REVERSE JENSEN INTEGRAL INEQUALITIES FOR
OPERATOR CONVEX FUNCTIONS IN TERMS OF FRECHET
DERIVATIVE

S. S. DRAGOMIR!:2

ABSTRACT. Let f: I — R be an operator convex function of class C! (I). If
(At)ter is a bounded continuous field of selfadjoint operators in B(H) with
spectra contained in I defined on a locally compact Hausdorff space T with
a bounded Radon measure p and such that [ 1du(t) = 1, then we have
obtained among others the following reverse of Jensen’s inequality

0</fAtd,ut) (/Adu )
< [ brtan anaut - [ i Az)(/Adu( )du(t)

in terms of the Fréchet derivative D f(-)(-). Some applications for the Hermite-
Hadamard inequalities are also given.

1. INTRODUCTION

A real valued continuous function f on an interval [ is said to be operator convex
(operator concave) on I if

(1.1) FA=NA+AB) < (2)(1-A) f(A) +Af(B)

in the operator order, for all A € [0,1] and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I. Notice that a function f is
operator concave if —f is operator convex.

A real valued continuous function f on an interval I is said to be operator
monotone if it is monotone with respect to the operator order, i.e., A < B with
Sp(A), Sp(B) C I imply f(A) < f (B).

For some fundamental results on operator convex (operator concave) and oper-
ator monotone functions, see [9] and the references therein.

As examples of such functions, we note that f (¢t) = t" is operator monotone on
[0,00) if and only if 0 < r < 1. The function f (t) = t" is operator convex on (0, c0)
if either 1 < r <2 or —1 < r < 0 and is operator concave on (0,00) if 0 < r < 1.
The logarithmic function f(¢) = Int is operator monotone and operator concave

n (0,00). The entropy function f (t) = —tInt is operator concave on (0,00). The
exponential function f (t) = e’ is neither operator convex nor operator monotone.

For two distinct operators A, B € SA; (H) we consider the segment of selfadjoint
operators

[A,Bl:={(1—-t)A+tB|te][0,1]}.
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2 S.S. DRAGOMIRY2

We observe that A, B € [A,B] and [A,B] C SA; (H).

A continuous function g : SA; (H) — B (H) is said to be Gateaux differentiable
in A € SA; (H) along the direction B € B (H) if the following limit exists in the
strong topology of B (H)

If the limit (1.2) exists for all B € B (H), then we say that f is Géateaur differentiable
in A and we can write g € G (A) . If this is true for any A in a subset S from SA; (H)
we write that g € G (S).

Let f be an operator convex function on I. For A, B € SA;(H), the class
of all selfadjoint operators with spectra in I, we consider the auxiliary function
¢a,p) :[0,1] — SA; (H) defined by

(1.3) pap () =f(1-t)A+1tB).

For z € H we can also consider the auxiliary function ¢4 py,, : [0,1] — R defined
by

(L) pame ® = (pom O za) = (F(1-) A+tB)z,z).

By employing the properties of convex functions of a real variable, we have the
following basic facts, see for instance [8]:

eB(H).

Lemma 1. Let f be an operator convex function on I. For any A, B € SA; (H),
©a,p) is well defined and convex in the operator order. For any (A, B) € SA; (H)
and x € H the function ¢4 p),, is convex in the usual sense on [0,1].

Lemma 2. Let [ be an operator convex function on I and A, B € SA; (H), with
A # B. If f € G([A, B]), then the auziliary function ¢4 gy is differentiable on
(0,1) and

(1.5) Pap () =Via-namps(B—A).

