Right Complex Caputo fractional inequalities

George A. Anastassiou
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Here we establish several important right complex Caputo type fractional inequalities of the following kinds: Ostrowski’s, Poincare’s, Sobolev’s, Opial’s and Hilbert-Pachpatte’s.

2010 Mathematics Subject Classification: 26D10, 26D15, 30A10.
Keywords and phrases: Complex inequalities, fractional inequalities, right Caputo fractional derivative.

1 Introduction

Here we follow [3].

Suppose \(\gamma \) is a smooth path parametrized by \(z(t), t \in [a, b] \) and \(f \) is a complex function which is continuous on \(\gamma \). Put \(z(a) = u \) and \(z(b) = w \) with \(u, w \in \mathbb{C} \). We define the integral of \(f \) on \(\gamma_{u,w} = \gamma \) as

\[
\int_\gamma f(z) \, dz = \int_{\gamma_{u,w}} f(z) \, dz := \int_a^b f(z(t)) \, z'(t) \, dt.
\]

We observe that the actual choice of parametrization of \(\gamma \) does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose \(\gamma \) is parametrized by \(z(t), t \in [a, b] \), which is differentiable on the intervals \([a, c] \) and \([c, b] \), then assuming that \(f \) is continuous on \(\gamma \) we define

\[
\int_{\gamma_{u,w}} f(z) \, dz := \int_{\gamma_{u,v}} f(z) \, dz + \int_{\gamma_{v,w}} f(z) \, dz,
\]

where \(v := z(c) \). This can be extended for a finite number of intervals.

We also define the integral with respect to arc-length

\[
\int_{\gamma_{u,w}} f(z) \, |dz| := \int_a^b f(z(t)) \, |z'(t)| \, dt
\]
and the length of the curve γ is then
\[l(\gamma) = \int_{\gamma_{u,w}} |dz| := \int_{a}^{b} |z'(t)| \, dt, \]
where $|\cdot|$ is the complex absolute value.

Let f and g be holomorphic in G, and open domain and suppose $\gamma \subset G$ is a piecewise smooth path from $z(a) = u$ to $z(b) = w$. Then we have the integration by parts formula
\[\int_{\gamma_{u,w}} f(z) g'(z) \, dz = f(w) g(w) - f(u) g(u) - \int_{\gamma_{u,w}} f'(z) g(z) \, dz. \quad (1) \]

We recall also the triangle inequality for the complex integral, namely
\[\left| \int_{\gamma} f(z) \, dz \right| \leq \int_{\gamma} |f(z)||dz| \leq \|f\|_{\gamma,\infty} l(\gamma), \quad (2) \]
where $\|f\|_{\gamma,\infty} := \sup_{z \in \gamma} |f(z)|$.

We also define the p-norm with $p \geq 1$ by
\[\|f\|_{\gamma,p} := \left(\int_{\gamma} |f(z)|^p \, |dz| \right)^{\frac{1}{p}}. \]
For $p = 1$ we have
\[\|f\|_{\gamma,1} := \int_{\gamma} |f(z)| \, |dz|. \]

If $p, q > 1$ with $\frac{1}{p} + \frac{1}{q} = 1$, then by Hölder’s inequality we have
\[\|f\|_{\gamma,1} \leq [l(\gamma)]^{\frac{1}{q}} \|f\|_{\gamma,p}. \quad (3) \]

We are inspired by the following extensions of Stekloff and Almansi inequalities to the complex integral:

Theorem 1 ([3]) Let f be analytic in G, a domain of complex numbers and suppose $\gamma \subset G$ is a smooth path parametrized by $z(t)$, $t \in [a,b]$ from $z(a) = u$ to $z(b) = w$ and $z'(t) \neq 0$ for $t \in (a,b)$.

(i) If $\int_{\gamma} f(z) |dz| = 0$, then
\[\int_{\gamma} |f(z)|^2 |dz| \leq \frac{1}{\pi^2} l^2(\gamma) \int_{\gamma} |f'(z)|^2 |dz|. \quad (4) \]

(ii) In addition, if $f(u) = f(w) = 0$, then
\[\int_{\gamma} |f(z)|^2 |dz| \leq \frac{1}{4\pi^2} l^2(\gamma) \int_{\gamma} |f'(z)|^2 |dz|. \quad (5) \]
We are also inspired by complex Ostrowski type results:

Theorem 2 ([4]) Let \(f : D \subseteq \mathbb{C} \to \mathbb{C} \) be an analytic function on the convex domain \(D \) with \(z,x,y \in D \) and \(\lambda \in \mathbb{C} \). Suppose \(\gamma \subset D \) is a smooth path parametrized by \(z(t), t \in [a,b] \) with \(z(a) = u \) and \(z(b) = w \) where \(u,w \in D \). Then

\[
\int_\gamma f(z) \, dz = [(1 - \lambda) f(x) + \lambda f(y)] (w - u) + (6)
\]

\[
(1 - \lambda) \sum_{k=1}^{n} \frac{1}{(k+1)!} f^{(k)}(x) [(w - x)^{k+1} + (-1)^k (x - u)^{k+1}] + \lambda \sum_{k=1}^{n} \frac{1}{(k+1)!} f^{(k)}(y) [(w - y)^{k+1} + (-1)^k (y - u)^{k+1}] + T_{n,\lambda} (\gamma, x, y),
\]

where the remainder \(T_{n,\lambda} (\gamma, x, y) \) is given by

\[
T_{n,\lambda} (\gamma, x, y) :=
\]

\[
\frac{1}{n!} \left[(1 - \lambda) \int_\gamma (z - x)^{n+1} \left(\int_0^1 f^{(n+1)} [(1 - s) x + s z] (1 - s)^n \, ds \right) \, dz \right.
\]

\[
+ (1 - \lambda)^n \lambda \int_\gamma (y - z)^{n+1} \left(\int_0^1 f^{(n+1)} [(1 - s) z + s y] s^n \, ds \right) \, dz \right] = (7)
\]

\[
\frac{1}{n!} \left[(1 - \lambda) \int_0^1 (1 - s)^n \left(\int_\gamma (z - x)^{n+1} f^{(n+1)} [(1 - s) x + s z] \, dz \right) \, ds +
\]

\[
(1 - \lambda)^n \lambda \int_0^1 s^n \left(\int_\gamma (y - z)^{n+1} f^{(n+1)} [(1 - s) z + s y] \, dz \right) \, ds \] .
\]

Estimations of the above remainder follow:

Theorem 3 ([4]) Let \(f : D \subseteq \mathbb{C} \to \mathbb{C} \) be an analytic function on the convex domain \(D \) with \(x,y \in D \) and \(\lambda \in \mathbb{C} \). Suppose \(\gamma \subset D \) is a smooth path parametrized by \(z(t), t \in [a,b] \) with \(z(a) = u \) and \(z(b) = w \) where \(u,w \in D \). Then we have the representation (6) and the remainder \(T_{n,\lambda} (\gamma, x, y) \) satisfies the inequalities

\[
|T_{n,\lambda} (\gamma, x, y)| \leq
\]

\[
\frac{1}{n!} \left[|1 - \lambda| \left| \int_\gamma |z - x|^{n+1} \left(\int_0^1 f^{(n+1)} [(1 - s) x + s z] (1 - s)^n \, ds \right) |dz| \right|
\]

\[
+ |\lambda| \left| \int_\gamma |y - z|^{n+1} \left(\int_0^1 f^{(n+1)} [(1 - s) z + s y] s^n \, ds \right) |dz| \right| \] .
\]
\[\frac{1}{n!} \int_{\gamma} |z - x|^{n+1} \left(\max_{s \in [0,1]} |f^{(n+1)} \left[(1 - s) x + s z \right]| \right) |dz| \]

\[\leq \frac{1}{n!} |1 - \lambda| \left\{ \frac{1}{(q+1)!} \int_{\gamma} |z - x|^{n+1} \left(\int_0^1 |f^{(n+1)} \left[(1 - s) x + s z \right]|^p \frac{1}{p} \right)^\frac{1}{p} |dz| \right\} \]

\[\text{where } p, q > 1 \text{ and } \frac{1}{p} + \frac{1}{q} = 1 \]

\[\int_{\gamma} |z - x|^{n+1} \left(\int_0^1 |f^{(n+1)} \left[(1 - s) x + s z \right]| \right) |dz| \]

\[+ \frac{1}{n!} \left\{ \frac{1}{(q+1)!} \int_{\gamma} |y - z|^{n+1} \left(\int_0^1 |f^{(n+1)} \left[(1 - s) z + s y \right]|^p \right)^\frac{1}{p} |dz| \right\} \]

\[\text{where } p, q > 1 \text{ and } \frac{1}{p} + \frac{1}{q} = 1 \]

\[\int_{\gamma} |y - z|^{n+1} \left(\int_0^1 |f^{(n+1)} \left[(1 - s) z + s y \right]| \right) |dz|, \]

and

\[|T_{n,\lambda} (\gamma, x, y)| \leq \frac{1}{n!} \left[|1 - \lambda| \int_0^1 (1 - s)^n \left(\int_{\gamma} |z - x|^{n+1} \left| f^{(n+1)} \left[(1 - s) x + s z \right] \right| \right) |dz| \right] ds + \]

