that generalizes the scalar
version obtained in [6]. In the formulation below it was obtained in [14]:

Theorem 2. Let f: I — R be a continuous convex function defined on an interval
I and let A and B be unital C*-algebras. If (¢,)ier is a unital field of positive
linear mappings ¢, : A — B defined on a locally compact Hausdorff space T with a
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bounded Radon measure p, then

(3.1) /¢>t (z0)) dps (t (/gbtxtdp )
<EEEE (i [ oeoano) ([ owdn -m)

L0 —m) 7 (M) — 1 (m)] 1

for every bounded continuous field (x;)ier of selfadjoint elements in A with spectra
contained in a closed subinterval [m, M] of I.

IN

Proof. We use the following inequality for convex functions f : [m, b — R that was
obtained in [4]:

(3.2) og(M_t)f(";;t(;_m)f(M) f(®)
g(M—t)(t—m)f/‘(]\]Q:fr‘;*(m) %( —m) [fL (M) = fi (m)]

for any t € [m, M].

If the lateral derivatives f (M) and f, (m) are finite, then the second inequality
and the constant 1/4 are sharp.

Utilising the continuous functional calculus for a selfadjoint element y with 0 <
y < 1 and the convexity of f on [m, M], we have

(3.3) FmA—y)+My) < f(m)(1—y)+ f(M)y
in the operator order.
Let ¢t € T. If we take in (3.3)

—ml

then we get

(3.4) f< (1— Mml) +M9§\t4_m1>
<7 (1- 5+ ron S
Observe that

(1_M m1>+Mxt—m1 m (M1 —x) + M (z; — ml)

= :_’L‘t

M—m M—m

£ (m) (1M>+f( )2 _ () L)+ 31 (=)

and by (3.4) we get the following inequality of interest
M1 — M —ml

M—-m
forall t € T.
If we take the functional ¢, in (3.5) we get

3.8 o(f () < LIAOD) =00z + ] (M) (6 () = m (1)

—m
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forall t € T.
If we take the integral [. in (3.6) we get

(3.7) / 6, (F (20)) dp (1)

£ o i [sera)
o=
:Mim <M1—/T¢f ) dp (¢ )

o[ -]

Therefore, by (3.7) we obtain

(3.8) /¢>t (z2)) dps (¢ (/ o, () dp (t >

)(Ml—fT¢t xy) dp t) (M ([ &4 (ze) dpu (t) — m1)

f(A¢Amwm@0.

Using the inequality (3.2) and the functional calculus, we get

fm) (M1 — [, (x0) dp () + (M) (Jr &1 (w4) dpu () —m1)

(3.9) T
—f<A¢AMMMUO
08 i) ([ -
< 3 (M —m) [£7 (M) = £ (m)] 1.
By utilising (3.8) and (3.9) we derive (3.1). O

Corollary 1. With the assumptions of Theorem 2 and if f is operator convexr on
1, then we have the following reverse of (1.1)

(3.10) o</¢t () dp (¢ </¢t ) dp (¢ )
gf/*(M)i;’;*( <M1—/¢txtdu )(/q&t;vtdu )

(M —m) [f. (M) = f} (m)] 1.

pM»—*
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We also have the norm inequalities

‘/ 00 (f (20)) dp (¢ </ O o) et )
< OO B (o1 [ gy @odn®) ( [ onoant - )|

fL (]‘]{/f) n; HMl—/qﬁt xy) dp (t) H/T@(mt)du(t)_mlH

1O = m) [£2.(00) = £ (m)] 1

Remark 1. Let f: I — R be a continuous convex function defined on an interval
I and let A and B be unital C*-algebras. Assume that the field (¢;)¢cjo,1) of positive

linear mappings ¢, : A — B is continuous and unital, i.e. fol ¢, (1)dt =1 and
x, y selfadjoint elements in A with the spectra in [m,M] C I. Then by taking
xy = (1 —t)z+ty, t €0,1] we get from (3.1) that

(3.12) /qﬁt 1t9:+ty))dtf</01(1t)qbt(x)dtJr/Olt(i)t(y)dt)
< (M) ﬁ( )<M1/01(1t)¢t(:c)dt/01t¢t(y)dt>

X (/01(1t)¢t(x)dt+/01t¢t(y)dtm1)

< 3 O —m) [72 (M) — 1 (m)] 1

If f is operator convex, then the first term in (3.12) is also nonnegative in the
operator order.