Also we have for the lateral derivative that

(1.6) ¢ ap (0)=Vfa(B-A)

and

(1.7) ¢ (ap (1) =Vfp(B-A).
and

Lemma 3. Let f be an operator convex function on I and A, B € SA; (H), with
A#B.If f € G([A,B]), then for 0 < t1 < ta <1 we have

(1.8) Voa-tyatts (B—A) < Vga_i)ate,p (B —A)

in the operator order.
We also have

(1.9) Vfa(B—A) <Vgu_t)are, (B —A)
and

(1.10) Vg(—ts)a+t.8 (B —A) <V fp(B—A).
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Corollary 1. Let f be an operator convex function on I and A, B € SA;(H),
with A # B. If f € G([A, B]), then for all t € (0,1) we have

By making use of the gradient inequality for the convex function of a real variable

@(A,B);.’c with z € H,
@By (0) <94 By (1) = a8y (0) <@ (45 (1),
namely
(Vfa(B—A)z,z) <(f(B)z,z) — (f(A)z,2) < (Vfp (B - A)z,)
for any « € H. This is equivalent in the operatorial order with the operator gradient
inequality
Via(B-A) < f(B)-f(A)<V[fp(B—-A).

It is well known that, if f is a C'-function defined on an open interval, then

the operator function f(X) is Fréchet differentiable and the derivative D f(A)(B)

equals the Gateaux derivative V f4 (B). So for operator convex functions f that
are of class C' on I we have the Fréchet gradient operator inequality

(Gr) Df(A)(B—A) < f(B)—-f(A) <Df(B)(B-A)

for any A, B€ SA; (H).
For a C''-function f defined on I we also have by Lemma 2 that

(1.12) Pap ) =Df(1-t)A+tB)(B—A), te(0,1)
and
(1.13) ¢ap) (0)=Df(A)(B—A), ¢ (45 (1)=Df(B)(B-A).

Moreover, we have
(1.14) Df(A)(B—A)<Df(1-t)A+tB)(B—A)<Df(B)(B—A)

for all t € (0,1).

Let T be a locally compact Hausdorff space. We say that a field (A¢)ier of
operators in B(H) is continuous if the function ¢ — A; is norm continuous on 7.
If in addition x is a Radon measure on T and the function t — || A;| is integrable,
then we can form the Bochner integral [. Aydy (t), which is the unique element in

B (H) such that
0 ( | A (t)) — [ enane

for every linear functional ¢ in the norm dual B (H)", cf. [14, Section 4.1].
Assume furthermore that there is a field (¢,)ier of positive linear mappings ¢, :
B(H) — B(K) from B (H) to another C*-algebra B (K), with K a Hilbert space.
We say that such a field is continuous if the function ¢ — ¢, (A) is continuous for
every A € B(H). If the field t — ¢, (1) is integrable with integral [,. ¢, (1) dp (t) =
1, we say that (¢,):er is unital.
The following Jensen’s integral inequality has been obtained in [13]:

Theorem 1. Let f: I — R be an operator convex function defined on an interval

1. If (¢,)rer is a unital field of positive linear mappings ¢, : B(H) — B(K) defined
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on a locally compact Hausdorff space T with a bounded Radon measure p, then the
inequality

(1.15) f(A¢Amwm@)<A¢Aﬂm»wa>

holds for every bounded continuous field (A¢)ier of selfadjoint operators in B (H)
with spectra contained in I.

The discrete case is as follows [15]:

f (Z w;P; (Ai)> < Zwi¢i (f (A)

for operator convex functions f defined on an interval I, where ¢, : B(H) —
B(K), i€ {1,...,n} are unital positive linear maps, A;, ¢ € {1,...,n} are selfadjoint
operators in B (H) with spectra contained in I and w; > 0, ¢ € {1,...,n} with
i wi =1

Also, if f : I — R is operator convex on I and U; € B(H), ¢ € {1,...,n} with
Sor_,U*U; =1, then [14]

f (i U*AiUi> < iU*f(Ai)Ui;
i—1 i—1

where A;, i € {1, ...,n} are selfadjoint operators in B (H) with spectra contained in
1.

In this paper we establish some reverses of Jensen’s integral inequality for oper-
ator convex functions of class C*! (I), continuous fields (A;);er of selfadjoint oper-
ators in B (H) with spectra contained in I defined on a locally compact Hausdorff
space T with a bounded Radon measure p and such that fT 1dp (t) = 1. These
reverses are given in terms of the Fréchet derivative D f(-)(-). Some applications for
the Hermite-Hadamard inequalities are also provided.

