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Abstract

Here we present several complex left Caputo type fractional inequali-
ties of well known kinds, such as of Ostrowski, Poincare, Sobolev, Opial
and Hilbert-Pachpatte.
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1 Introduction

We are motivated by the following result for functions of complex variable:
Complex Ostrowski type inequality

Theorem 1 (see [3]) Let f be holomorphic in G, an open domain and suppose
~v C G is a smooth path from z (a) = u to z (b) = w. Ifv = z (z) with x € (a,b),
then Yu,w = Yu,v U Yo,w
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Above || is the complex absolute value.
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We are also motivated by the next complex Opial type inequality:

Theorem 2 (see [2]) Let f : D C C — C be an analytic function on the domain
D andlet z,y,w € D. Suppose 7 is a smooth path parametrized by z (t), t € [a, ]
with z (a) = x, z(c) =y, and z (b) = w, where ¢ € [a,b] is floating. Assume
that f®) () =0, k=0,1,...,n, n € Zy, and p,q > 1: zl) + % =1. Then
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equivalently it holds

2)
f(2) f7D (2) d

Ve, w

2;”! l/ab <A |z (c) — 2" |dz|> |2’ (c)] dc] ’ (/% ) ‘f(nJrl) (Z)’q dz|> ' .

,y

<[ @I @i <

@, w

Here we utilize on C the results of [1] which are for general Banach space
valued functions.

Mainly we give different cases of the left fractional C-Ostrowski type in-
equality and we continue with the left fractional: C-Poincaré like and Sobolev
like inequalities.

We present an Opial type left C-fractional inequality, and we finish with the
Hilbert-Pachpatte left C-fractional inequalities.



2 Background

In this section all integrals are of Bochner type.
We need

Definition 3 (see [4]) A definition of the Hausdor[f measure hy, goes as follows:
if (T,d) is a metric space, A C T and 6 > 0, let A(A,d) be the set of all
arbitrary collections (C), of subsets of T', such that A C U;C; and diam (C;) < 6
(diam =diameter) for every i. Now, for every a > 0 define

RS (A) := inf {Z (diamC;)* | (C), € A (A, 5)} . (1)
Then there exists limhd (A) = suphd, (A), and hy (A) := limh? (A) gives an
6—0 5>0 §—0

outer measure on the power set P (T), which is countably additive on the o-field
of all Borel subsets of T. If T = R", then the Hausdorff measure h,,, restricted
to the o-field of the Borel subsets of R™, equals the Lebesque measure on R™ up
to a constant multiple. In particular, hy (C) = pu (C) for every Borel set C C R,
where 1 1s the Lebesgue measure.

Definition 4 ([1]) Let [a,b] C R, X be a Banach space, v > 0; n := [v] €
N, [] is the ceiling of the number, f : [a,b] — X. We assume that f(™ €
L; ([a,b], X). We call the Caputo-Bochner left fractional derivative of order v:

1 ’ x— )" ) T € |a
)/( t) ™M@ dt, Vvxelab. (2)

(DZaf) (z) = m

Ifv e N, weset DY, f == f *) the ordinary X -valued derivative, defined similarly
to the numerical one, and also set D%, f = f.
By [1] (DY, f) (z) exists almost everywhere in « € [a,b] and DY, f € Ly ([a, ],
I | FON, ey < 00 then by [1] DY, f € C(la,8], X).
We need the left-fractional Taylor’s formula:

Theorem 5 ([1]) Let n € N and f € C"7! ([a,b], X), where [a,b] C R and X
is a Banach space, and let v >0:n = [v]. Set

n=S C 00, viclaa, ®)

=0

where x € [a,b].
Assume that f") exists outside a p-null Borel set B, C [a,z], such that

hi (Fy (Bz)) =0,V x € [a,b]. (4)
We also assume that ) € Ly ([a,b], X). Then

-2t

@ 1 zx—zy_l Y. (2)dz
g @+ 557 [ @=L G 6)

V€ la,b.
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Next we mention an Ostrowski type inequality at left fractional level for

Here all as in Theorem 5. Assume that

Banach valued functions
Theorem 6 ([1]) Let v >0, n = [V]
1, and that DY, f € Lo ([a,b], X ). Then

f9D%)=0,i=1,..
1 b ||D:af||Loo([a,b],X)
b_al.ﬂwdx—fWWS e

We mention an Ostrowski type L, fractional inequality
l+é:1, andy>%,n: [v].
n—1, and DY, f € Ly ([a,b], X)

