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Abstract

The notion of convexity of a function on an interval of a generic time
scales has proved to be of significant interest to many authors in this area
of research. Here we introduce and discuss some new classes of convex
functions over a time scale. Consequently, various interconnections that
exists among them and the relationships of their properties on classical
intervals are provided. Interesting possible areas of applications of our
results are also given.
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1 Introduction
The development of the theory of time scales, was introduced by Stephen
Hilger (1988) in his PhD thesis, as a theory capable of containing differ-
ence and differential calculus in a consistent way.
The investigations are not only significant in the theoretical research of
differential and difference equations, but also crucial in many computa-
tional and numerical applications. See [7].

The general idea is to prove a result for a dynamic equation where the
domain of the unknown function is called a time scale, which is an arbi-
trary closed subset of the reals. By choosing the time scale to be the set of
real numbers R, the general result yields a result containing the ordinary
derivative or integral. Further, when we choose the time scale to be the set
of integers Z, the same general result yields a result for difference equa-
tions or integral. Hence, all results that are proved on a general time scale
include results for both differential and difference equations (see [12]).

For a good introduction to the theory of time scales, see [3].

2 Preliminaries
A time scale T is an arbitrary nonempty closed subset of R(together with
the topology of the subspace of R).

Two mappings σ, ρ : T→ R satisfying σ(t) = inf{s ∈ T : s > t} ∀ t ∈ T,
and ρ(t) = sup{s ∈ T : s ≤ t} ∀ t ∈ T,
are called jump operators.

The jump operators σ and ρ allow the classification of points in the fol-
lowing way.
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If σ(t) > t for all t ∈ T, t is right-scattered. If ρ(t) < t for all t ∈ T,
t is left-scattered. Points that are simultaneously right-scattered and left-
scattered are called isolated. If t < supT and σ(t) = t for all t ∈ T, t is
right-dense. If t > inf T and ρ(t) = t for all t ∈ T, t is left-dense. Points
that are right-dense and left-dense at the same time are called dense.

The mappings µ, ν : T → [0,+∞] defined by µ(t) = σ(t) − t ∀ t ∈ T
and ν(t) = t− ρ(t) ∀ t ∈ T are called the forward and backward graininess
functions respectively.

A function f defined on T is called right-dense continuous (or rd-
continuous)(we write f ∈ Crd) if it is continuous at the right-dense points
and its left-sided limits exist (finite) at all left-dense points; f is left-dense
continuous (or ld-continuous)(we write f ∈ Cld) if it is continuous at the
left-dense points and its right-sided limits exists(finite) at all right-dense
points. Thus, the set of continuous functions on T contains both Crd and
Cld.

Throughout this paper, we will denote a time scale by T, and for any
I, interval of R (open or closed, finite or infinite), IT = I ∩T, a time scale
interval.

A function f : T→ R is delta differentiable on Tk, provided

f∆(t) = lim
s→t

f(σ(t))− f(s)

σ(t)− s (2.1)

exists, where s→ t, s ∈ T \ {σ(t)} for all t ∈ Tk.

We state the following remark using inequality (2.1) and its nabla equiv-
alence.

Remark 2.1 (i) If T = R, then f∆(t) = f∇(t) = f ′(t) becomes the total
differential operator (ordinary derivative).

(ii) If T = Z, then
f∆(t) = f(t+ 1)− f(t)

and
f∆r (t) = f∆r−1

(t+ 1)− f∆r (t)

are the forward and r-th forward difference operators;

f∆(t) = f(t+
1

2
)− f(t− 1

2
)

is the central difference operator;

f∇(t) = f(t)− f(t− 1)

and
f∇

r

(t) = f∇
r−1

(t)− f∇
r

(t− 1)

are the backward and r-th backward difference operators respectively (see
[4]).

It is known that rd-continuous functions possess an antiderivative, i.e,
there exists a function F : T → R with F∆(t) = f(t) for all t ∈ Tk, and
in this case, the delta integral is defined by∫ t

s

f(τ)∆τ = F (t)− F (s), ∀s, t ∈ T.
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The nabla integral is analogously defined in [3] and consequently, the
diamond-α integral (see [12]).