2. MAIN RESULTS

We have the following inequalities in terms of the Fréchet derivative D f(-)(:) :

Theorem 2. Let f : I — R be an operator convex function of class C* (I). If
(At)ter is a bounded continuous field (A¢)ier of selfadjoint operators in B(H)
with spectra contained in I defined on a locally compact Hausdorff space T with a
bounded Radon measure i and such that fT 1dp (t) = 1, then we have the double
inequality in terms of the Fréchet derivative Df(-)(-)

(2.1) fM)lﬁMHm+Dﬂm<L&wUO
SLfMWM®
sﬂ&—é@ﬂ&mﬂw®+ADﬂmwnw®

forall Ac SA; (H).
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We have the reverse Jensen’s inequality

(2.2) o</fAth (/Adu )
/Df (Ad) (Ay) dp (¢ /Df (Ar) (/TAsdu(s)) du(t) .

If S € SA; (H) is an operator satisfying the equality

(S1) /Df (A0 ( /Df A) (A dp (1),

then we have the Slater type inequality

@3 0=1)- [ JA)du) < DIS)($) - DIS) (/TAtdum).
Proof. From (Gr) we have

(2.4) Df(A) (A — A) < f(Ar) = f(A) < Df(Ar) (A — A)
forallt e T.
By the linearity of the Fréchet derivative we have
(2.5)  f(A) = Df(A)(A) + Df(A) (Ar) < f(Ar)
< f(A) = Df(Ar) (A) + Df(Ar) (Ar)

forall t € T.
By taking the integral over ¢t € T', we have
26 FA)=DIA A+ [ DA A (o)
< [ rayaut

- /T DF(A) (A) dp (1) + /T DF(A) (Ay) du (1),

Since Sp (A;) C I, t € T, then there exists m < M such that Sp (4;) C [m, M] C I,
t € T, namely 1m < A; < 1M which implies that 1m < fT Apdp (t) < 1M. Namely,
Jr Ardp (t) € SA; (H). By the linearity and continuity of the Fréchet derivative

we then have
/ DF(A) (Ay) dpe (¢ ( / Ay (¢ )

and by (2.6) we get (2.1).
By taking A = [, Aidp (t) in (2.1) we get (2.2). If we take A = S in (2.1), then
we also get (2.3). O

We assume that © is a bounded linear operator that acts on SA; (H) with values
in SA; (H). We denote this as ® €eB(SA; (H)).

Corollary 2. Let f : I — R be an operator convex function of class C* (I). If
(Ap)ter is a bounded continuous field (Ai)ier of selfadjoint operators in B(H)



6 S.S. DRAGOMIRY2

with spectra contained in I defined on a locally compact Hausdorff space T with a
bounded Radon measure pi and such that [, 1du(t) =1, then

Af(At>du<t)—f(/TAsdu<s>>]

infoepsa; (i) (Suber |[Df(Ar) — D))
< Jp | Ae = [ Asdp ()] dpa (2)

2.7)

lnfgeB(SAI (fT ||Df At) i)Hlp/d,U (t))l/iﬂ
x (fr [|A4e - fTA dp ()| du ()" pg>1, L+ L =1

IN

infg EB(SA;(H (fT IDf(A:) —D| du (t))
X SUpyep HAt S Asdp (s )H

In particular,

/Tf(At)du(t)—f(/TAsdu(S>>H

supyer [|Df (A [ || Ae = [ Asdpa () || dps (£)

(2.8)

IN

(o IDF A" d D) (fi [ Ae — fyp Acdp(s)]|" dpu (£)) "
p,q>1, =+

ll
P g

S IDFAD dpe (8) supyer [|Ae = [ Asdpa (5)]] -

Proof. We have for any operator © €8 (SA; (H)) and the properties of Fréchet
derivative and integral, that

[ sy - (4~ [ adneo)ane

/DfAt <At /Ad,u ) (t) T@(At /Ad,u )
/DfAt (Ay) du (¢ /DfAt </TAgdu )> 1 (1)
ol (e

~ [ Dray (aute - | priay (/TA >>du(t>
(s

/DfAt ) (As) dp (¢ /Df </TAd/L )>du(t).