For z, y selfadjoint elements in A with the spectra in I, the positive linear map-
ping ¢ : A — B with ¢ (1) =1 and the convex function f: I — R, we have

(3.13) /0 o(f(1—t)z+ty))dt—f (W)

< LON-L ) (39100 (21106 )

(3.11)

IN

2

IN

O —m) [ (M)~ £ (m)] 1

If f is operator convex, then the first term in (3.12) is also nonnegative in the
operator order.
For A= B and ¢ (z) = x, then by (5.18) we get

(3.14) /Olf((l—t)w—kty)dt—f(x;y)
< O () (5 m)

IN

T O —m) [ (M) — 71 (m)] 1

If f is operator convex, then the first term in (3.14) is also nonnegative in the
operator order.
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Let a, b € A with a*a = b*b = 1 and a bounded continuous field (xt)epo,1] of
selfadjoint elements in A with spectra contained in [m, M) C I. If f is convex on
I, then by (3.1) we get

(3.15) a* (/01 (1t)f(:ct)dt>a+b* (/Oltf(zt)dt>b

f<a* (/01(1t)xtdt>a+b* (/Oltxtdt) b)
f’_(J\Q:ﬁ(m) (Mla* (/Ol(lt)xtdt)ab* (/Oltztdt> b)
<a* </01 (1t)ztdt>a+b* </01t:ctdt)bm1>

gi(M—m) [f2 (M) — £, (m)] 1

X

If f is operator convex, then the first term in (3.15) is also nonnegative in the
operator order.

If f is convex on I, a, b € A with a*a = b*b =1 and x, y are selfadjoint elements
with spectra in [m, M| C I, then

(3.16) o (/01(1—t)f((1—t)m+ty dt)a+b*( (-1 m+ty)dt)b
-1 (gl (552w (552)1))
< I U‘Q:ﬁ(m) (M1; {a* <2x;y)a+b* (z+32y>bD
G R ()

< i(M—m) [f1 (M) = f1 (m)] 1

If f is operator convex, then the first term in (8.16) is also mnonnegative in the
operator order.

Further, we also have the following result that provides an operator inequality
that generalizes the scalar version obtained in [6].

Theorem 3. Let f: I — R be a continuous convex function defined on an interval
I and let A and B be unital C*-algebras. If (¢,)ier is a unital field of positive
linear mappings ¢, : A — B defined on a locally compact Hausdorff space T with a
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bounded Radon measure p, then

(3.17) / 6, (F (z) dp (¢ ( / 6, (1) dp (¢ )

§2{f();f() G

X (;(M—m)l—i—‘/TqSt(xt)du(t)—;(m—kM)lD

<2(M —m) {f(m);f(M) f<mJ;M>}

for every bounded continuous field (x;)ier of selfadjoint elements in A with spectra
contained in a closed subinterval [m, M] of I.

Proof. We also have the following scalar inequality of interest:

(3.18) 2 min {£,1 — t} {f(m)Jrf(M) s (m+M>}

2 2
< (L=1) F (m)+f (M) = f (1= t)m +tM)

< 2max {t,1 -t} [f(me(M) f<m+M)],

2 2

where f : [m, M] — R be a convex function on [m, M] and ¢ € [0, 1].

The proof follows, for instance, by Corollary 1 from [5] for n = 2, p; = 1 — ¢,
pe=t,t€[0,1 and 1 = m, o9 = M.

We have from (3.18) that

(3.19) 2<1't1D [f(m)Jrf(M)f(erM)}

2 2 2
<A =t) f(m)+tf (M) = f((1=t)m+tM)

SQ(;%;D {f(m)gf(M) f(m;Mﬂ’
for all t € [0,1].