The notion of convexity of a function on an interval of a generic time
scale was introduced by Mozyrska and Torres [9] thus;

Definition 2.1. [9] Let I be an interval in R such that the set IT is a
nonempty subset of T. A function f defined and continuous on IT is
called convex on IT if for any t1, t, t2 ∈ IT,

(t2 − t)f(t1) + (t1 − t2)f(t) + (t− t1)f(t2) ≥ 0. (2.2)

An equivalent definition to that of Mozyrska and Torres [9] defined above
was consequently given in Dinu [5];

Definition 2.2. [5] A function f : T→ R is called convex on IT, if

f(λt+ (1− λ)s) ≤ λf(t) + (1− λ)f(s), (2.3)

for all t, s ∈ IT and all λ ∈ [0, 1] such that λt(1− λ)s ∈ IT.

Motivated by the works of these authors [5, 9], we introduce and discuss
some classes of convex functions on time scales.

3 Some classes of convex functions on time
scales
In understanding of convex functions, the basis is that of Jensen convex
or mid-point convex functions, which deals with the arithmetic mean (see
[10]). We shall state its analogue on time scales.

Definition 3.1. Let IT ⊂ T be a time scale interval. A function f : T→ R
is called convex in the Jensen sense or J-convex or mid-point convex on
IT or f ∈ J(IT) if for all t1, t2 ∈ IT, the inequality,

f

(
t1 + t2

2

)
≤ f(t1) + f(t2)

2
(3.1)

holds.

Remark 3.1.(i) If T = R, then our version is the same as the classical
Jensen inequality. However, if T = Z, then it reduces to the well-known
arithmetic-geometric mean inequality. See [8].

(ii) The extensions of the inequality (3.1) to the convex combination of
finitely many points and next to random variables associated to arbitrary
probability spaces are known as the discrete Jensen and integral inequal-
ities on time scales respectively (see [8]).

Definition 3.2. A function f : T→ R is a P -function on IT or f ∈ P (IT)
if f is nonnegative, and for all t1, t2 ∈ IT, and ω ∈ [0, 1], we have

f(ωt1 + (1− ω)t2) ≤ f(t1) + f(t2). (3.2)

Obviously, P (IT) is contained in the class of Godunova Levin functions on
time scales. Also, P (IT) contains all nonnegative monotone, convex and
quasi-convex functions on IT, i.e, nonnegative functions satisfying

f(ωt1 + (1− ω)t2) ≤ max{f(t1) + f(t2)}
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for all t1, t2 ∈ IT, and ω ∈ [0, 1].

In order to unify the concepts of some classes of convex functions
such as Godunova-Lein convex, s-Godunova-Levin convex, s-convex func-
tion(in the first and second sense) with the classes defined above for func-
tions of time scale variables, T, we introduce the concept of h-convex
functions on time scales as follows:

Assume that IT and JT are intervals in T, [0, 2] ⊆ JT and functions h
and f are real non-negative functions defined on IT and JT respectively.

Definition 3.3. Let h : JT → R with h not identical to zero. We say
that f : T → R is an h-convex function on IT or f belongs to the class
SX(h, IT) if for all t1, t2 ∈ IT, f is non-negative, we have

f(ωt1 + (1− ω)t2) ≤ h(ω)f(t1) + h(1− ω)f(t2), (3.3)

for all ω ∈ (0, 1) such that ωt1 + (1− ω)t2 ∈ IT.
Remark 3.2. (i) If inequality (3.3) is reversed, then f is said to be h-
concave on IT i.e f ∈ SV (h, IT) (see [6, 14]).

(ii) Obviously, if h(ω) = ω, then all non-negative convex functions on IT
belong to SX(h, IT) and all non-negative concave functions on IT belong
to SV (h, IT); if h(ω) = 1

2
, then SX(h, IT) reduces to the class J(IT); and

if h(ω) = 1, then SX(h, IT) ⊇ P (IT).

Definition 3.4. A function f : IT ⊂ T→ R is said to belong to the class
MT (IT) if f is nonnegative and for all t1, t2 ∈ IT and ω ∈ (0, 1) satisfies
the inequality:

f(ωt1 + (1− ω)t2) ≤
√
ω

2
√

1− ω
f(t1) +

√
1− ω
2
√
ω

f(t2), (3.4)

Remark 3.3. (i) If we set ω = 1
2
, inequality (3.4) reduces to the inequality

(3.1).

(ii) If T = R, and IT = I, we obtain some definitions for classical MT -
convex function (see [11, 13]).