\[|\lambda| \int_0^1 s^n \left(\int_{\gamma} |y - z|^{n+1} \left| f^{(n+1)} \left[(1 - s) z + s y \right] \right| \right) |dz| \right] ds \leq \]

\[\frac{1}{n!} \left\{ \int_{\gamma} |z - x|^{(n+1)q} |dz| \right\}^\frac{1}{q} \int_0^1 (1 - s)^n \left(\int_{\gamma} |f^{(n+1)} \left[(1 - s) x + s z \right]|^p \right)^\frac{1}{p} |dz| \right\} ds \]

where \(p, q > 1 \text{ and } \frac{1}{p} + \frac{1}{q} = 1 \)

\[\max_{s \in \gamma} \left(|z - x|^{n+1} \right) \int_0^1 (1 - s)^n \left(\int_{\gamma} |f^{(n+1)} \left[(1 - s) x + s z \right]| \right) |dz| \]

\[\left(\int_{\gamma} |y - z|^{(n+1)q} |dz| \right)^\frac{1}{q} \int_0^1 s^n \left(\int_{\gamma} |f^{(n+1)} \left[(1 - s) z + s y \right]|^p |dz| \right)^\frac{1}{p} ds \]

where \(p, q > 1 \text{ and } \frac{1}{p} + \frac{1}{q} = 1 \)

\[\max_{s \in \gamma} \left(|y - z|^{n+1} \right) \int_0^1 s^n \left(\int_{\gamma} |f^{(n+1)} \left[(1 - s) z + s y \right]| |dz| \right) ds. \]

In this article we utilize on \(\mathbb{C} \) the results of [2] which are for general Banach space valued functions.

Mainly we give different cases of the right fractional \(\mathbb{C} \)-Ostrowski type inequality and we continue with the right fractional; \(\mathbb{C} \)-Poincaré like and Sobolev like inequalities.
We present an Opial type right \(C \)-fractional inequality, and we finish with the Hilbert-Pachpatte right \(C \)-fractional inequalities.

2 Background

In this section all integrals are of Bochner type.

We need

Definition 4 (see [5]) A definition of the Hausdorff measure \(h_\alpha \) goes as follows: if \((T, d) \) is a metric space, \(A \subseteq T \) and \(\delta > 0 \), let \(\Lambda (A, \delta) \) be the set of all arbitrary collections \((C_i) \) of subsets of \(T \), such that \(A \subseteq \bigcup C_i \) and diam \((C_i) \leq \delta \) (diam = diameter) for every \(i \). Now, for every \(\alpha > 0 \) define

\[
h_\alpha^\delta (A) := \inf \left\{ \sum (\text{diam}C_i)^\alpha \mid (C_i) \in \Lambda (A, \delta) \right\}.
\]

Then there exists \(\lim_{\delta \to 0} h_\alpha^\delta (A) = \sup_{\delta > 0} h_\alpha^\delta (A) \), and \(h_\alpha (A) := \lim_{\delta \to 0} h_\alpha^\delta (A) \) gives an outer measure on the power set \(P (T) \), which is countably additive on the \(\sigma \)-field of all Borel subsets of \(T \). If \(T = \mathbb{R}^n \), then the Hausdorff measure \(h_\alpha \), restricted to the \(\sigma \)-field of the Borel subsets of \(\mathbb{R}^n \), equals the Lebesgue measure up to a constant multiple. In particular, \(h_1 (C) = \mu (C) \) for every Borel set \(C \subseteq \mathbb{R} \), where \(\mu \) is the Lebesgue measure.

Definition 5 ([2]) Let \([a, b] \subset \mathbb{R}, (X, \|\cdot\|)\) be a Banach space, \(\alpha > 0 \), \(m := [\alpha] \), (\([\cdot] \) the ceiling of the number). We assume that \(f^{(m)} \in L_1 ([a, b], X) \), where \(f : [a, b] \to X \). We call the Caputo-Bochner right fractional derivative of order \(\alpha \):

\[
(D_b^\alpha f) (x) := \frac{(-1)^m}{\Gamma (m - \alpha)} \int_x^b (J - x)^{m-\alpha} f^{(m)} (J) \, dJ, \quad \forall \, x \in [a, b],
\]

where \(f^{(m)} \) is the ordinary \(X \)-valued derivative, defined similarly to the numerical one.

We observe that \(D_b^m f (x) = (-1)^m f^{(m)} (x) \), for \(m \in \mathbb{N} \), and \(D_b^0 f (x) = f (x) \).

By [2] \((D_b^\alpha f) (x) \) exists almost everywhere on \([a, b]\) and \((D_b^\alpha f) \in L_1 ([a, b], X) \). If \(\| f^{(m)} \|_{L_\infty ([a, b], X)} < \infty \), an \(\alpha \notin \mathbb{N} \), then by [2], \(D_b^\alpha f \in C ([a, b], X) \), hence \(\| D_b^\alpha f \| \in C ([a, b]) \).