Utilising the continuous functional calculus for a selfadjoint element y with 0 <
y <1 we get from (3.19) that

[0 (2] (1)
<@ —y)f(m)+yf(M)—f((1—-y)m+yM)

f(m)+ f (M) m+ M 1
<o [F s (58] e b))
in the operator order.

Now, if z is selfadjoint with Sp (z) C [m, M], then m1 <z < M1. If we take in
(3.20)

r—ml
<1,
M—-—m —

0<y=
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then, we get

(3.21) g{f(m”f(M)_f(erMﬂ

2
x(;M—mﬂ—x—;W+MﬂD

L) (1) £ () )
QVom;fwdf3<m;M)]

- f(z)

IN

X (;(M—m)l—k

x—;(m+M)1D.

From (3.8) we get

(3.22) / &, (f () dp (t ( / o, () dp (t )

) (M]- — fT ¢t Lt d,u )) (M (fT ¢t (:Ut) d/JJ (t) B ml)

- M —
—f(A¢A%Mu®)~

Using the inequality (3.21), we also have

f(m) (M1 — [ ¢, (z¢) du () + (M) (S & (24) dp(t) —m1)

(3.23) 2
—f(A¢Aanmuﬁ
o[£ 100 _ (i)

X <;(Mm)1+

by (w) dp (8) — = (m+ M) 1] )
/. 2

By utilising (3.22) and (3.23) we obtain the first part of (3.17).

If u € [m, M], then |u— 2EM| < 1 (M —m) and by the continuous functional
calculus we have |x -3 (m+ M) 1‘ < 1 (M —m)1if z is a selfadjoint element with
Sp (x) C [m, M].

Since m1 < ¢, (x¢) < M1 then m1 < [ ¢, () dp (t) < M1, which proves the
last part of (3.17). O
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Corollary 2. With the assumptions of Theorem 2 and if f is operator convexr on
1, then we have the following reverse of (1.1)

(3.24) o</¢t () dp (¢ (/ o, () dp (t )

S2[f< m)+ f (M >_f<m+M)]

2 2
y <;(M—m)1+'/T¢t(:ct)du(t)—;(m+M)1'>
o [LEI00 _y (mtar)]

2

We have the norm inequalities

(3.25)

(w¢)) dp (¢ f(
<2{ oot ZMH
;(M m) 1+ (

<o L s (m )}

T T

(o]

Remark 2. Let f: I — R be a continuous convex function defined on an interval
I and let A and B be unital C*-algebras. Assume that the field (¢,)icjo,1) of positive

linear mappings ¢, : A — B is continuous and unital, i.e. fol ¢, (1)dt =1 and
x, y selfadjoint elements in A with the spectra in [m,M] C I. Then by taking
xp = (1—t)x+ty, t €[0,1] we get from (3.17) that

(3.26) /¢t 1t:chty))dtf(/Ol(lt)qbt(:z:)dtJr/Olt(z)t(y)dt)
§2{f( m) + f (M) f<m+M>}

2

x (;(M—m)1+ /01(1—t)¢t(x)dt+/01t¢>t(y)dt—;(m+M)1D

<o(ar g [LIVLIOD _y (mrarY]

If f is operator convex, then the first term in (3.26) is also nonnegative in the
operator order.
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For z, y selfadjoint elements in A with the spectra in I, the positive linear map-
ping ¢ : A — B with ¢ (1) = 1 and the convex function f: I — R, we have

(3.27) /01 6 (f(1—t)z+ty)dt—f <W>
S2[f(m);f(M) _f<m;M)]

X (;(M—m)l—l—‘w—;(m—i—M)lD

o) [f(m)w;f(M) _f<m;M>] .

If f is operator convex, then the first term in (3.27) is also nonnegative in the
operator order.
For A= B and ¢ (x) = x, then by (5.27) we get

(3.28) /Olf((l—t)m—i—ty)dt—f(x;—y)
e
Ty 1

x(;(M—m)l—b— 5 2(m+M)1D

o0 m) {f(m)Jrf(M) _f(m+M>} N

|

2 2

If f is operator convex, then the first term in (3.28) is also nonnegative in the
operator order.