From (2.2) we have

(2.9) o< [ranan s ([ Aduo)

g/T(Df(At)—CD) (At—/TAsdu(s)> dp (8)
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for any operator © €8 (SA; (H)) .
By taking the norm in (2.9) we get

s (o)

S/T (Df(A) — D) <At/TAsdu(s))Hdp(t)

</T||Df(At)—©|’At—/TAsdﬂ(s) dp (t)
supser |Df(Ar) =D [ ||Ar = [ Asdp (5)]] dpe (2

(2.10) ‘

2 (D

1) (f [ A — Jp sy ()] * de ()
p7q>17p ==

+1 1
a
fT [Df(A:) — D du(t) SUPier HAt - fT Asdp (S)H
for any operator © €B (SA; (H)) .
By taking the infimum over ® €B(SA; (H)) in (2.10) we obtain the desired
result. (]

Corollary 3. With the assumptions of Corollary 2 and if there exists D1, D2€B (SA; (H))
such that

D1+,
2

s (f o)

< S I1® —@1||/ oy
T T

The proof follows by the first inequality in (2.7) and the condition (2.11).

(2.11) HDf(At) - < % D2 — D4

then

(2.12)

du(t) .

Corollary 4. With the assumptions of Corollary 2 and if S € SA;(H) is an
operator satisfying the equality (SI), then

(213) $)- [ 1) <) |s- [ aano)

< IDf)] /T 1S — Al dps (1)

Proof. By taking the norm in (2.3) we get

lr61- [ ranane| < |prs) (s - [ aauo)|
]
=[ [ s-avano| < [ 15 - anau

and the inequality (2.13) is obtained. O

IN

IN
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We assume that f : I — R is an operator convex function of class C* (I) and
Df(-) is Lipschitzian with constant L > 0 on SA; (H), namely

(2.14) IDf(A) = Df(B)|| < L|[A- B

for any A, Be€ SA; (H).

Corollary 5. With the assumptions of Corollary 1 and if Df(-) is Lipschitzian
with constant L >0 on SA; (H),

s o)

infpesa, i) (supser |Ar — BI|) [7 ||Ae = [ Asdp (s)|] dpa (¢

(2.15)

infpes.an (fp 140~ BI"d (1))
< (Jr 1Ae = [ Asdpn (s)]|" dpa (2)) Lopa>1 %—’— % =1

infpesa; () Jp Il Ae = Bl dp (8) supyer || Ae — [ Asdp (s)|) -

In particular,

s (L)

SUPier ||At — Jp Asdp (s H Jr HAt = Jp Asdp <S>H dp (t)

(2.16)

< L /
= ([ Ae = [ Asclps (3)]|" dpa ()7

X (fTHAt JrAsdp (s Hq t))l/q’ P q¢>1 %"_%: L

For p=q =2 we also get

o) <1

Proof. Let B € SA; (H). From (2.9) we have

(2.18) O</fAt du (¢ (/Adu )

g/T(Df(At)—Df(B)) (At—/TAsdu(s)) du(t)

2

(2.17) du (t).

A - / Ay (s)
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By taking the norm in (2.18) we get
219 | [raoao-r( [ aa)|

< [[|@ran - oo (4~ [ ) |aso

< [ Ipsa) - Dy BN

<1 /; 1A - BI || A, - /T Agdps(s) du )

sup,er || Ar — Bl fTHAt fTA dp (s Hd'“

A - A «dp (s)]| du (8)

<] Urllde=BIP du )" (| A= fr Asdpr (3)]" s (1)) "
- p, q>1, 7+7:1

fT |A¢ — Bl du (2) SUPier HAt - fT Asdp (S)H

for any B € SA; (H).
By taking the infimum over B € SA; (H) in (2.19) we obtain the desired result.
O

Remark 1. For the sake of completeness, we give here the discrete case as well.
Let f: I — R be an operator convex function of class C* (I). If (Ad)ieqt,...n} 05 @
sequence of selfadjoint operators in B (H) with spectra contained in I and p; > 0,
i€{l,...,n} with > p; =1. Then for all A € SA; (H) we have

(2.20) F(A) ~ DF(A) (A) + Df(A (sz )
< Zpif (Ai)
- Zpin(Ai) (A) + Zpin(A

We have
(2.21) 0< Zpif (Ai) = f (ZPMM)
< Zpin(Ai) (A;) — Zpin(Ai) (ijAj) .

