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Abstract

We establish here complex Opial type inequalities for analytic func-
tions from a complex numbers domain into the set of complex numbers.
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1 Introduction

This article is greatly motivated by the article of Z. Opial [4].

Theorem 1 (Opial, 1960) Let x (t) € C1 ([0, h]) be such that x (0) = x (k) =0,

and x (t) > 0 in (0,h). Then
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In the last inequality the constant % is the best possible.
Equality holds for the function

z(t)=t on {o, ;]

and L
x(t)=h—t on [Q,h}

Opial type inequalities have applications in establishing uniqueness of solu-
tion to initial value problems in differential equations, see [5], also find upper
bounds to such solutions.

We are also inspired by the author’s monographs [1], [2], to continue our
search for Opial type inequalities in the complex numbers setting.
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2 Background

See also [3].

Let v be a smooth path parametrized by z (t), ¢ € [a,b] and f is a complex
function which is continuous on 7. Put z (a) = w and z (b) = w with u,w € C.
We define the integral of f on v, ,, =7 as
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We notice that the actual choice of parametrization of v does not matter.

This definition immediately extends to paths that are piecewise smooth.
Suppose 7 is parametrized by z (t), t € [a,b], which is differentiable on the
intervals [a, c] and [e, b], then assuming that f is continuous on v we define

f(z)dz:= f(z)dz+ f(z)dz

Yu,w Yu,v Yo,w

where v := z (¢). This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

re = [ 1Eo)E Ol
Fyu w
and the length of the curve v is then
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We mention also the triangle inequality for the complex integral, namely
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where || f], ., = sup |f (2)].
z€v
S. Dragomir in [3] proved the following useful complex Taylor’s formula with

remainder over a non-necessarily convex domain D.

Theorem 2 Let f : D C C — C be an analytic function on the domain D
and y, x € D. Suppose 7 is a smooth path parametrized by z (t), t € [a,b] with
z(a) =x and z (b) = y then

=Z W= ) ) 4 b [ @

=0 z,y

forneZy.



3 Main Results

A complex Opial type inequality follows

Theorem 3 Let f: D C C — C be an analytic function on the domain D and
let x,y,w € D. Suppose v is a smooth path parametrized by z (t), t € [a, b] with
z(a) =z, z(c) =y, and z(b) = w, where ¢ € [a b] is floating. Assume that
f®(z)=0,k=0,1,...n,n€Z;, andp,q>1: 5*1 Then
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Proof. By (3) we obtain
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Then by triangle’s and Holder’s inequalities we have
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then p (a) =0, and

q
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That is

7D @) 12 @17 = (0 ()7 (8)
Hence it holds
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Integrating (9) and by Holder’s inequality we obtain
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proving the claim. m
We continue with an extreme case
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Prop051t10n 4 All here are as in Theorem 3 but with p =1, ¢ = co. Then
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Proof. By (3) we obtain again
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Consequently by integration of (16) we derive
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A typical case follows:
Corollary 5 (to Theorem 8 when p=q=2) We have
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‘We finish with
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Corollary 6 (to Theorem 8, n =0 case) Here we assume that f (x) = 0. Then

f(2) [ (2) dz
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