We need the right-fractional Taylor’s formula:

Theorem 6 ([2]) Let \([a, b] \subset \mathbb{R}, X \) be a Banach space, \(\alpha > 0 \), \(m = [\alpha] \), \(f \in C^{m-1} ([a, b], X) \). Set

\[
F_x (t) := \sum_{i=0}^{m-1} \frac{(x - t)^i}{i!} f^{(i)} (t), \quad \forall \, t \in [x, b],
\]

\[\text{(12)}\]
where $x \in [a, b]$.

Assume that $f^{(m)}$ exists outside a μ-null Borel set $B_x \subseteq [x, b]$, such that

$$h_1 (F_x (B_x)) = 0, \quad \forall x \in [a, b].$$

(13)

We also assume that $f^{(m)} \in L_1 ([a, b], X)$. Then

$$f (x) = \sum_{i=0}^{m-1} \frac{(x-b)^i}{i!} f^{(i)} (b) + \frac{1}{\Gamma (\alpha)} \int_x^b (z-x)^{\alpha-1} (D^\alpha_{b-} f) (z) \, dz,$$

(14)

$\forall x \in [a, b]$.

Next we mention Ostrowski type inequalities at right fractional level for Banach valued functions. See also [1].

Theorem 7 ([2]) Let $\alpha > 0$, $m = [\alpha]$. Here all as in Theorem 6. Assume $f^{(k)} (b) = 0$, $k = 1, \ldots, m - 1$, and $D^\alpha_{b-} f \in L_\infty ([a, b], X)$. Then

$$\left\| \frac{1}{b-a} \int_a^b f (x) \, dx - f (b) \right\| \leq \frac{\| D^\alpha_{b-} f \|_{L_\infty ([a, b], X)}}{\Gamma (\alpha + 2)} (b-a)^\alpha.$$

(15)

We also give

Theorem 8 ([2]) Let $\alpha \geq 1$, $m = [\alpha]$. Here all as in Theorem 6. Assume that $f^{(k)} (b) = 0$, $k = 1, \ldots, m - 1$, and $D^\alpha_{b-} f \in L_1 ([a, b], X)$. Then

$$\left\| \frac{1}{b-a} \int_a^b f (x) \, dx - f (b) \right\| \leq \frac{\| D^\alpha_{b-} f \|_{L_1 ([a, b], X)}}{\Gamma (\alpha + 1)} (b-a)^{\alpha-1}.$$

(16)

We mention also an L_p abstract Ostrowski type inequality:

Theorem 9 ([2]) Let $p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1$, $\alpha > \frac{1}{q}$, $m = [\alpha]$. Here all as in Theorem 6. Assume that $f^{(k)} (b) = 0$, $k = 1, \ldots, m - 1$, and $D^\alpha_{b-} f \in L_q ([a, b], X)$. Then

$$\left\| \frac{1}{b-a} \int_a^b f (x) \, dx - f (b) \right\| \leq \frac{\| D^\alpha_{b-} f \|_{L_q ([a, b], X)}}{\Gamma (\alpha) (p (\alpha - 1) + 1)^{\frac{1}{p}}} (b-a)^{\alpha - \frac{1}{q}}.$$

(17)

It follows

Corollary 10 ([2]) Let $\alpha > \frac{1}{2}$, $m = [\alpha]$. All as in Theorem 6. Assume $f^{(k)} (b) = 0$, $k = 1, \ldots, m - 1$, $D^\alpha_{b-} f \in L_2 ([a, b], X)$. Then

$$\left\| \frac{1}{b-a} \int_a^b f (x) \, dx - f (b) \right\| \leq \frac{\| D^\alpha_{b-} f \|_{L_2 ([a, b], X)}}{\Gamma (\alpha) (\sqrt{2\alpha} - 1) (\alpha + \frac{1}{2})} (b-a)^{\alpha - \frac{1}{2}}.$$

(18)
We continue with a Poincaré like right fractional inequality:

Theorem 11 ([2]) Let \(p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1 \), and \(\alpha > \frac{1}{q} \), \(m = \lfloor \alpha \rfloor \). Here all as in Theorem 6. Assume that \(f^{(k)} (b) = 0 \), \(k = 0, 1, ..., m - 1 \), and \(D_{b-}^\alpha f \in L_q ([a, b], X) \), where \(X \) is a Banach space. Then

\[
\|f\|_{L_q([a, b], X)} \leq \frac{(b-a)^{\alpha} \|D_{b-}^\alpha f\|_{L_q([a, b], X)}}{\Gamma (\alpha) (p (\alpha - 1) + 1)^{\frac{1}{q}} (qa)^{\frac{1}{q}}}. \tag{19}
\]

