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Abstract

Here we establish several important right complex Caputo type frac-
tional inequalities of the following kinds: Ostrowski’s, Poincare’s, Sobolev’s,
Opial’s and Hilbert-Pachpatte’s.
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1 Introduction

Here we follow [3].

Suppose 7 is a smooth path parametrized by z (¢), t € [a,b] and f is a
complex function which is continuous on v. Put z(a) = u and z (b) = w with
u,w € C. We define the integral of f on v, ,, =7 as

b
[r@a= [ r@d= [ emoa

We observe that the actual choice of parametrization of v does not matter.
This definition immediately extends to paths that are piecewise smooth.

Suppose 7 is parametrized by z(t), t € [a,b], which is differentiable on the

intervals [a, c] and [c, b], then assuming that f is continuous on v we define

(2)dz := (z)dz + / f(z)dz,

Yu,w Yu,v v, w

where v := z(c¢). This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

f () |dz] = / F @) (1)) dt
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and the length of the curve + is then

l(”_/mdz' = /ab|z’<t>|dt,

where || is the complex absolute value.

Let f and g be holomorphic in G, and open domain and suppose v C G
is a piecewise smooth path from z(a) = u to z(b) = w. Then we have the
integration by parts formula

) (Z)dZ=f(w)g(w)—f(U)g(U)—/ f(2)g(z)dz (1)

Yu,w Y, w

We recall also the triangle inequality for the complex integral, namely

Lf(z)dz

where || £l o0 = sup |f (2)]
z€y
We also define the p-norm with p > 1 by

171, = ( [uer |dz|); |

19,0 = [ 1 @)l
v

< / F @] < 11l L (), )

For p =1 we have

If p,q > 1 with % + % = 1, then by Holder’s inequality we have

1l < BN A, 3)

We are inspired by the following extensions of Stekloff and Almansi inequal-
ities to the complex integral:

Theorem 1 (/3]) Let f be analytic in G, a domain of complex numbers and
suppose v C G is a smooth path parametrized by z (t), t € [a,b] from z (a) = u
to z(b) =w and 2’ (t) # 0 fort € (a,b).

(i) If fwf(z) |dz| = 0, then

[ @< 2 0) [ 1@ . (W
(i) In addition, if f (u) = f(w) =0, then

[l @R < 2 0) [ 15 GF ). Q



We are also inspired by complex Ostrowski type results:

Theorem 2 ([4]) Let f : D C C — C be an analytic function on the convex
domain D with z,z,y € D and A\ € C. Suppose v C D is a smooth path

parametrized by z (t), t € [a,b] with z(a) = u and z (b) = w where u,w € D.
Then

/f(Z)dZZ[(1*A)f(ér)+/\f(y)](w*U)+ (6)

k=1

=N G @ [w =2+ () @ -0+

/\];1 ﬁf@ (y) [("w —y)" () - u)’““} + T (7,7, 9)

where the remainder T, » (77, x,y) is given by

Tn,)x (77 z, y) =

:L! {(1 _ ) L (2 — z)"* (/01 SO = 8) 2+ 52] (1— 8)" ds) iz
= )z ks stds ) az] = 0
% [(1 - /01 (1—s)" (A (z —2)" T FOD[(1 = s) z + s7] dz> ds+

o L ( [ =y 0=z ) ) as].

Estimations of the above remainder follow:

Theorem 3 ([}]) Let f : D C C — C be an analytic function on the convex do-

main D with x,y € D and \ € C. Suppose v C D is a smooth path parametrized
by z(t), t € [a,b] with z(a) = v and z (b) = w where u,w € D. Then we have
the representation (6) and the remainder T, x (7, x,y) satisfies the inequalities

[T (7, 2,y)| <

l o — 2" ( / 1 P [ = )+ 2] (1 s)"ds) dz]

L=t ([ e ta =924 |

1
m{|1x|

+ 1Al

s"ds) |dz|




%ﬂ f7 |z — 2" (maxe(o,1) |f(n+1) [(1—s)a + s2]|) |dz]