If S € SA; (H) is an operator satisfying the equality

(Sld) Zpin(Ai) (S)dpu(t) = Zpin(A ) (Ai)
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then we have the Slater type discrete inequality

(2.22) 0<f(s sz ) <Df(S) (S (sz z) :

We have the norm inequalities

> onif(A)— f (Zp#h) |

i=1

(2.23)

infoensa, ) (Maxieqr, . ny [Df(A;) — D)
X Z?:1 Y2 HAZ - Z?:1 DjA; (

. n 1
infoen(sa, ) (D pi | Df(A) — D|)”

q\ 1/q
X(Z 1P| Ai = 251 PiA, ) ,pg>1 5+

IA

=1

1
q

infoen(sa,my) (Diz i [IDf(Ai) — D))
,,,,, n} HAi =2 PJ‘AJH

X maX;e{1

In particular,

(2.24)

sz‘f (A) = f (ZPW‘L)

max;eq1,...n} |[Df(As)] > i1 Di

Ai— Z;‘L:1 Pi4; H

(Z?:l Di ||Df(Ai)”p)1/p

< n n g\ 1/4q
X(Zizlpi Ai_zjzlijjH ) » Dy q>1,%+%:1
Z?:l pi [ D f(A:)|| max;eqs,..., ;L:lijjH .
If there exists D1, D2€B (SA; (H)) such that
D14+ 1
(2.25) HDf(AZ) — % S 5 ||©2 _ @1” ,
then

(2.26)

(Ai) = f <ZPiAi> A = piA;
i=1 j=1
If S € SA; (H) is an operator satisfying the equality (SId), then

(2'27) H sz S — sz i

<|IDf(S HZPZHS Aill-

1 n
< 5 102 = D4l > b
i=1

< [Df9)
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Moreover, if Df(-) is Lipschitzian with constant L >0 on SA; (H), then

> onif (A) - f <ZpiAi> H
i—1 i=1

infpesa, m (Supie{l,w,n} A — B||) Z?:l bi

(2.28)

Ai—30 ijjH

. n 1
infpesa, (i) (Dfy pi [l Ai — BH”)U/”
n n q q
X (Zi=1pi Aifzjzlijj ) y Dy q>17 %+%:1

infBeSAz(H) Z?:1 pi ||Ai — B SUPie{1,...,n} ‘Ai - Z;'l:1 ijjH :
In particular,

Zpif(Ai) - f (ZPW‘L‘) ‘

’Ai D ijjH > i1 Pi

n py\ /P
A =31 PiA; )

n a\ 1/4q -
Ai_Zj:1ijjH ) y 0y g>1 o4+ =1

(2.29)

A =300 ijjH

SUP;e(1,...,n}

<L

(E:‘L:l pi
X (Z?:l Di

Forp=q =2 we also get

Zpif (A) = f <szAz)

q

< szi A — ijAj
i=1 j=1

(2.30)

3. HERMITE-HADAMARD TYPE INEQUALITIES

Let f : I — R be an operator convex function of class C! (I). If A, B are
selfadjoint operators in B (H) with spectra contained in I, then by taking A; :=
(1-t)A+tB,t € [0,1] and the Lebesgue measure on [0, 1], we have by (2.1) the
double inequality in terms of the Fréchet derivative D f(-)(+)

(3.1) F(A) = DF(A) (A) + DF(A) (/0 [(1—t)A+tB]dt>
g/o F(1—t) A+tB)dt
1
<5~ [ DAL=t A+B) ()
0

+/1Df((1—t)A—|—tB)((1—t)A+tB)dt
0

forall A, Be SA; (H).
Observe that

/1[(1—t)A+tB]dt:A+B
0 2
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and

/1Df((1—t)A+tB)((1—t)A—HB)dt—/lDf((l—t)A+tB)(A)dt
0 0

/lth((lt)AthB)(BA).
0

By utilising (3.1) we get the following inequality of interest

A+ B
2

(3.2) [ (A)~ D(A) <A>+Df<A>(
g/o F(L—t)A+tB)dt

gf(A)+/01th((1t)A+tB)(BA)

for all A, Be SA; (H).
From (2.2) we have the reverse of the first Hermite-Hadamard inequality