We also have [4]:

Lemma 1. Assume that f : [m, M| — R is absolutely continuous on [m, M|. If
is K-Lipschitzian on [m, M|, then

(3.29) (L =2) f(m)+tf (M) — f((1—¢t)m+tM)|
< KM =)t —m) <

K (M —m)?

for allt €10,1].
The constants 1/2 and 1/8 are the best possible in (3.19).

Remark 3. If f : [m, M] — R is twice differentiable and f" € Lo [m, M], then

(3.30) (L =2) f(m) +tf (M) = f((1 =) m + tM)]
1 1
<5 ||f”||[m,M],oo (M - t) (t - m) < g ||fNH[m,M],oo (M - m)2 )
where [ f" | a1,00 7= €8SUPseim ar) [f7 (¢)| < oo. The constants 1/2 and 1/8 are

the best possible in (3.20).
The following result also holds:

Theorem 4. Let f: I — R be a twice differentiable convex function defined on
an interval I and let A and B be unital C*-algebras. If (¢,)ier is a unital field of
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positive linear mappings ¢, : A — B defined on a locally compact Hausdorff space
T with a bounded Radon measure p, then

(3.31) /@ (20)) s (¢ (/@xtdu )
2||f"||[m,M],oo(Ml— [ o) ([ ot -m1)

1
3 1 i 217,00 (M —m)* 1

for every bounded continuous field (x;)ier of selfadjoint elements in A with spectra
contained in a closed subinterval [m, M] of I.

I /\

Proof. From (3.30), the convexity of f and the continuous functional calculus, we
get

f(m)(M1—2)+ f (M) (z —ml)
M—m A
1

1
< S 1 a0 (M1 = 2) (2 = 1) < < 1 g0 (M =) 1,

where z is a selfadjoint element with the spectrum Sp (x) C [m, M].
Since

(3.33) / b, (f (z0)) dp (t ( / o, () dp (t )

f(m )(Ml—qust ) dp (8) + [ (M) ([ ¢, (20) dp (t) — m1)

M —m
1 ([ aeran)

and, by (3.32) for x = [ ¢, (x¢) dpu (t),
f(m) (M1 = [ ¢y (22) du(t)) + f (M) (J7 ¢4 (we) du (t) — m1)

2
f ( / o, (a2) dp <t))
fuf”an] (31 [ oeau®) ([ otedute —m)

g Hf//H[mM]oo (M - m) 1,
hence by (3.33) and (3.34) we derive (3.31). O

(332) 0<

(334) 0<

\ /\

\ /\

Corollary 3. With the assumptions of Theorem 4 and if f is operator convexr on
1, then we have the following reverse of (1.1)

(3.35) 0</¢t (20)) dp (1 (/@xtdu )
<! Hf”an] (Ml—/a:t s dn®) ([ 60w a0 - ma)

I /\
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We also have the norm inequalities

o oo
T . H (M 1 [ 6@ <t>) (/T @ () diu (1) = ml) H

1= [o@ano)]| [ o edn)-m)|

1
S 1 0 (M =),

(3.36)

\ /\

IN

IN

Remark 4. Let f: I — R be a twice differentiable convex function defined on an
interval I and let A and B be unital C*-algebras. Assume that the field (¢;)ic0,1) of

positive linear mappings ¢, : A — B is continuous and unital, i.e. fol ¢, (L)dt =1
and x, y selfadjoint elements in A with the spectra in [m, M| C I. Then by taking
=(1-t)x+ty, t €[0,1] we get from (3.1) that

(3.37) /¢>t l—t:c—l—ty))dt—f(/01(l—t)qbt(a:)dt—k/olwt(y)dt)

1 1
<35 Hf//H[m,M],oo <M1 _/0 (1—1) o (2) dt_/o oy (y) dt)

(/01(1—t)qﬁt(x)dt—i-/olt(bt(y)dt—ml)

1 2

X

If f is operator convex, then the first term in (3.37) is also nonnegative in the
operator order.