L f7 |z — x|”+1 (fol |f(n+1) [(1—s)z+ sz]}p ds)i |dz|

1
< - |]. — )\| (qgn+1)P
n: wherep,q>1and}%+%:1
n 1 n
Syl = a1 11— )+ s2]| ds ) |dz]
2 Ly = 2" (maxaepo [ £ [(1 - 5) 2 + sy]|) |d2]
1
1 __n+l 1 p(n+1) . p P
1 T y—z ( f 1-5)z+4+sy ds) dz
L d it bl (0 9wl ) s
n: wherep,q>1and%+%:l
n 1
f,y ly — | +1 (fo |f(n+1) [(1—s)z+ syH ds) |dz|,
and

|Tn,>\ (% Z, y)| <

% [|1 Y /01 (1— 8" (/ 2= 2" 7D [~ )2+ 2] |dz> ds+
° Y

BY /Olsn </ ly — 2"t ‘f(n+1) [(1—s)z+ sy]‘ dz|> ds] <
ol

[ lz=al" T dz] fy (1= )" (max.ey | fOHD [(1 = s) z + 52]|) ds

(o=l el o =" (1, 7050 [ sy 2] ) s

1
— 1=l
n! wherep,q>1and%+%:1

MAax,c~ (|z - x|"+1> fol (1—s)" (fﬁ{ |f V(1= s) 2 + s2]| ds) |dz|
9)
fv |z — y|nJrl |dz| fol s™ (maxz@ |f(”+1) [(1—s)z+ sy]!) ds

D=

(12 =yl |dz|>%f01 5 (170 (= ) 2+ syl 21 ds

1
+7||)‘| 1,1
n: wherep,q>1and5+5:1

max. e (‘Z . y|n+l) fol " (ffy ’f(n-‘rl) [(1 — S) z+ SyH |dz|> ds.

In this article we utilize on C the results of [2] which are for general Banach

space valued functions.
Mainly we give different cases of the right fractional C-Ostrowski type in-
equality and we continue with the right fractional: C-Poincaré like and Sobolev

like inequalities.



We present an Opial type right C-fractional inequality, and we finish with
the Hilbert-Pachpatte right C-fractional inequalities.

2 Background

In this section all integrals are of Bochner type.
We need

Definition 4 (see [5]) A definition of the Hausdorff measure hy, goes as follows:
if (T,d) is a metric space, A C T and & > 0, let A(A,0) be the set of all
arbitrary collections (C); of subsets of T', such that A C U;C; and diam (C;) < 0
(diam =diameter) for every i. Now, for every a > 0 define

hd (A) := inf {Z (diamC;)* | (C), € A(A,cS)}. (10)

Then there exists ;irr(l)hg (A) = suph? (A), and hy (A) := %irr(l)hi (A) gives an
- 6>0 -

outer measure on the power set P (T'), which is countably additive on the o-field
of all Borel subsets of T. If T = R"™, then the Hausdorff measure h,,, restricted
to the o-field of the Borel subsets of R™, equals the Lebesgue measure on R™ up
to a constant multiple. In particular, hy (C) = pu (C) for every Borel set C C R,
where w is the Lebesque measure.

Definition 5 (/2]) Let [a,b] C R, (X, |||) be a Banach space, o > 0, m := [«],
([-] the ceiling of the number). We assume that f™ € Ly ([a,b],X), where
f:]a,b] = X. We call the Caputo-Bochner right fractional derivative of order
a:

b
(D5_f) (2) = / (J =)™ f () d), Ve fab], (1)

where ™) is the ordinary X -valued derivative, defined similarly to the numer-

ical one.
We observe that D" f (z) = (—=1)" f™) (z), for m € N, and D))_f (z) =
f ().

By [2] (Dg- f) () exists almost everywhere on [a, b] and (D§_ f) € L1 ([a,b] , X).

If Hf(m)HL (a.x) < O and a ¢ N, then by [2], Dy f € C([a,b],X),
hence || Dy f|| € C ([a,b]).