A+B
2

(3.3) 0< 1f((1—t)A+tB)dt—f<
0

< | DA —t)A+tB)((1—1t)A+tB)dt
0

—/OlDf((l—t)A+tB) (A;B) dt
:/01 (t_;) Df((1—t)A+tB)(B— A)dt

forall A, Be SA; (H).
If S € SA; (H) is an operator satisfying the equality

(S1) /OlDf((l—t)A+tB)(S)dt:/TDf((l—t)A+tB)((1—t)A+tB)dt,

then we have the Slater type inequality

34 0=5()- [ [(1-0A+1B)d<DI(S)(5) - DI(S) (“B)-

2
Now, observe that, by (1.12) and integrating by parts, we have

/o1 (“;) Df(1—t)A+tB)(B - A)

= /01 (t - ;) P(a,n) (t)

1 oot
= <t - 2) Yap )] — / Pea,p) (t)dt
o Jo

_W/Olf(at)AHB)dt.
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By the inequality (3.3) we then have (see also [6])

(3.5) 0</1f((1—t)A+tB)dt—f<
0

f(B);rf(A)/Tf((lt)A+tB)dt

A+ B
2

<

for all A, Be SA;(H).
Observe that

/01 <t_;)Df((l—t)A+tB)(B_A)dt

:/1;2 (t—;>Df((1—t)A+tB)(B—A)dt

/01/2 (;t) Df((1—t)A+1tB) (B — A)dt

forall A, Be SA;(H).
From (1.14) we get
(t-3) Drc B - <

t— =) Df(1—t)A+1tB)(B— A)

IN
o~
I

Df(B)(B—A4), te[1/2,1)
and

(;—t>Df(A)(B—A) Df((1—t)A+tB)(B - A)

IN IN
EoN TN e

N = N =

I
-
~ L ~—

Df(B) (B_A)v te (071/2]

The second inequality can be writte

—<;—t> Df(B)(B-A)g-(-t) Df(1—t)A+tB)(B - A)
(5-)

as

Df(A) (BiA)a te (031/2]

By integration, we have

/1:2 (t—;) dth(A)(B—A)S/l1 <t_;> Df((1—t)A+tB)(B— A)dt

IN
—
~
[\v]
/N

t—;) dtDf (B) (B — A),
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Also

[ Gasme-a<- [T (3 pra-nasme-ga
1/2 /4
< [ (1) anrae - .

namely

1/2
(3.7) —%Df(B)(B—A)g—/O (;—t)Df((l—t)A+tB)(B—A)dt

< —iDf(A4)(B - 4).

By adding the right sides of the inequalities (3.6) and (3.7) we get
! 1
/ (t— ) DF((1~1) A+1tB) (B - A)at
1/2 2

_/01/2 (;-t) Df((1—t) A+tB) (B — A)dt

< SDF(B) (B~ A)~ (D (A)(B - 4).

ool =

By (3.5) we then get the following reverse of Hermite-Hadamard inequalities

(3:8) 0</01f((1—t)A+tB)dt—f(A—;B)

<W_/Olf((1—t),4+t3)dt

<< [Df(B)-Df(A)](B—A)

ool —

forall A, Be SA;(H).
From (3.8) we also have the norm inequalities

/Olf((l—t)/H—tB)dt—f(A;B)H
‘f(B);rf(A)

(3.9) ‘

<

- 1f((1 —t)A+tB)dtH
0

IN

LIDF(B)~Df (A B - Al

forall A, Be SA;(H).

