Right Complex Caputo fractional inequalities

George A. Anastassiou
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Here we establish several important right complex Caputo type fractional inequalities of the following kinds: Ostrowski's, Poincare's, Sobolev's, Opial's and Hilbert-Pachpatte's.

2010 Mathematics Subject Classification: 26D10, 26D15, 30A10. **Keywords and phrases:** Complex inequalities, fractional inequalities, right Caputo fractional derivative.

1 Introduction

Here we follow [3].

Suppose γ is a smooth path parametrized by z(t), $t \in [a,b]$ and f is a complex function which is continuous on γ . Put z(a) = u and z(b) = w with $u, w \in \mathbb{C}$. We define the integral of f on $\gamma_{u,w} = \gamma$ as

$$\int_{\gamma} f\left(z\right) dz = \int_{\gamma_{u,w}} f\left(z\right) dz := \int_{a}^{b} f\left(z\left(t\right)\right) z'\left(t\right) dt.$$

We observe that the actual choice of parametrization of γ does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose γ is parametrized by z(t), $t \in [a, b]$, which is differentiable on the intervals [a, c] and [c, b], then assuming that f is continuous on γ we define

$$\int_{\gamma_{u,w}} f(z) dz := \int_{\gamma_{u,v}} f(z) dz + \int_{\gamma_{v,w}} f(z) dz,$$

where v := z(c). This can be extended for a finite number of intervals. We also define the integral with respect to arc-length

$$\int_{\gamma_{u,w}} f(z) |dz| := \int_{a}^{b} f(z(t)) |z'(t)| dt$$

and the length of the curve γ is then

$$l\left(\gamma\right) = \int_{\gamma_{u,w}} \left| dz \right| := \int_{a}^{b} \left| z'\left(t\right) \right| dt,$$

where $|\cdot|$ is the complex absolute value.

Let f and g be holomorphic in G, and open domain and suppose $\gamma \subset G$ is a piecewise smooth path from z(a) = u to z(b) = w. Then we have the integration by parts formula

$$\int_{\gamma_{u,w}} f(z) g'(z) dz = f(w) g(w) - f(u) g(u) - \int_{\gamma_{u,w}} f'(z) g(z) dz. \quad (1)$$

We recall also the triangle inequality for the complex integral, namely

$$\left| \int_{\gamma} f(z) dz \right| \le \int_{\gamma} |f(z)| |dz| \le ||f||_{\gamma, \infty} l(\gamma), \tag{2}$$

where $\left\|f\right\|_{\gamma,\infty} := \sup_{z \in \gamma} |f\left(z\right)|$.

We also define the p-norm with $p \ge 1$ by

$$\|f\|_{\gamma,p} := \left(\int_{\gamma} |f\left(z\right)|^{p} |dz|\right)^{\frac{1}{p}}.$$

For p = 1 we have

$$\left\|f\right\|_{\gamma,1} := \int_{\mathbb{T}} \left|f\left(z\right)\right| \left|dz\right|.$$

If p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, then by Hölder's inequality we have

$$||f||_{\gamma,1} \le [l(\gamma)]^{\frac{1}{q}} ||f||_{\gamma,p}.$$
 (3)

We are inspired by the following extensions of Stekloff and Almansi inequalities to the complex integral:

Theorem 1 ([3]) Let f be analytic in G, a domain of complex numbers and suppose $\gamma \subset G$ is a smooth path parametrized by z(t), $t \in [a,b]$ from z(a) = u to z(b) = w and $z'(t) \neq 0$ for $t \in (a,b)$.

(i) If
$$\int_{\gamma} f(z) |dz| = 0$$
, then

$$\int_{\gamma} |f(z)|^{2} |dz| \le \frac{1}{\pi^{2}} l^{2} (\gamma) \int_{\gamma} |f'(z)|^{2} |dz|.$$
 (4)

(ii) In addition, if f(u) = f(w) = 0, then

$$\int_{\gamma} |f(z)|^2 |dz| \le \frac{1}{4\pi^2} l^2(\gamma) \int_{\gamma} |f'(z)|^2 |dz|.$$
 (5)

We are also inspired by complex Ostrowski type results:

Theorem 2 ([4]) Let $f: D \subseteq \mathbb{C} \to \mathbb{C}$ be an analytic function on the convex domain D with $z, x, y \in D$ and $\lambda \in \mathbb{C}$. Suppose $\gamma \subset D$ is a smooth path parametrized by z(t), $t \in [a,b]$ with z(a) = u and z(b) = w where $u, w \in D$. Then

$$\int_{\gamma} f(z) dz = \left[(1 - \lambda) f(x) + \lambda f(y) \right] (w - u) +$$

$$(1 - \lambda) \sum_{k=1}^{n} \frac{1}{(k+1)!} f^{(k)}(x) \left[(w - x)^{k+1} + (-1)^{k} (x - u)^{k+1} \right] +$$

$$\lambda \sum_{k=1}^{n} \frac{1}{(k+1)!} f^{(k)}(y) \left[(w - y)^{k+1} + (-1)^{k} (y - u)^{k+1} \right] + T_{n,\lambda}(\gamma, x, y),$$
(6)

where the remainder $T_{n,\lambda}(\gamma,x,y)$ is given by

$$T_{n,\lambda}(\gamma, x, y) := \frac{1}{n!} \left[(1 - \lambda) \int_{\gamma} (z - x)^{n+1} \left(\int_{0}^{1} f^{(n+1)} \left[(1 - s) x + sz \right] (1 - s)^{n} ds \right) dz + (-1)^{n+1} \lambda \int_{\gamma} (y - z)^{n+1} \left(\int_{0}^{1} f^{(n+1)} \left[(1 - s) z + sy \right] s^{n} ds \right) dz \right] = (7)$$

$$\frac{1}{n!} \left[(1 - \lambda) \int_{0}^{1} (1 - s)^{n} \left(\int_{\gamma} (z - x)^{n+1} f^{(n+1)} \left[(1 - s) x + sz \right] dz \right) ds + (-1)^{n+1} \lambda \int_{0}^{1} s^{n} \left(\int_{\gamma} (y - z)^{n+1} f^{(n+1)} \left[(1 - s) z + sy \right] dz \right) ds \right].$$

Estimations of the above remainder follow:

Theorem 3 ([4]) Let $f: D \subseteq \mathbb{C} \to \mathbb{C}$ be an analytic function on the convex domain D with $x, y \in D$ and $\lambda \in \mathbb{C}$. Suppose $\gamma \subset D$ is a smooth path parametrized by z(t), $t \in [a, b]$ with z(a) = u and z(b) = w where $u, w \in D$. Then we have the representation (6) and the remainder $T_{n,\lambda}(\gamma, x, y)$ satisfies the inequalities

$$|T_{n,\lambda}(\gamma, x, y)| \le \frac{1}{n!} \left[|1 - \lambda| \left| \int_{\gamma} |z - x|^{n+1} \left(\int_{0}^{1} \left| f^{(n+1)} \left[(1 - s) x + sz \right] \right| (1 - s)^{n} ds \right) |dz| \right] + |\lambda| \left| \int |y - z|^{n+1} \left(\int_{0}^{1} \left| f^{(n+1)} \left[(1 - s) z + sy \right] \right| s^{n} ds \right) |dz| \right| \right]$$
(8)

$$\leq \frac{1}{n!} \left| 1 - \lambda \right| \begin{cases} \frac{1}{n+1} \int_{\gamma} \left| z - x \right|^{n+1} \left(\max_{s \in [0,1]} \left| f^{(n+1)} \left[(1-s) \, x + sz \right] \right| \right) \left| dz \right| \\ \frac{1}{(qn+1)^{\frac{1}{p}}} \int_{\gamma} \left| z - x \right|^{n+1} \left(\int_{0}^{1} \left| f^{(n+1)} \left[(1-s) \, x + sz \right] \right|^{p} ds \right)^{\frac{1}{p}} \left| dz \right| \\ where \, p, q > 1 \, and \, \frac{1}{p} + \frac{1}{q} = 1 \\ \int_{\gamma} \left| z - x \right|^{n+1} \left(\int_{0}^{1} \left| f^{(n+1)} \left[(1-s) \, x + sz \right] \right| ds \right) \left| dz \right| \\ + \frac{1}{n!} \left| \lambda \right| \begin{cases} \frac{1}{n+1} \int_{\gamma} \left| y - z \right|^{n+1} \left(\max_{s \in [0,1]} \left| f^{(n+1)} \left[(1-s) \, z + sy \right] \right| \right) \left| dz \right| \\ \frac{1}{(qn+1)^{\frac{1}{p}}} \int_{\gamma} \left| y - z \right|^{n+1} \left(\int_{0}^{1} \left| f^{(n+1)} \left[(1-s) \, z + sy \right] \right| ds \right)^{\frac{1}{p}} \left| dz \right| \\ where \, p, q > 1 \, and \, \frac{1}{p} + \frac{1}{q} = 1 \\ \int_{\gamma} \left| y - z \right|^{n+1} \left(\int_{0}^{1} \left| f^{(n+1)} \left[(1-s) \, z + sy \right] \right| ds \right) \left| dz \right|, \end{cases}$$