Some simple examples of functions which are MT -convex on IT but are
not convex on IT are:
i) The functions f, g : (1,∞)∩[0, 1] ⊂ T→ R, f(t) = tp, g(t) = (1+t)p, p ∈
(0, 1

1000
).

ii) A function h : [1, 3
2
] ⊂ T→ R, h(t) = (1 + t2)m,m ∈ (0, 1

100
).

Now, we define a new general class of convex functions which we will
call φh−s,T-convex functions on time scales.

Definition 3.5. Let T be a time scale and h : JT → R a real valued
function, where JT ⊂ T. For all s ∈ [0, 1], ω ∈ (0, 1) and φ, a given
real-valued function, with φ(t) ∈ idIT− an identity function in IT, then
f : IT → R is φh−s,T-convex on time scales if for all t1, t2 ∈ IT,

f(ωφ(t1) + (1−ω)φ(t2)) ≤
(
h(ω)

ω

)−s
f(φ(t1)) +

(
h(1− ω)

1− ω

)−s
f(φ(t2)).

(3.5)
Remark 3.4. We observe that:
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(i) If s = 1, h(ω) = 1 and φ(t1) = t1, then f ∈ SX(IT), i.e, f is convex
on time scales (see [5, 9]).

(ii) If s = 1, h(ω) = 1, where ω = 1
2

and φ(t1) = t1, then f ∈ J(IT) is
mid-point convex on time scales.

(iii) If s = 0 and φ(t1) = t1, then f ∈ P (IT) is P -convex on time scales.

(iv) If h(ω) = ω
s
s+1 and φ(t1) = t1, then f ∈ SX(h, IT) is h-convex on

time scales.

(v) If s = 1, h(ω) = 2
√
ω(1− ω) and φ(t1) = t1, then f ∈ MT (IT) is

MT -convex on time scales.

Moreover, suppose we denote by SX(φh−s,T) the class of φh−s,T convex
functions on time scales, then it is easy to see that: P (IT) ⊆ SX(φh−1 , IT) =
SX(φh, IT) = MT (φh−1 , IT) for 0 ≤ s ≤ 1, whenever φ is the identity
function.

If inequality (3.5) is reversed, then f is φh−s,T concave, that is, f ∈
SV (φh−s,T).

Next, we give an example of our newly introduced generalized class of
φh−s,T convex functions on time scales.

Example 3.1. Consider the function f to be a non-negative convex func-
tion on IT and h, a non negative function on IT satisfying

h(ω) ≤ ω1− 1
s , s ∈ (0, 1], ω ∈ (0, 1).

Then, we may have that

f(λt+ (1− λ)s) ≤ λf(t) + (1− λ)f(s)

≤
(
h(ω)

ω

)−s
f(φ(t1)) +

(
h(1− ω)

1− ω

)−s
f(φ(t2)),

showing that f ∈ SX(φh−s,T).

Remark 3.5. Example 3.1 implies all convex functions are examples of
our newly defined class of φh−s,T-convex function on IT provided that the

condition h(ω) ≤ ω1− 1
s is satisfied.

Any non-negative concave function f belongs to the class SV (φh−s,T) i.e.

is φh−s,T-concave provided h satisfies h(ω) ≥ ω1− 1
s for any ω ∈ (0, 1) and

s ∈ (0, 1].

The following definition is useful in defining another form of inequality
(3.5) on time scales.

Definition 3.6. A function h : JT → R is said to be a supermultiplicative
function on JT ⊂ T if for all m,n ∈ JT,

h(mn) ≥ h(m)h(n). (3.6)

h is said to be a submultiplicative function on time scales if the inequality
(3.6) is reversed and respectively a multiplicative function on time scales
if the equality holds in (3.6).

If h is a supermultiplicative or submultiplicative function on time scales,
then some very interesting results arise for φh−s,T-convex function. In
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that case, we assume results for composition hold in the context of time
scales.

Proposition 3.1. Let h : JT → R be a non negative function on JT ⊂ T
and let f : T → R be a function such that f ∈ SX(φh−s,T), where
φ(t) = t. Then for all s ∈ [0, 1], t1, t2, t3 ∈ T such that t1 < t2 < t3
and t3 − t1, t3 − t2, t3 − t2,∈ JT, then the following inequality holds:
[(t3 − t1), (t2 − t1), (t3 − t2)]−sf(t1)− [(t3 − t2), (t2 − t1), (t3 − t2)]−sf(t2)

+[(t3 − t1), (t3 − t2), (t2 − t1)]sf(t3) ≥ 0. (3.7)

If the function h is submultiplicative and f ∈ SX(φh−s,T), then the in-
equality (3.7) is reversed.