Next follows a right Sobolev like fractional inequality:

Theorem 12 ([2]) All as in the last Theorem 11. Let \(r > 0 \). Then

\[
\|f\|_{L_r([a, b], X)} \leq \frac{(b-a)^{\alpha - \frac{1}{r} + \frac{1}{q}} \|D_{b-}^\alpha f\|_{L_q([a, b], X)}}{\Gamma (\alpha) (p (\alpha - 1) + 1)^{\frac{1}{q}} (r (\alpha - \frac{1}{q}) + 1)^{\frac{1}{r}}}. \tag{20}
\]

We also mention the following Opial type right fractional inequality:

Theorem 13 ([2]) Let \(p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1 \), and \(\alpha > \frac{1}{q} \), \(m := \lfloor \alpha \rfloor \). Let \([a, b] \subset \mathbb{R} \), \(X \) a Banach space, and \(f \in C^{m-1} ([a, b], X) \). Set

\[
F_x (t) := \sum_{i=0}^{m-1} \frac{(x-t)^i}{i!} f^{(i)} (t), \forall t \in [x, b], \text{ where } x \in [a, b]. \tag{21}
\]

Assume that \(f^{(m)} \) exists outside a \(\mu \)-null Borel set \(B_x \subseteq [x, b] \), such that

\[
h_1 (F_x (B_x)) = 0, \forall x \in [a, b]. \tag{22}
\]

We assume that \(f^{(m)} \in L_\infty ([a, b], X) \). Assume also that \(f^{(k)} (b) = 0 \), \(k = 0, 1, ..., m - 1 \). Then

\[
\int_x^b \|f (w)\| \| (D_{b-}^\alpha f) (w)\| \, dw \leq \frac{(b-x)^{\alpha - \frac{1}{p} + \frac{1}{q}}}{2^{\frac{1}{p}} \Gamma (\alpha) (p (\alpha - 1) + 1) (p (\alpha - 1) + 2)^{\frac{1}{p}}} \left(\int_x^b \| (D_{b-}^\alpha f) (z)\|^q \, dz \right)^{\frac{2}{q}} \tag{23}
\]

\[\forall x \in [a, b].\]

Next we describe an abstract Hilbert-Pachpatte right fractional inequality:

Theorem 14 ([2]) Let \(p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1 \), and \(\alpha_1 > \frac{1}{q} \), \(\alpha_2 > \frac{1}{r} \). \(m_i := \lceil \alpha_i \rceil \), \(i = 1, 2 \), \(\alpha_i \) denotes the integer part of \(\alpha_i \). Here \([a_i, b_i] \subset \mathbb{R}, i = 1, 2 \), \(X \) is a Banach space. Let \(f_i \in C^{m_i-1} ([a_i, b_i], X), i = 1, 2 \). Set

\[
F_{x_i} (t_i) := \sum_{j_i=0}^{m_i-1} \frac{(x_i - t_i)^{j_i}}{j_i!} f_i^{(j_i)} (t_i), \tag{24}
\]

7
\[h_1 (F_{x_i} (B_{x_i})) = 0, \quad \forall x_i \in [a_i, b_i]; \quad i = 1, 2. \]

We also assume that \(f_i^{(m_i)} \) exists outside a \(\mu \)-null Borel set \(B_{x_i} \subseteq [x_i, b_i] \), such that

\[f_i^{(k_i)} (b_i) = 0, \quad k_i = 0, 1, \ldots, m_i - 1; \quad i = 1, 2. \]

and

\[(D_{b_1}^{p_1} f_1) \in L_q ([a_1, b_1], X), \quad (D_{b_2}^{p_2} f_2) \in L_p ([a_2, b_2], X). \]

Then

\[
\int_{a_1}^{b_1} \int_{a_2}^{b_2} \frac{\| f_1 (x_1) \| \| f_2 (x_2) \| \| dx_1 dx_2 \|}{(b_1 - a_1)^{s_1} (a_1 - 1) + 1} + \frac{(b_2 - a_2)^{s_2} (a_2 - 1) + 1}{q \Gamma (n_1) \Gamma (a_2)} \| D_{b_1}^{p_1} f_1 \|_{L_q ([a_1, b_1], X)} \| D_{b_2}^{p_2} f_2 \|_{L_p ([a_2, b_2], X)}. \]

\section{3 Main Results}

We need a special case of Definition 5 over \(\mathbb{C} \).