and

$$\frac{1}{n!} \left[|1 - \lambda| \int_{0}^{1} (1 - s)^{n} \left(\int_{\gamma} |z - x|^{n+1} \left| f^{(n+1)} \left[(1 - s) x + sz \right] \right| |dz| \right) ds + \frac{1}{n!} \left[\int_{0}^{1} s^{n} \left(\int_{\gamma} |y - z|^{n+1} \left| f^{(n+1)} \left[(1 - s) x + sy \right] \right| |dz| \right) ds \right] \le$$

$$\frac{1}{n!} |1 - \lambda| \begin{cases} \int_{\gamma} |z - x|^{n+1} |dz| \int_{0}^{1} (1 - s)^{n} \left(\max_{z \in \gamma} \left| f^{(n+1)} \left[(1 - s) x + sz \right] \right| \right) ds \\ \left(\int_{\gamma} |z - x|^{(n+1)q} |dz| \right)^{\frac{1}{q}} \int_{0}^{1} (1 - s)^{n} \left(\int_{\gamma} \left| f^{(n+1)} \left[(1 - s) x + sz \right] \right|^{p} |dz| \right)^{\frac{1}{p}} ds \\ where p, q > 1 \text{ and } \frac{1}{p} + \frac{1}{q} = 1 \\ \max_{z \in \gamma} \left(|z - x|^{n+1} \right) \int_{0}^{1} (1 - s)^{n} \left(\int_{\gamma} \left| f^{(n+1)} \left[(1 - s) x + sz \right] \right| ds \right) |dz| \\ \left(\int_{\gamma} |z - y|^{n+1} |dz| \int_{0}^{1} s^{n} \left(\max_{z \in \gamma} \left| f^{(n+1)} \left[(1 - s) z + sy \right] \right| \right) ds \\ \left(\int_{\gamma} |z - y|^{(n+1)q} |dz| \right)^{\frac{1}{q}} \int_{0}^{1} s^{n} \left(\int_{\gamma} \left| f^{(n+1)} \left[(1 - s) z + sy \right] \right|^{p} |dz| \right)^{\frac{1}{p}} ds \\ where p, q > 1 \text{ and } \frac{1}{p} + \frac{1}{q} = 1 \\ \max_{z \in \gamma} \left(|z - y|^{n+1} \right) \int_{0}^{1} s^{n} \left(\int_{\gamma} \left| f^{(n+1)} \left[(1 - s) z + sy \right] \right| |dz| \right) ds. \end{cases}$$

In this article we utilize on $\mathbb C$ the results of [2] which are for general Banach space valued functions.

Mainly we give different cases of the right fractional \mathbb{C} -Ostrowski type inequality and we continue with the right fractional: \mathbb{C} -Poincaré like and Sobolev like inequalities.

We present an Opial type right \mathbb{C} -fractional inequality, and we finish with the Hilbert-Pachpatte right \mathbb{C} -fractional inequalities.

2 Background

In this section all integrals are of Bochner type. We need

Definition 4 (see [5]) A definition of the Hausdorff measure h_{α} goes as follows: if (T,d) is a metric space, $A \subseteq T$ and $\delta > 0$, let $\Lambda(A,\delta)$ be the set of all arbitrary collections $(C)_i$ of subsets of T, such that $A \subseteq \cup_i C_i$ and diam $(C_i) \leq \delta$ (diam = diameter) for every i. Now, for every $\alpha > 0$ define

$$h_{\alpha}^{\delta}(A) := \inf \left\{ \sum \left(diam C_i \right)^{\alpha} | \left(C_i \right)_i \in \Lambda(A, \delta) \right\}.$$
 (10)

Then there exists $\lim_{\delta \to 0} h_{\alpha}^{\delta}(A) = \sup_{\delta > 0} h_{\alpha}^{\delta}(A)$, and $h_{\alpha}(A) := \lim_{\delta \to 0} h_{\alpha}^{\delta}(A)$ gives an outer measure on the power set $\mathcal{P}(T)$, which is countably additive on the σ -field of all Borel subsets of T. If $T = \mathbb{R}^n$, then the Hausdorff measure h_n , restricted to the σ -field of the Borel subsets of \mathbb{R}^n , equals the Lebesgue measure on \mathbb{R}^n up to a constant multiple. In particular, $h_1(C) = \mu(C)$ for every Borel set $C \subseteq \mathbb{R}$, where μ is the Lebesgue measure.