For x, y selfadjoint elements in A with the spectra in [m,M] C I, the positive
linear mapping ¢ : A — B with ¢ (1) = 1 and the convex function f: 1 — R, we
have

(3.38) /0 6(f(1—t)a+1ty))dt— f (W)

_ % . (Ml - ¢(x)—2|-¢(y)) <¢(as) +0 () _m1>

IN

1 2
U g (M = 1

If f is operator convex, then the first term in (3.38) is also nonnegative in the
operator order.

For A= B and ¢ (z) = z, then by (3.38) we get

(3.39) /()1f((1—t)x+ty)dt—f<$_2|_y>

Lo T+y T+y

1 2

IN




16 S.S. DRAGOMIRY2

If f is operator convex, then the first term in (3.39) is also nonnegative in the
operator order.

4. SOME EXAMPLES

Let A and B be unital C*-algebras and (¢,)ier be a unital field of positive
linear mappings ¢, : A — B defined on a locally compact Hausdorff space 17" with
a bounded Radon measure p.

We consider the exponential function f (z) = exp (ax) with o € R\ {0} . This
function is convex but not operator convex on R. Then by (3.1), (3.17) and (3.31)
we get

(11) [ utexoeaan® -exo (a [ 6. ann)

exp (aM) — exp (am)

(= aman) o

<«

—m) [exp (eM) — exp (am)] 1,

(12) [ sutexptaaane) - e (a [ o dnn)

<9 {exp +exp(M)_eX (erM)}
< (jo01- 1+\/¢txtdu<> 3 (m+20)1])
<2(M )|:6Xp( )—;—exp —exp(m2 >}

and
[ it eanan® e (a [ o, wan)

exp (aM) if a >0

L

< -«

2 exp (am) if o <0
X(Ml—/qbtxtdu ></¢twtdu >
1 exp (aM) if >0

gg Z( x 1

exp (am) if a <0

for every bounded continuous field (x¢)ier of selfadjoint elements in A with spectra
contained in a closed subinterval [m, M] of R.
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The function f () = —Inz, > 0 is operator convex on (0, 00) . Then by (3.10),
(3.24) and (3.35) we get

(4.3) 0<1n(/¢txtdu > /¢t n (1)) dp (8)

oyl i) ([
1
S4mM(]M m)*1,

(4.4) 0<ln(/¢t (x¢) dp (¢ > /q’)t In (z;)) dp (t)

m+ M
<2In| —
o (2\/mM>

X <;(Mm)1+

L@Awmmw;m+MﬂD
)

§2(M—m)1n<
and

(45) 0§%¢¢@Wﬂ> [ 8 dney

<t - o) ()
—8;2(M_)1

for every bounded continuous field (x¢)ier of selfadjoint elements in A with spectra
contained in a closed subinterval [m, M] of (0,00).

We observe that if M > 2m then the bound in (4.3) is better than the one from
(4.5). If M < 2m, then the conclusion is the other way around.

For z, y selfadjoint elements in A with the spectra in [m, M] C (0,00), we have
the Hermite-Hadamard type inequalities

(46) 0<In (””;”) —/Olln((l—t)x+ty)dt

1 1
() (S )« r

2 2

47  0<h (x;y) /Olln((lt)x+ty)dt

o () (b3
or-mn (3%)

+

) (m—i—M)lD
<2(M 1
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and

(4.8) 0§1n<m;y>/Olln((lt)a:thy)dt

1 T4y z+y 1 2
< — (M1 - —ml) < M — 1.
_2m2< 2><2 m>_8m2( m)

The function f (z) = xInz, x > 0 is operator convex on (0,00). Then by (3.10),
(3.24) and (3.35) we get

(4.9) 0</¢t 2 In (24)) dp (t (/ast (z4) dps (¢ )m(/@ (z¢) d,u())