We need the right-fractional Taylor’s formula:

Theorem 6 ([2]) Let [a,b] C R, X be a Banach space, « > 0, m = [a],
feCm™(a,b],X). Set

m—1 (1’ N

By (t) = Z 7! t)zf(l) (t), Vtelzb], (12)

=0




where x € [a,b].
Assume that f("™) exists outside a p-null Borel set B, C [x,b], such that

hi (Fy (Bg)) =0, Vz€la,b]. (13)

We also assume that f™ € Ly ([a,b],X). Then

,_.

m—

1

b
D' 40 (1) + e / (c— o) (Dpf) () dz, (14)

=0
V€ la,b.

Next we mention Ostrowski type inequalities at right fractional level for
Banach valued functions. See also [1].

Theorem 7 (/2]) Let o > 0, m = [a|. Here all as in Theorem 6. Assume
fE®) =0,k=1,...,m—1, and D§ f € Lo ([a,b],X). Then

b Dy
ﬁ/f(ax)dm—f(b) 1D5- . oy x

I'(a+2)
We also give

(- a)”. (15)

Theorem 8 (/2]) Let « > 1, m = [«]. Here all as in Theorem 6. Assume that
fE®)=0,k=1,...,m—1, and D§_f € Ly ([a,b],X). Then

1 b
o [ f@d— s

We mention also an L,, abstract Ostrowski type inequality:

HD!?—fHLl([a,b],X)

Tatl) (b—a)*". (16)

Theorem 9 (/2]) Let p,q > 1 : %—&—% =1, a> %, m = [a]. Here all

as in Theorem 6. Assume that f*) (b) = 0, k = 1,. —1, and Dy f €
L, ([a,b],X). Then

b
7 [ f@de -1 0)

It follows

L R
T T(a)(p(a—1)+1)7 (a+ )

Corollary 10 (/2]) Let o > %, m = [a]. All as in Theorem 6. Assume

fE®)=0,k=1,...,m—1, D} f¢€ Ly([a,b],X). Then

b
7 [ f@de 1)

Lz P

SI‘(oz)(\/2cu—1)(a—&- )(b_ a9




We continue with a Poincaré like right fractional inequality:

Theorem 11 (/2]) Let p,q > 1 : %—&— =1, and a > 7, m = [a]. Here all
as in Theorem 6. Assume that f*) (b) =0, k=0,1,.. —1, and Dy f €
L, ([a,b],X), where X is a Banach space. Then

(b—a) ||D?—f||Lq([a,b],X)
1L, (el x) < T T (19)

I'(a)(pla=1)+1)7 (qa)*

Next follows a right Sobolev like fractional inequality:
Theorem 12 ([2/) All as in the last Theorem 11. Let r > 0. Then
1 1
(b—a)* " Dy S,
q([a,b],X)

102, o x) < e (20)

I'(a)(p(a-— 1)+1)% ( (oc— f) +1>
We also mention the following Opial type right fractional inequality:

Theorem 13 ([2]) Let p,q > 1 : %—F% =1, and a > %, m = [a]. Let
[a,b] C R, X a Banach space, and f € C™ ! ([a,b],X). Set

m— 1

f() (t), Vtelz,bl, wherex € [a,b]. (21)
=0

Assume that ) exists outside a p-null Borel set B, C [x,0], such that

hi(F;(B;)) =0, Vx¢€la,bl. (22)
We assume that f(™ € Lo ([a,b],X). Assume also that f*) (b) = 0, k =
0,1,....m —1. Then

[ 15 @ (D51) ()] dw <

(b—a) ( (Dg e dz> 23
25T () ((p(a— 1)+ 1) (p(a— 1) +2))7 /H =) @l  (23)
V€ la,b.