) (6)

Here all as in

Theorem 7 ([1]) Let p,q > 1

Theorem 5. Assume that f*) (a) =0, k =1
where X is a Banach space. Then
IDYaf L, 0y, x a7

1 b
b_a/af(x)dz—f(a) <F(V)( v—1) —1—1%(1/—1— )

It follows
Corollary 8 ([1]) (to Theorem 7, case of p = q =2). Letv > 5, n = [V]
Here all as in Theorem 5. Assume that f*) (a) = 0, k = 1 — 1, and
DY f € Ly ([a,b], X). Then
Diaf iy it
| L (fa,00,5) (b—a)” 5 (8)

1 b
m/a fla)d f(a)H ST (V1) (vt 1)

Next comes the L; case of fractional Ostrowski inequality
Theorem 9 (/1]) Let v > 1, n = [v], and all as in Theorem 5. Assume that
n—1, and DY,f € Ly ([a,b] ,X). Then
(9)

Dalk/a a —
|| f||L1([ ,b],X) (b_a)v 1.
I'v+1)

f®(a)=0,k=1,..,

b
[ @@

We continue with a Poincaré like fractional inequality
~+=-=1 and v > %,n: [v]. Here all

1, and DY, f €

Theorem 10 ([1]) Let p,q > 1 ]19
(a) =0, k=0,1,....n

as in Theorem 5. Assume that f
L, ([a,b], X), where X is a Banach space. Then

(b—a)” 1 1
W) (p(v—1)+1)7 (qv)*

1D f L, tamyxy - (10)

Hf||Lq([a,b},X) <

Next comes a Sobolev like fractional inequality.



Theorem 11 ([1]) All as in the last Theorem 10. Let r > 0. Then

1
r

(b—a)’"a"
T 1D fll L, (fap], %) -

(r(u—§)+1)"

We mention the following Opial type fractional inequality:

11z, (fap, ) <

D=

I (pr—-1)+1)
(11)

Theorem 12 ([1]) Letp,q > 1: %—i—% =1, andv > %, n = [v]. Let[a,b] C R,
X a Banach space, and f € C"1 ([a,b], X). Set

F, (t):= ’i (z ; LL)if(i) (t), Vté€la,x], wherex € [a,b]. (12)
i=0

Assume that f) exists outside a p-null Borel set B, C [a,z], such that
hi (Fy (By)) =0, Vx€la,b]. (13)

We also assume that f™ € Lo ([a,b],X). Assume also that f*) (a) = 0,
k=0,1,..,mn—1. Then

/m 1 (@)[[[(DZf) (w) | dw <

(x — a)VﬁH% x p i
; (D% f) ()" dz) . (14)
27 () (p(v—=1)4+ 1) (p(v — 1) + 2)) </a )

Vzelab.
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We finish this section with a Hilbert-Pachpatte left fractional inequality:

Theorem 13 ([1]) Let p,q > 1 : %‘F% =1, and v; > %, vy > %, n; =
[vi], i = 1,2. Here [a;,b;]] C R, i = 1,2; X is a Banach space. Let f; €
cri—l ([az,bz] ,X), i=1,2. Set
(= )T
Fy (t;) = > 2 f 09 1) (15)

Y t; € [a;,x;], where z; € [a;,b;]; i = 1,2. Assume that fi(”"') exists outside a
p-null Borel set By, C [a;, 5], such that

We also assume that fi(m') € Ly ([as, bi] , X), and

fz(kb) (ai) = 0; ki = 07 1en; — 17 i = 1a2a (17)



and
(D:zlzlfl) € Lq ([a1>b1] ’X)’ (D:ézf2) € LP ([ag,bg} 7X)-

Then -
L ILf1 (@)l [ f2 (22)|| dz1das
(:131 al)P“’l 1)+1 (z2—as)? q(vg— 1)+1) =
p(r1i—1)+1) q(q(va—1)+1)
(b1 - al) (bz Vo
T (1) T (1) ||D*alf1||Lq([a1,b1],X) ||D*a2f2||LP([a2,b2]’X)' (18)

3 Main Results

We need a special case of Definition 4 over C.