Proof. Since f ∈ SX(φh−s,T), and t1, t2, t3 ∈ T are points which satisfy
assumptions of the proposition. Then

t3 − t2
t3 − t1

,
t2 − t1
t3 − t1

∈ JT

and
t3 − t2
t3 − t1

+
t2 − t1
t3 − t1

= 1.

Also,

h(t3 − t1)−s =

(
h

(
t3 − t2
t3 − t1

˙(t3 − t1)

))−s
≥
(
h

(
t3 − t2
t3 − t1

)
h(t3 − t1)

)−s
and

h(t2 − t1)−s =

(
h

(
t2 − t1
t3 − t1

˙(t3 − t1)

))−s
≥
(
h

(
t2 − t1
t3 − t1

)
h(t3 − t1)

)−s
.

Let h(t3 − t1) > 0. If in inequality (3.5), we set ω = t3−t2
t3−t1

, 1− ω = t2−t1
t3−t1

,
a = t1, b = t3, then we have t2 = ωa+ (1− ω)b and

f(t2) ≤

( h(t3−t2)
h(t3−t1)

t3−t2
t3−t1

)−s
f(t1) +

( h(t3−t2)
h(t3−t1)

t3−t2
t3−t1

)−s
f(t3). (3.8)

Multiplying inequality (3.8) by ( t3−t2
t3−t1

)−s(h(t3 − t1))−s and further mul-

tiplication by (t3 − t1)−s(t2 − t1)−s with rearrangement yields (3.7).

Remark 3.6. (i) Inequality (3.7) can alternatively be used in the defini-
tion 3.5.

(ii) If we consider inequality (3.7) with h(t) = h−1(t) = t2, s = 1, we
obtain an alternate definition of Godunova-Levin function on time scales.

(iii) Inequality (3.7) is equivalent to definition 14 of [9] with h(t) = 1, s = 1
considering points t1, t2 ∈ IT with t1 < t2 and t ∈ IT such that t1 < t < t2
and t = ωt1 + (1− ω)t2.

Theorem 3.1. Let f : IT → R be defined and ∆φh−s,T differentiable

function on IkT . If f
∆φh−s,T is nondecreasing (nonincreasing) on IkT , then

f is φh−s,T convex (concave) on IT.
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Proof. Using the affinity of f on IT, i.e, IT consisting of less than three
points, we want to prove the relation

f(φ(t))− f(φ(t1))

t− t1
≤ f(φ(t2))− f(φ(t))

t2 − t
. (3.9)

Let t1 ≤ γ1 < ξ2. From the mean value Theorem, we have existence of
points ξ1, γ1 ∈ [t1, t)T and ξ2, γ2 ∈ [t, t2)T such that

f
∆φh−s,T (ξ1) ≤ f(φ(t))− f(φ(t1))

t− t1
≤ f∆φh−s,T (γ1)

and

f
∆φh−s,T (ξ2) ≤ f(φ(t2))− f(φ(t))

t2 − t
≤ f∆φh−s,T (γ2). (3.10)

Since t1 < γ1 < ξ2 and from the assumption that f
∆φh−s,T (γ1) ≤ f∆φh−s,T (ξ2),

inequality (3.9) holds:

f(φ(t))− f(φ(t1))

t− t1
≤ f∆φh−s,T (γ1) ≤ f∆φh−s,T (ξ2) ≤ f(φ(t2))− f(φ(t))

t2 − t
(3.11)

for nondecreasing f
∆φh−s,IT and

f(φ(t))− f(φ(t1))

t− t1
≥ f∆φh−s,T (γ1) ≥ f∆φh−s,T (ξ2) ≥ f(φ(t2))− f(φ(t))

t2 − t
(3.12)

for nonincreasing f
∆φh−s,T .

The inequality (3.11) is equivalent with the inequality (3.5) and with the
φh−s,T-convexity of f , while the inequality (3.12) is equivalent with the
φh−s,T-concavity of f.
It is obvious that the nabla version of the Theorem 3.1 holds for nonde-
creasing (nonincreasing) f

∆φh−s,T .

A natural question of interest can be asked: Can the generalized class
of convex function (3.5) be continuous on time Scales? The answer to
this is affirmative.
We first discuss the geometrical interpretation of a φh−s,IT convexity on
time scales in order to justify this claim.