Definition 15 Let \([a, b] \subset \mathbb{R}, \nu > 0; n := \lfloor \nu \rfloor \in \mathbb{N}, \lfloor \cdot \rfloor \) is the ceiling of the number and \(f \in C^n ([a, b], \mathbb{C}) \). We call Caputo-Complex right fractional derivative of order \(\nu \):

\[
(D_{b}^\nu f) (x) := \frac{(-1)^n}{\Gamma (n - \nu)} \int_{a}^{b} (x - \lambda)^{n-\nu-1} f^{(n)} (\lambda) d\lambda, \quad \forall x \in [a, b],
\]

where the derivatives \(f', \ldots, f^{(n)} \) are defined as the numerical derivative.

If \(\nu \in \mathbb{N} \), we set \(D_{b}^\nu f := (-1)^{\nu} f^{(\nu)} \) the ordinary \(\mathbb{C} \)-valued derivative and also \(D_{b}^0 f := f \).

Notice here (by [2]) that \(D_{b}^\nu f \in C ([a, b], \mathbb{C}) \).

We give the following right-fractional C-Taylor’s formula:

Theorem 16 Let \(h \in C^n ([a, b], \mathbb{C}), n = \lfloor \nu \rfloor, \nu \geq 0. \) Then

\[
 h (t) = \sum_{i=0}^{n-1} \frac{(t - b)^i}{i!} h^{(i)} (b) + \frac{1}{\Gamma (\nu)} \int_{t}^{b} (\lambda - t)^{\nu-1} D_{b}^\nu h (\lambda) d\lambda, \quad \forall t \in [a, b],
\]

in particular when \(h (t) := f (z (t)) z' (t) \in C^n ([a, b], \mathbb{C}), \) where \(f (z), z (t), t \in [a, b] \) are as in 1. Introduction, it holds,

\[
f (z (t)) z' (t) = \sum_{i=0}^{n-1} \frac{(t - b)^i}{i!} (f (z (b)) z' (b))^{(i)} + \]
\[
\frac{1}{\Gamma(\nu)} \int_{t}^{b} (\lambda - t)^{\nu - 1} \left(D_{b-}^{\nu} f (z (\cdot)) z' (\cdot) \right) (\lambda) d\lambda, \quad (31)
\]
\[\forall t \in [a, b].\]

Proof. By Theorem 6. ■

It follows a right fractional \(\mathbb{C} \)-Ostrowski type inequality

Theorem 17 Let \(n \in \mathbb{N} \) and \(h \in C^n ([a, b], \mathbb{C}) \), where \([a, b] \subset \mathbb{R} \), and let \(\nu > 0 : n = [\nu] \). Assume that \(h^{(i)} (b) = 0, i = 1, \ldots, n - 1 \). Then

\[
\left| \frac{1}{b - a} \int_{a}^{b} h (t) dt - h (b) \right| \leq \frac{\| D_{b-}^{\nu} h \|_{\infty, [a, b]}}{\Gamma (\nu + 2)} (b - a)^{\nu}, \quad (32)
\]
in particular when \(h (t) := f (z (t)) z' (t) \in C^n ([a, b], \mathbb{C}) \), where \(f (z), z (t), t \in [a, b] \) are as in 1. Introduction, and \((f (z (t)) z' (t))^{(i)} \big|_{t=b=0, i = 1, \ldots, n-1} \) we get:

\[
\left| \frac{1}{b - a} \int_{a}^{b} \gamma_{a, w} f (z) dz - f (w) z' (b) \right| = \frac{1}{b - a} \int_{a}^{b} f (z (t)) z' (t) dt - f (z (b)) z' (b) \right| \leq \frac{\| D_{b-}^{\nu} f (z (t)) z' (t) \|_{\infty, [a, b]}}{\Gamma (\nu + 2)} (b - a)^{\nu}. \quad (33)
\]

Proof. By Theorem 7. ■

The corresponding \(\mathbb{C} \)-Ostrowski type \(L^p \) inequality follows:

Theorem 18 Let \(p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1 \), and \(\nu > \frac{1}{q} \). \(n = [\nu] \). Here \(h \in C^n ([a, b], \mathbb{C}) \). Assume that \(h^{(i)} (b) = 0, i = 1, \ldots, n - 1 \). Then

\[
\left| \frac{1}{b - a} \int_{a}^{b} h (t) dt - h (b) \right| \leq \frac{\| D_{b-}^{\nu} h \|_{L^q ([a, b], \mathbb{C})}}{\Gamma (\nu) (p (\nu - 1) + 1)^{\frac{1}{p}} \left(\nu + \frac{1}{p} \right)} (b - a)^{\nu - \frac{1}{q}}, \quad (34)
\]
in particular when \(h (t) := f (z (t)) z' (t) \in C^n ([a, b], \mathbb{C}) \), where \(f (z), z (t), t \in [a, b] \) are as in 1. Introduction, and \((f (z (t)) z' (t))^{(i)} \big|_{t=b=0, i = 1, \ldots, n-1} \) we get:

\[
\left| \frac{1}{b - a} \int_{a}^{b} \gamma_{a, w} f (z) dz - f (w) z' (b) \right| = \frac{1}{b - a} \int_{a}^{b} f (z (t)) z' (t) dt - f (z (b)) z' (b) \right| \leq \frac{\| D_{b-}^{\nu} (f (z (t)) z' (t)) \|_{L^q ([a, b], \mathbb{C})}}{\Gamma (\nu) (p (\nu - 1) + 1)^{\frac{1}{p}} \left(\nu + \frac{1}{p} \right)} (b - a)^{\nu - \frac{1}{q}}. \quad (35)
\]

Proof. By Theorem 9. ■

It follows
Corollary 19 (to Theorem 18, case of \(p = q = 2 \)). We have that
\[
\left| \frac{1}{b-a} \int_{\gamma_{a,w}} f(z) \, dz - f(w) \right| \leq \frac{\|D_{b-}^\nu (f(z(t)) z'(t))\|_{L^2([a,b],\mathbb{C})}}{\Gamma(\nu) \sqrt{2\nu - \Gamma(\nu + \frac{1}{2})}} (b-a)^{\nu - \frac{1}{2}}.
\]

(36)

We continue with an \(L_1 \) fractional \(\mathbb{C} \)-Ostrowski type inequality:

Theorem 20 Let \(\nu \geq 1, n = \lfloor \nu \rfloor \). Assume that \(h(t) := f(z(t)) z'(t) \in C^n([a,b],\mathbb{C}) \), where \(f(z), z(t), t \in [a,b] \) are as in 1. Introduction, and such that \(h^{(i)}(b) = 0, i = 1, \ldots, n-1 \). Then
\[
\left| \frac{1}{b-a} \int_{\gamma_{a,w}} f(z) \, dz - f(w) \right| \leq \frac{\|D_{b-}^\nu (f(z(t)) z'(t))\|_{L^1([a,b],\mathbb{C})}}{\Gamma(\nu + 1)} (b-a)^{\nu - 1}.
\]

(37)

Proof. By Theorem 8. \(\blacksquare \)

It follows a Poincaré like \(\mathbb{C} \)-fractional inequality:

Theorem 21 Let \(p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1, \) and \(\nu > \frac{1}{q}, n = \lfloor \nu \rfloor \). Let \(h \in C^n([a,b],\mathbb{C}) \). Assume that \(h^{(i)}(b) = 0, i = 1, \ldots, n-1 \). Then
\[
\|h\|_{L^q([a,b],\mathbb{C})} \leq \frac{(b-a)^\nu \|D_{b-}^\nu h\|_{L^q([a,b],\mathbb{C})}}{\Gamma(\nu) (p(\nu - 1) + 1)^\frac{1}{p} (q\nu)^\frac{1}{q}},
\]

(38)
in particular when \(h(t) := f(z(t)) z'(t) \in C^n([a,b],\mathbb{C}) \), where \(f(z), z(t), t \in [a,b] \) are as in 1. Introduction, and \((f(z(t)) z'(t))^{(i)} |_{t=b} = 0, i = 1, \ldots, n-1 \), we get:
\[
\|f(z(t)) z'(t)\|_{L^q([a,b],\mathbb{C})} \leq \frac{(b-a)^\nu}{\Gamma(\nu) (p(\nu - 1) + 1)^\frac{1}{p} (q\nu)^\frac{1}{q}} \|D_{b-}^\nu (f(z(t)) z'(t))\|_{L^q([a,b],\mathbb{C})}.
\]

(39)

Proof. By Theorem 11. \(\blacksquare \)

The corresponding Sobolev like inequality follows:

Theorem 22 All as in Theorem 21. Let \(r > 0 \). Then
\[
\|f(z(t)) z'(t)\|_{L^r([a,b],\mathbb{C})} \leq \frac{(b-a)^{\nu - \frac{1}{q} + \frac{1}{r}}}{\Gamma(\nu) (p(\nu - 1) + 1)^\frac{1}{p} \left(r \left(\nu - \frac{1}{q}\right) + 1\right)^\frac{1}{r}} \|D_{b-}^\nu (f(z(t)) z'(t))\|_{L^q([a,b],\mathbb{C})}.
\]

(40)

Proof. By Theorem 12. \(\blacksquare \)