BN

Next we describe an abstract Hilbert-Pachpatte right fractional inequality:

Theorem 14 ([2]) Let p,q > 1 : %4—% =1, and a; > %, g > %, m; =
[a;], ¢ = 1,2. Here [a;,b;]] C R, i = 1,2; X is a Banach space. Let f; €
cmi—l ([az,bl] ,X), i=1,2. Set
Fo (t) =Y TfW(ti), (24)
Ji=0 v



Y t; € [z;,b;], where x; € [a;,b;]; i = 1,2. Assume that fi(mi) exists outside a
p-null Borel set By, C [x;,b;], such that

h1 (FM (BM)) =0, Vo, € [ai,bi} i =1,2. (25)
We also assume that fi(mi) € Ly ([as, bi] , X), and

FE) (b)) =0, ki=0,1,...,,mi—1; i=1,2, (26)

K2

and
(Dl?ll,fl) € Lq ([al, bl] ,X) s (Dg;zifg) S Lp ([QQ, bg] ,X) . (27)
Then

ot /1 ()l f2 (z2) || d1 dis
(bl Tl p(al 1)+1 (b2 ',1_2)q(o<2 1)+1 =
p(ai—1)+1) a(g(a2—1)+1) )

(b1 —ay) (by — asz) |

I (o) T (o) (28)

leL 2([a1,b1],X) H f2HL,,([a2,b2],X) ’

3 Main Results

We need a special case of Definition 5 over C.

Definition 15 Let [a,b] C R, v > 0; n := [v] € N, [-] is the ceiling of
the number and f € C™([a,b],C). We call Caputo-Complex right fractional
derivative of order v:

_1\" b
(Dy_f) (z) = r((nl)y)/ A=) (AN, Yz elab], (29)

where the derivatives f',...f™ are defined as the numerical derivative.
Ifv €N, we set DY_f := (=1)" f®) the ordinary C-valued derivative and
also DY) _f = f.

Notice here (by [2]) that D}_f € C ([a,b],C).
We give the following right-fractional C-Taylor’s formula:

Theorem 16 Let h € C" ([a,b],C), n = [v], v > 0. Then

1
I'(v)

) (b) +

/ CO—yrt DL W d, (30)

Vtela,b],
in particular when h (t) == f (2 (t)) 2’ (t) € C"™ ([a,b],C), where f(z), z(t),
t € [a,b] are as in 1. Introduction, it holds,

oo



b
ﬁ /t (A=) (DY f (2()) 2 () (A) A, (31)

Vtela,b.

Proof. By Theorem 6. m
It follows a right fractional C-Ostroswski type inequality

Theorem 17 Let n € N and h € C" ([a,b],C), where [a,b] C R, and let v >
0:n=[v]. Assume that h) (b) =0, i=1,...,n —1. Then

L /bh(t)dth(b) <M(b—a)" (32)
b—aJ, - TI'(v+2) ’

in particular when h(t) = f(z(t))z'(t) € C"([a,b],C), where f(2), z(1),
t € [a,b] are as in 1. Introduction, and (f (z(t)) 2’ (t))(l) li=p =0,i=1,..n—1,
we get

1
b—a

b
e [ TE@)F - FEm)F

(2)dz = f (w) 2’ (b)

Yu,w

1PE1 (= 1) # ()] g

< Tt (b—a)”. (33)

Proof. By Theorem 7. m
The corresponding C-Ostrowski type L, inequality follows:

Theorem 18 Let p,qg > 1 : +é:1, and v > %,n: [v]. Here h €
C" ([a,b],C). Assume that A (b) =0, i =1,...,n — 1. Then

S =

1DE-All 1, 1.

P (pw-1)+1)7 (v+1)
in particular when h(t) = f(z(t)) 7z (t) € C"([a,b],C), where f(2), z(t),

t € [a,b] are as in 1. Introduction, and (f (z(t)) 2’ (t))(i) lt=p =0,i=1,..n—1,
we get:

1

b 1
b_a/a h (t)dt — h (b) (b—a)"", (34)

<

1
b—a

b
e [ TE@0d-FEm)

f(z)dz = f (w) 2 (b)

Yu,w

[1D5_ (f (=) 2" O], (i
L) (pv—1)+1)7 (”+ %)

1

(b—a)" 7. (35)

Proof. By Theorem 9. m
It follows



Corollary 19 (to Theorem 18, case of p=q =2). We have that

! N A G O R )] P ——
b—a/vuwa(z)dz—f(w)z(b) < T)vE—T(v+ 1) (b—a) 2.
(36)

We continue with an L fractional C-Ostrowski type inequality:

Theorem 20 Let v > 1, n = [v]. Assume that h(t) = f(z(¥) 7 (t) €
C" ([a,b],C), where f(z), z(t), t € [a,b] are as in 1. Introduction, and such
that K (b) =0,i=1,...n — 1. Then

_ 1P (G @) O, e
= I'(v+1)

1
b—a

(b—a)"".