φh−s,IT convexity of a function f : IT → R on time scales geometrically
means that the points of the graph of f(φ(t)) are under the chord(or on
the chord) joining the endpoints (φ(t1), f(φ(t1))) and (φ(t2), f(φ(t2))) for
every t1, t2 ∈ IT. Then,

f(φ(t)) ≤ f(φ(t1)) +
f(φ(t2))− f(φ(t1))

φ(t2)− φ(t1)
(φ(t)− φ(t1)) (3.13)

for all φ(t) ∈ [φ(t1), φ(t2)] and all φ(t1), φ(t2) ∈ IT.
This shows that convex functions are majorized locally (i.e. on any com-
pact subinterval) by affine functions.

Theorem 3.1 shows that the newly introduced, generalized class of φh−s,T-
convex function in Definition 3.5, being differentiable, is convex.
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Next, we state and prove a result that shows that our newly introduced
class of φh−s,T-convex function, is convex if and only if is midpoint convex
on time scales.

Theorem 3.2. Let f : IT → R be a continuous function on IT. Then f
is φh−s,T convex on IT if and only if f is midpoint convex on IT.

Proof. Sufficiently assume for contradiction that f is not φh−s,IT con-
vex on IT. Thus, there would exist subinterval (φ(a), φ(b)] such that
f(φ(t))|[φ(a), φ(b)] is not under the chord (or on the chord) joining (φ(a), f(φ(a)))
and (φ(b), f(φ(b))), that is, the function

f(ψ(t)) = f(φ(t))− f(φ(b))− f(φ(a))

φ(b)− φ(a)
(φ(t)− φ(a))− f(φ(a)), (3.14)

φ(t) ∈ [φ(a), φ(b)].
This confirms that ξ = sup{f(ψ(φ(t)))|φ(t) ∈ [φ(a), φ(b)]} > 0.
ψ(φ(a)) = ψ(φ(b)) = 0 since ψ is continuous.

Also, let K = inf{φ(t) ∈ [φ(a), φ(b)]|ψ(φ(t)) = ξ}, then we necessarily
prove that φ(k) = ξ and k ∈ (φ(a), φ(b)).
For every c > 0 for which k + c ∈ (φ(a), φ(b)), we have by the definition
of k, ψ(k − c) < ψ(k) and ψ(k + c) ≤ ψ(k).
So that

ψ(k) >
ψ(k − c) + ψ(k + c)

2
.

This contradicts the fact that ψ is midpoint convex on IT.

Remark 3.7. (i) Theorem 3.1 remains true if the condition of midpoint
convexity on time scales is replaced by

f((1−ω)φ(t1) +ωφ(t2)) ≤
(
h(1− ω)

1− ω

)−s
f(φ(t1)) +

(
h(ω)

ω

)−s
f(φ(t2)),

for some 0 ≤ s ≤ 1, h(ω) = 1, φ(t1) = t1 and ω = 1
2
.

(ii) If we replace the condition of continuity in Theorem 3.2 by bound-
edness from above on every compact subinterval of time scales, Theorem
3.2 still holds.

4 Applications for convex optimization
Optimization and Economics are ideal disciplines for application of time
scales (see [1, 2]). Our notion of φh−s,T convexity describes a much more
general mathematical structure over convexity on a general time scale. We
therefore propose a new problem of optimization on time scales for system
modelling with both continuous and discrete variables. An optimization
problem is φh−s,T convex provided f is defined on f : InT → R, where f0

is φh−s,T convex and f1, ..., fm are convex. For such, we present the form

minimize f0(φ(x))

subject to fi(x) ≤ 0, i = 1, ...,m,

satisfying

fi(ωφ(t1)+(1−ω)φ(t2)) ≤
(
h(ω)
ω

)−s
fi(φ(t1))+

(
h(1−ω)

1−ω

)−s
fi(φ(t2)), for

all s ∈ [0, 1], ω ∈ (0, 1) and φ(t) ∈ idIT .
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Moreover, since any linear program is a convex optimization problem
and hence a φh−s,T convex optimization problem by Example 3.1, we
can consider φh−s,T convex optimization to be a generalization of linear
programming (see [1]).
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[13] M. Tunç and H. Yildirim(2012). On MT-convexity. Retrieved from
http://www.arxiv.org: http://ardxiv.org/pdf/1205.5453. pdf .preprint

[14] S. Varosanec (2007). On h-Convexity, J. Math Anal and Appl.
326, 303-311.

9