Definition 14 Let [a,b] CR, v > 0; n := [v] € N, [] is the ceiling of the num-
ber and f € C™ ([a,b],C). We call Caputo-Complez left fractional derivative of
order v:

D) @) = i [ O G el (9)

where the derivatives f',...f™ are defined as the numerical derivative.
Ifv €N, we set DY, f := f") the ordinary C-valued derivative and also set

Dl.f=f

Notice here (by [1]) that DY, f € C ([a,b],C).
We make

Remark 15 Suppose v is a smooth path parametrized by z (t), t € [a,b] (i.e.
there exists 2’ (t) and is continuous) and from now on f is a complez function
which is continuous on .

Put z(a) = u and z (b) = w with u,w € C. We define the integral of f on

Yu,w =7 aS
b b
) ds = / £ ()2 (1) dt = / hd,  (20)

Lf(z)dzz/u’w

where h (t) :== f (2 (t)) 2 (t), t € [a,b].
We notice that the actual choice of parametrization of v does not matter.
This definition immediately extends to paths that are piecewise smooth. Sup-
pose v is parametrized by z (t), t € [a,b], which is differentiable on the intervals
[a,c] and [c,b], then assuming that f is continuous on vy we define

f(z)dz:= / f(z)dz+ f(z)dz

Yau,w

where v := z (c). This can be extended for a finite number of intervals.



We also define the integral with respect to arc-length

f)dzl:= | f(z )| dt
\z|/ (o)

and the length of the curve ~y is then

1) = / G / 1 @)l

We mention also the triangle inequality for the complex integral, namely

z)dz S/If(Z)IIdZ\ <Al 00 LY (21)

where || f|, o == Sléplf(Z)|~
z€y

We give the following left-fractional C-Taylor’s formula:
Theorem 16 Let h € C" ([a,b],C), n=[v], v > 0. Then

- '_ t_i!a)lh(’:) (a)+ﬁ / (= NHDLE (N dy, (22)
Vtela,b],
in particular it holds,
e =3 S (@) 7 (@) +
=0
7 L 0T DI ) () (23)

Vtela,b.

Proof. By Theorem 5. m
It follows a left fractional C-Ostroswski type inequality

Theorem 17 Let n € N and h € C™ ([a,b],C), where [a,b] C R, and let v >
0:n = [v]. Assume that R (a) =0,i=1,...,n — 1. Then

D*ah a
L /h Dt — (@) < I1D%aP | o fa )

r'+2)
in particular when h(t) == f(z(t)) 2z (¢) and (f (z(t)) 2 (t))(i) lt=a = 0, i =
1,..n —1, we get

(b—a)’, (24)

1
el IRAC LR AORAC

u,w

—/ F(t)2 @) dt - f (2 (a) £ (a)

1DY0f (2 (8) 2 (D)l o)
- I'(v+2)




Proof. By Theorem 6. m
The corresponding C-Ostrowski type L, inequality follows:

Theorem 18 Let p,g > 1 : %—i—l =1, and v > %, n = [v]|. Here h €
C™ ([a,b],C). Assume that 'V (a) =0, i=1,...,n — 1. Then

ID%ah L, (ja,0).0)

S (b—a)"T, (26)
Fw)(pv—1)+1)7 (V+5)

<

ﬁ/ h(#)dt — b (a)

in particular when h(t) == f(z(£) 2 (t) and (f (z()) 2" (¢) D |i=q = 0, i =
1,..n —1, we get:

1
b—a

1
b—a

b
/ F2(0) 2 (t)dt — f (2 (a) 2 (a)

/ f(2)dz — f (u) 2 (a)

_ P2 (G ®) 2 )l a0
T -n+1) (vrl)

(b—a)’ 7. (27)

Proof. By Theorem 7. m
It follows

Corollary 19 (to Theorem 18, case of p=q =2). We have that

- D% (f (2 (@) 2" ()l 1, fan,0)

! f<z>dz—f<u>2’(“)|‘ L) vy =T(v+3)
2

b—a

Yu,w

We continue with an L fractional C-Ostrowski type inequality:

Theorem 20 Let v > 1, n = [v]. Assume that h € C™([a,b],C), where
h(t):= f(z(t)2 (t), and such that h) (a) =0, i=1,...,n — 1. Then

1 , DY, (f (2 (8)) 2" )l 1, (jae). )
= f(Z)dz—f(u)Z(a)’§ NoES
Proof. By Theorem 9. m