/ f(2)dz — f (w) 2 (b)

(37)

Proof. By Theorem 8. m
It follows a Poincaré like C-fractional inequality:

=1, andu>%,n:[u] Let h €

Theorem 21 Let p,q > 1 : %
( 0,i=1,....,n—1. Then

_l’_
C" ([a,b],C). Assume that h(") (b)

1
q
(b—a)” HDZJHqua,bm

T W) (pv—1)+1)7 (@)

in particular when h(t) = f(z(t)) 2 (t) € C"([a,b],C), where f(2), z(t),
t € [a,b] are as in 1. Introduction, and (f (z(t)) 2’ (t))(l) lt=p =0,i=1,..n—1,
we get:

18l qeanc) < , (38)

A

1F Gz (8) 2 (O, (fayc) <

o) b z(t) 7
) D 1D @) IDE— (F )2 Doy - (39)

Proof. By Theorem 11. m
The corresponding Sobolev like inequality follows:

Theorem 22 All as in Theorem 21. Let r > 0. Then

1F (= (@) 2 Dll2, (ap1.0) <

3=

(b—a) ot
r@) pe-0+17 (r(v-1)+1)

Proof. By Theorem 12. m
We continue with an Opial type C-fractional inequality

DY (f G2 )2 O], oy - (40)

S
Sim

10



Theorem 23 Let p,g > 1: %—i— % =1, andv > %, n:=[v], h € C"([a,b],C).
Assume h®) (b) =0, k=0,1,....,n — 1. Then

b
[ In @1 1(y-0) )] de <

2

(L ( (Dy ! dt) 41
2i0 (v) (p(v=1) +1) (p(v — 1) + 2)) /.’ -h) (1) (4D

V€ la,b],
in particular when h (t) .= f (2 (¢)) 2’ (t) € C" ([a, ] C), where f (= ) (t),
t € [a,b] are as in 1. Introduction, and (f (z (t)) 2’ (¢ )) lt=p =0,i=1,..n—1,
we get:
15O ) )] 0l s
(b -2 ( o e )3
; ; - (f @)L @)]dt)
0 (0w D+ Do -1 r2) e |
(42)
Vzelab.

Proof. By Theorem 13. m
We finish with Hilbert-Pachpatte left C-fractional inequalities:

Theorem 24 Letp,q>1: %—&—% =1, and vy > %, vy > 1%’ n; = [v;],i=1,2.

Let h; € C™ ([a;,b;],C), i = 1,2. Assume hEk”) (b;)) =0, k; =0,1,...,n; — 1;
1=1,2. Then

b b \hy (t1)] |ha (t2)] dtydts
(b1 t;)P(v1—D+1 (by—ty)2(r2—DF1Y =
p(p(vi—1)+1) q(q(va—1)+1) )

(b1 —a1) (b — az
I'(v1)T (v2

in particular when hy (tl) = f1 (21 (1)) 21 (t1) and ha (t2) := f2 (22 (t2)) 25 (t2)
as in 1. Introduction, with hgki) (b;))=0,k =0,1,..n; — 1; i = 1,2, we get:

/bl / 1 (21 (40)) 2 (021 (22 (£2)) 2 (1) dtadts _ (br — 1) (bs — )

HDzll—thL «([a1,61],C) ||DZ22_h2|| (43)

LP([a27b2]7C) ’

(b1 tl)p(’l D+1 (bz—tz)‘””’”“) - () (v2)
p(vi—1)+1) q(q(v2—1)+1)
D5 (F1 1 00) 2 )|, s g 1P82 (2 (2 (22)) 2 ), i
(44)

Proof. By Theorem 14. m

11
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