4. SOME EXAMPLES

The function f (x) = x~! is operator convex on (0, 00), operator Fréchet differ-
entiable and the Fréchet derivative Df(-)(+) is given by

Df(T)(S) = -T*ST~!
for T, S > 0.
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If (Ay)ter is a bounded continuous field of positive operators in B (H) defined
on a locally compact Hausdorff space T' with a bounded Radon measure p and such
that [, 1du(t) = 1, then by (2.1) we have the double inequality

(4.1) 2471 — A7 </ Agdp (t)) A1
T
< [ atdu
T
SA‘1+/ AflAAfldu(t)—/Afldu(t)
T T
for all A > 0.
The first inequality in (4.1) is equivalent to
(4.2) ATl < 1 / Atdp(t) + A7! / Audp () ) A1
2 lr T
while the second inequality is equivalent to
(4.3) / A tdp(t) < {A +/ A7YAA  dp (t)} .
T T

From (2.2) we have the reverse Jensen’s inequality

(4.4) O</A‘1du() (/AdM))l
< e ([ i) -

The second inequality in (4.4) is equivalent to

/T A7 ( /T Asdu(s>) A7V (t) + ( /T Adp <s>>_1]-

If S is a positive operator satisfying the equality

(s [ artsatauo = [ a7,

then we have the Slater type inequality

(4.6) 0<S - /TA;ldu (t) <81 </T Agdp (t)) S g1

The second inequality in (4.6) is equivalent to

@5) [ aran( <3

1
(4.7) STl< - {51 (/ Agdp (t)> St +/ ANy (t)} .
2 T T
From (3.8) we also have the inequalities
! _ A+ B\~
(4.8) og/ (1—t)A+tB) 1dt—< ; >
0
-1 —1 1
< # —/ (1—t)A+tB)""dt
0
< é [A"'(B-A4)A™' =B " (B-A)B]
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for all A, B > 0.

We note that the function f(z) = —Inx is operator convex on (0,00). The In
function is operator Fréchet differentiable with the following explicit formula for
the derivative (cf. Pedersen [16, p. 155]):

(4.9) Din(T)(S) :/ (slg +T) ' S (sly +T) "ds
0
for T, S > 0.
If (At)ter is a bounded continuous field (A;):er of positive operators in B (H)

defined on a locally compact Hausdorff space T" with a bounded Radon measure p
and such that [, 1dpu(t) = 1, then by (2.1) we have the double inequality

(4.10) /OOO (s1+ A)  A(sig+ A) Lds—nA
- /OOO (S1H —s—/TAtdu (t)) T4 (81H + /TAtdu (t)>_1 ds
< [ m(a)duey
< AOO (sly+A) " A(sly+A) 'ds—InA

—/ (51H+At)_1 At (SlH—f—At)_l ds
0

for all A positive operators.
From the first inequality in (4.10) we have

(4.11) /OOO (sly +A) " A(sly + A) Mds+ /Tln (Ay)dp (t)

glnA—i—/ooo (slH—s—/TAtdu(t)) _IA(slHJr/TAtd,u(t))_lds

while from the second inequality
(4.12) 1nA+/ (slg + A)) " Ay (sly + A) M ds
0
< / In (Ay) dp (t) +/ (slg + A)) " A(sly + Ay Hds
T 0

for all A positive operators.
We have the reverse Jensen’s inequality

(4.13) 0<In ( /T Asdu(s)) - /T In (Ay) dp (t)
S/T/OOO (slg + A" (/TAsdu(s)) (slg + Ay)~" dsdp (t)

f// (sl + A)) " Ag (sl + A) " dsdp (t) .
T Jo
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If S > 0 is an operator satisfying the equality

(4.14) /T/OOO (sl + AL S (s1y + Ag) L dsdp (2)

o0
= / / (slg +A) ™" Ay (sl + A~ dsdp (1),
TJ0

then we have the Slater type inequality

(4.15) 0< /T In (A;) dp (t) — In (S)
< /OOO (slg +5)"" (/T Aydp (t)> (slg +5) 'ds

_/ (sl +S)""S (sly +S) " ds.
0

By (3.8) we then get the following reverse of Hermite-Hadamard inequalities

1
(4.16) ogm(A;LB)/ In((1—t) A+ tB)dt
0
1
g/ ln((lft)AthB)dtfw
0

1 o —1 —1
§8{/0 (sly+A) " (B-—A)(slg+A) " ds

—/ (slg +B) ' (B—A) (sly + B) " ds
0
for all A, B > 0.
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