<1n(M) In (m)
- M—-—m

([ (-

< Z(M—m) [ln(M)—1n(m)]1

(4.10) /(bt zIn (24)) dp (¢ (/ &, () dp (t ) < &, (xt)du(t)>

mln (m +M1n )7 m+ M m4+ M
o[ (2), (223
(2 1+\/¢t i) du(0) — 5 (m+ A0)1 )

2 (M )[mln( )—;Mln( )_(m;M>1n<m;M>}1

and

(4.11) O</q§txtlnxt dp (t </¢t ) dp (¢ )hﬁ(/gbt )dp (¢ )
(o [ ataano) ([ ovteano-m)

<im(M—m)

for every bounded continuous field (x¢)ier of selfadjoint elements in A with spectra
contained in a closed subinterval [m, M] of (0, 00).

For z, y selfadjoint elements in .4 with the spectra in [m, M] C (0, c0) , we have
the Hermite-Hadamard type inequalities

(4.12) OS/01((1—t)l‘+ty)1ﬂ((1—t)x+ty)dt—<x;y>ln<x;y>

S m%:i(m) (M1_$;y> (m;y_m)

(M —m)[In(M)—1n(m)] 1,

»M»—‘
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1
(413) 0< / (I=t)z+ty)In((1 —¢t)z+ty)dt — (m—;—y) In (x—;—y)
0

§2[mln( )+ Mln (M <m+M> (m+M>}
1
2

x(;wm)lw;y 201
VM) (A (MY
and
(4.14) og/01((1—t)x+ty)1n((1—t)x+t:y dt — ( ) ( )
1.

1 T+y T +vy
< — — — <7 _
L (1= ) (252 <

Consider the power function f(z) = 2", € (0,00) and r a real number. If
r € (—o00,0]U[1,00), then f is convex and for r € [—1,0]U[1, 2] is operator convex.
If we use the inequalities (3.1), (3.17) and (3.31) we have for r € (—00,0] U [1, 00)
that

(4.15) /qst sy~ ([ o dute )
A o) ()
(O m) (U )1,
(4.16) | eanant ( [ edn )
<[ ()
< (Gor=me| [ o dn) - 5 om+n1l)

m” + M" (m—i—M)r}

<2(M - ){ (m+2

<NM_mﬂ 2 2

and

(4.17) / (x7) dp (¢ ( / &, () dpu ( >

M™2forr>2
r(r—1)

m" =2 for r € (—o00,0] U [1,2)

1
2
x(Ml—/cﬁtxtdu )(/(btmtdp )
1
8

r(r—l)(M—m)Q{ - x1

m" =2 for r € (—o0,0] U[L,2)
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for every bounded continuous field (x¢)ier of selfadjoint elements in A with spectra
contained in a closed subinterval [m, M] of (0, 00).
If r € [-1,0] UL, 2], then we also have

og/ng)t (7)) dp (t) — (/Tqét (xt)d/i(t)>r

in the inequalities (4.15)-(4.17).
For z, y selfadjoint elements in .4 with the spectra in [m, M] C (0,00), and if
r € [-1,0)U[1,2], then we have the Hermite-Hadamard type inequalities

1 T
(4.18) og/ ((1t)x+ty)’”dt(9”2“/>
0
M’!‘fl_m’r‘fl x_i_y x+y
<gp - _ _
<r U —m (Ml > )( 5 m1>
< ir (M —m)(M™'—m"")1,
1 c4y\
(4.19) Og/ ((1—t)x+ty)Tdt—(2>
0
<2{m”+M”<m+M>}
- 2 2
1 z+y 1
— (M — 1 - = M)1
><<2( m) 1+ 5 2(m+ ) D
<2(M—m) [m +M _(m—&-M)}
2 2
and
1 r
(4.20) og/ ((l—t)x—l—ty)rdt—(x;_y)
0
M2 forr>2
1
Sir(r—l)

m" =2 for r € (—o00,0] U [1,2)

r+vy r+y
(M1 . )( : ml)

1 M™2 forr > 2
Sgr(r—l)(M—m)Q x 1.
m" =2 for r € (—o0,0] U [1,2)

X
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