We continue with an Opial type \(\mathbb{C} \)-fractional inequality.
Theorem 23 Let \(p, q > 1 \) : \(\frac{1}{p} + \frac{1}{q} = 1 \), and \(\nu > \frac{1}{q} \), \(n := [\nu] \), \(h \in C^n ([a, b], \mathbb{C}) \).
Assume \(h^{(k)} (b) = 0 \), \(k = 0, 1, ..., n - 1 \). Then
\[
\int_{a}^{b} |h(t)| |(D_{b-}^\nu h) (t)| \, dt \leq \frac{2\Gamma (\nu) ((p (\nu - 1) + 1) (p (\nu - 1) + 2))^{\frac{1}{p}}}{(b - x)^{\nu - 1 + \frac{2}{p}}} \left(\int_{a}^{b} |(D_{b-}^\nu h) (t)|^q \, dt \right)^{\frac{1}{q}}, \quad \text{(41)}
\]
for all \(x \in [a, b] \),
in particular when \(h(t) := f(z(t)) z'(t) \in C^n ([a, b], \mathbb{C}) \), where \(f(z), z(t), t \in [a, b] \) are as in 1. Introduction, and \((f(z(t)) z'(t)) |_{t=b} = 0 \), \(i = 1, ..., n - 1 \), we get:
\[
\int_{a}^{b} |f(z(t))|(D_{b-}^\nu (f(z(t)) z'(t)))| z'(t) | \, dt \leq \frac{2\Gamma (\nu) ((p (\nu - 1) + 1) (p (\nu - 1) + 2))^{\frac{1}{p}}}{(b - x)^{\nu - 1 + \frac{2}{p}}} \left(\int_{a}^{b} |D_{b-}^\nu (f(z(t)) z'(t))|^q \, dt \right)^{\frac{1}{q}}, \quad \text{(42)}
\]
for all \(x \in [a, b] \).

Proof. By Theorem 13. \(\square \)

We finish with Hilbert-Pachpatte left C-fractional inequalities:

Theorem 24 Let \(p, q > 1 \) : \(\frac{1}{p} + \frac{1}{q} = 1 \), and \(\nu_1 > \frac{1}{q} \), \(\nu_2 > \frac{1}{p} \), \(n_i := [\nu_i] \), \(i = 1, 2 \).
Let \(h_i \in C^n ([a_i, b_i], \mathbb{C}) \), \(i = 1, 2 \). Assume \(h_i^{(k)} (b_i) = 0 \), \(k_i = 0, 1, ..., n_i - 1 \);
\(i = 1, 2 \). Then
\[
\int_{a_1}^{b_1} \int_{a_2}^{b_2} \frac{|h_1(t_1)| |h_2(t_2)| dt_1 dt_2}{\left(\frac{(b_1 - t_1)^{(\nu_1 - 1) + 1}}{p (p (\nu_1 - 1) + 1)} + \frac{(b_2 - t_2)^{(\nu_2 - 1) + 1}}{q (q (\nu_2 - 1) + 1)} \right)} \leq \frac{(b_1 - a_1) (b_2 - a_2)}{\Gamma (\nu_1) \Gamma (\nu_2)} \left\| D_{b_1-}^{\nu_1} h_1 \right\|_{L_q([a_1, b_1], \mathbb{C})} \left\| D_{b_2-}^{\nu_2} h_2 \right\|_{L_q([a_2, b_2], \mathbb{C})}, \quad \text{(43)}
\]
in particular when \(h_1(t_1) := f_1(z_1(t_1)) z'_1(t_1) \) and \(h_2(t_2) := f_2(z_2(t_2)) z'_2(t_2) \) as in 1. Introduction, with \(h_i^{(k)} (b_i) = 0 \), \(k_i = 0, 1, ..., n_i - 1 \); \(i = 1, 2 \), we get:
\[
\int_{a_1}^{b_1} \int_{a_2}^{b_2} \frac{|f_1(z_1(t_1)) z'_1(t_1)| |f_2(z_2(t_2)) z'_2(t_2)| dt_1 dt_2}{\left(\frac{(b_1 - t_1)^{(\nu_1 - 1) + 1}}{p (p (\nu_1 - 1) + 1)} + \frac{(b_2 - t_2)^{(\nu_2 - 1) + 1}}{q (q (\nu_2 - 1) + 1)} \right)} \leq \frac{(b_1 - a_1) (b_2 - a_2)}{\Gamma (\nu_1) \Gamma (\nu_2)} \right\| D_{b_1-}^{\nu_1} (f_1(z_1(t_1)) z'_1(t_1)) \right\|_{L_q([a_1, b_1], \mathbb{C})} \left\| D_{b_2-}^{\nu_2} (f_2(z_2(t_2)) z'_2(t_2)) \right\|_{L_q([a_2, b_2], \mathbb{C})}, \quad \text{(44)}
\]

Proof. By Theorem 14. \(\square \)
References