It follows a Poincaré like C-fractional inequality:

(b—a)""".

u,w

(29)

=1, andu>%,n=fzﬂ. Let h €

0,i=1,...n—1. Then

Theorem 21 Let p,q > 1 : %4-
C" ([a,b],C). Assume that hV) (a)

1
q

(b —a)" | DRl L, (ap),0)
1 1
L) (p(v—1)+1)7 (qv)*

1l L, (fa,p),0) < (30)



in particular when h(t) == f(z(t)) 2z (¢) and (f (z(t)) 7 (t))(i) t=q = 0, i =
1,..n — 1, we get:
1f (=) 2" O, (fap.c) <

(b—a)” 1 1
L) (pv—-1)+1)7 (qv)°

Proof. By Theorem 10. m
The corresponding Sobolev like inequality follows:

ID%, (f (=) 2" ), ((a,01,0) - (31)

Theorem 22 All as in Theorem 21. Let r > 0. Then

I1f (z(®) 2" Ol 1, ((ay.c) <
(b — a)yiéJr% v ’
1 D% (F (2 () 2 )z, apc) - (32)
Trw)(pv—1)+1) <T (V— é) —|—1)

Proof. By Theorem 11. m
We continue with an Opial type C-fractional inequality

S

Theorem 23 Let p,g > 1: %—f— % =1, andv > %, n:=[v], h € C"([a,b],C).
Assume h™®) (a) =0, k=0,1,....,n — 1. Then

| @@z @a <

(x — a)y_1+% z ¥k . 2
T ; Lh) @ dt) . (33
25T () (p (v — 1) + 1) (p (v — 1) +2))? ([ 1ermra) )

V€ la,b], .
in particular when h(t) := f (2 (t)) 2 (t) and (f (z(t)) 7 (t))(l) lt=q =0, i =
1,..n — 1, we get:

/x [ (2 O)H(DZ, (f (2 (1) 2 ()] 12" (£)] dt <

(¢ - ) "oy Cmar)”
1 , L) @) )
2T W) ((p (v = 1) + 1) (0 (v = 1) +2))7 (/ e )(34)

vz € la,b].

Proof. By Theorem 12. m
We finish with Hilbert-Pachpatte left C-fractional inequalities:



Theorem 24 Letp,q > 1:

Let h; € C™ ([a;,b;],C), i
1 =1,2. Then

=1, and v > %, vy > %, n; = [v;],i=1,2.

. Assume hgki) (a;) =0, ki =0,1,..,n; — 1;

1
1t
=1,

me

b1 b2 |hy (t1)] |he (t2)| dtydts
(tl ap)P(v1—D+1 (ta—ap)d2-D+1Y —
p(p(r1i—1)+1) + q(q(r2—1)+1) )

(bl - al) (bz - (12) H
I (1) I (v2)

in particular when hy (t1) := f1 (21 (t1)) 2] (t1) and ho (t2) := fa (22 (t2)) 25 (t2),
with hl(k'i) (a;) =0,k =0,1,..n; — 1; i = 1,2, we get:

/b1 /b2 [f1 (21 (t2)) 21 (8] 1f2 (22 (t2)) 25 (t2)| dtrdts _ (by —a1) (bo — az)
(tl ay

Dl b0 1PZe 2l 1 a0 (39)

)p(lq 1)+1 (ta—a )q(l/2—1)+1 = T (0T (0
p(p(rv1—1)+1) + Z(q(i2_1)+1) ) (1) (2)
102, (A (21 (00) 28 ) o g 19220 (2 (2 (20) 2 (2D o g

(36)

Proof. By Theorem 13. =

References

[1] G. Anastassiou, 4 strong fractional calculus theory for Banach space valued
functions, Nonlinear Functional Analysis and Applications, 22 (3) (2017),
495-524.

[2] G. Anastassiou, Complex Opial type inequalities, submitted, 2019.

[3] S.S. Dragomir, An extension of Ostrowski inequality to the complex integral,
RGMIA Res. Rep. Coll. 21 (2018), Art 112, 17 pp., rgmia.org/v21.php.

[4] C. Volintiru, A proof of the fundamental theorem of Calculus using Hausdorff
measures, Real Analysis Exchange, 26 (1), 2000/2001, pp. 381-390.

10