Definition 5 ([2]) Let $[a,b] \subset \mathbb{R}$, $(X,\|\cdot\|)$ be a Banach space, $\alpha > 0$, $m := \lceil \alpha \rceil$, $(\lceil \cdot \rceil]$ the ceiling of the number). We assume that $f^{(m)} \in L_1([a,b],X)$, where $f : [a,b] \to X$. We call the Caputo-Bochner right fractional derivative of order α :

$$\left(D_{b-}^{\alpha}f\right)(x) := \frac{\left(-1\right)^{m}}{\Gamma\left(m-\alpha\right)} \int_{x}^{b} \left(J-x\right)^{m-\alpha-1} f^{(m)}\left(J\right) dJ, \quad \forall \ x \in [a,b], \quad (11)$$

where $f^{(m)}$ is the ordinary X-valued derivative, defined similarly to the numerical one.

We observe that $D_{b-}^{m}f\left(x\right)=\left(-1\right)^{m}f^{\left(m\right)}\left(x\right)$, for $m\in\mathbb{N}$, and $D_{b-}^{0}f\left(x\right)=f\left(x\right)$.

By [2] $\left(D_{b-}^{\alpha}f\right)(x)$ exists almost everywhere on [a,b] and $\left(D_{b-}^{\alpha}f\right)\in L_{1}\left(\left[a,b\right],X\right)$. If $\left\|f^{(m)}\right\|_{L_{\infty}\left(\left[a,b\right],X\right)}<\infty$, and $\alpha\notin\mathbb{N}$, then by [2], $D_{b-}^{\alpha}f\in C\left(\left[a,b\right],X\right)$, hence $\left\|D_{b-}^{\alpha}f\right\|\in C\left(\left[a,b\right]\right)$.

We need the right-fractional Taylor's formula:

Theorem 6 ([2]) Let $[a,b] \subset \mathbb{R}$, X be a Banach space, $\alpha > 0$, $m = \lceil \alpha \rceil$, $f \in C^{m-1}([a,b],X)$. Set

$$F_x(t) := \sum_{i=0}^{m-1} \frac{(x-t)^i}{i!} f^{(i)}(t), \quad \forall \ t \in [x,b],$$
 (12)

where $x \in [a, b]$.

Assume that $f^{(m)}$ exists outside a μ -null Borel set $B_x \subseteq [x, b]$, such that

$$h_1(F_x(B_x)) = 0, \ \forall \ x \in [a, b].$$
 (13)

We also assume that $f^{(m)} \in L_1([a,b],X)$. Then

$$f(x) = \sum_{i=0}^{m-1} \frac{(x-b)^i}{i!} f^{(i)}(b) + \frac{1}{\Gamma(\alpha)} \int_x^b (z-x)^{\alpha-1} \left(D_{b-}^{\alpha} f\right)(z) dz, \tag{14}$$

 $\forall x \in [a, b]$.

Next we mention Ostrowski type inequalities at right fractional level for Banach valued functions. See also [1].

Theorem 7 ([2]) Let $\alpha > 0$, $m = \lceil \alpha \rceil$. Here all as in Theorem 6. Assume $f^{(k)}(b) = 0$, k = 1, ..., m - 1, and $D_{b-}^{\alpha} f \in L_{\infty}([a, b], X)$. Then

$$\left\| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f(b) \right\| \leq \frac{\left\| D_{b-}^{\alpha} f \right\|_{L_{\infty}([a,b],X)}}{\Gamma(\alpha+2)} (b-a)^{\alpha}. \tag{15}$$

We also give

Theorem 8 ([2]) Let $\alpha \geq 1$, $m = \lceil \alpha \rceil$. Here all as in Theorem 6. Assume that $f^{(k)}(b) = 0$, k = 1, ..., m - 1, and $D_{b-}^{\alpha} f \in L_1([a, b], X)$. Then

$$\left\| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f(b) \right\| \le \frac{\left\| D_{b-}^{\alpha} f \right\|_{L_{1}([a,b],X)}}{\Gamma(\alpha+1)} (b-a)^{\alpha-1}.$$
 (16)

We mention also an L_p abstract Ostrowski type inequality:

Theorem 9 ([2]) Let p,q > 1: $\frac{1}{p} + \frac{1}{q} = 1$, $\alpha > \frac{1}{q}$, $m = \lceil \alpha \rceil$. Here all as in Theorem 6. Assume that $f^{(k)}(b) = 0$, k = 1, ..., m - 1, and $D_{b-}^{\alpha} f \in L_q([a,b],X)$. Then

$$\left\| \frac{1}{b-a} \int_{a}^{b} f\left(x\right) dx - f\left(b\right) \right\| \leq \frac{\left\| D_{b-}^{\alpha} f \right\|_{L_{q}\left([a,b],X\right)}}{\Gamma\left(\alpha\right) \left(p\left(\alpha-1\right)+1\right)^{\frac{1}{p}} \left(\alpha+\frac{1}{p}\right)} \left(b-a\right)^{\alpha-\frac{1}{q}}.$$

$$(17)$$

It follows

Corollary 10 ([2]) Let $\alpha > \frac{1}{2}$, $m = \lceil \alpha \rceil$. All as in Theorem 6. Assume $f^{(k)}(b) = 0$, k = 1, ..., m - 1, $D_{b-}^{\alpha} f \in L_2([a, b], X)$. Then

$$\left\| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - f(b) \right\| \leq \frac{\left\| D_{b-}^{\alpha} f \right\|_{L_{2}([a,b],X)}}{\Gamma(\alpha) \left(\sqrt{2\alpha - 1} \right) \left(\alpha + \frac{1}{2} \right)} \left(b - a \right)^{\alpha - \frac{1}{2}}. \tag{18}$$

We continue with a Poincaré like right fractional inequality:

Theorem 11 ([2]) Let p, q > 1: $\frac{1}{p} + \frac{1}{q} = 1$, and $\alpha > \frac{1}{q}$, $m = \lceil \alpha \rceil$. Here all as in Theorem 6. Assume that $f^{(k)}(b) = 0$, k = 0, 1, ..., m - 1, and $D_{b-}^{\alpha} f \in L_q([a, b], X)$, where X is a Banach space. Then

$$||f||_{L_{q}([a,b],X)} \le \frac{(b-a)^{\alpha} ||D_{b-}^{\alpha}f||_{L_{q}([a,b],X)}}{\Gamma(\alpha) (p(\alpha-1)+1)^{\frac{1}{p}} (q\alpha)^{\frac{1}{q}}}.$$
(19)

Next follows a right Sobolev like fractional inequality:

Theorem 12 ([2]) All as in the last Theorem 11. Let r > 0. Then

$$||f||_{L_{r}([a,b],X)} \leq \frac{(b-a)^{\alpha-\frac{1}{q}+\frac{1}{r}} ||D_{b-}^{\alpha}f||_{L_{q}([a,b],X)}}{\Gamma(\alpha) (p(\alpha-1)+1)^{\frac{1}{p}} \left(r\left(\alpha-\frac{1}{q}\right)+1\right)^{\frac{1}{r}}}.$$
 (20)

We also mention the following Opial type right fractional inequality:

Theorem 13 ([2]) Let p,q > 1: $\frac{1}{p} + \frac{1}{q} = 1$, and $\alpha > \frac{1}{q}$, $m := \lceil \alpha \rceil$. Let $[a,b] \subset \mathbb{R}$, X a Banach space, and $f \in C^{m-1}([a,b],X)$. Set

$$F_{x}(t) := \sum_{i=0}^{m-1} \frac{(x-t)^{i}}{i!} f^{(i)}(t), \quad \forall \ t \in [x,b], \ where \ x \in [a,b].$$
 (21)

Assume that $f^{(m)}$ exists outside a μ -null Borel set $B_x \subseteq [x, b]$, such that

$$h_1(F_x(B_x)) = 0, \ \forall \ x \in [a, b].$$
 (22)

We assume that $f^{(m)} \in L_{\infty}([a,b],X)$. Assume also that $f^{(k)}(b) = 0$, k = 0,1,...,m-1. Then

$$\int_{x}^{b} \|f(w)\| \| (D_{b-}^{\alpha} f)(w) \| dw \leq \frac{(b-x)^{\alpha-1+\frac{2}{p}}}{2^{\frac{1}{q}} \Gamma(\alpha) ((p(\alpha-1)+1) (p(\alpha-1)+2))^{\frac{1}{p}}} \left(\int_{x}^{b} \| (D_{b-}^{\alpha} f)(z) \|^{q} dz \right)^{\frac{2}{q}}, \quad (23) \forall x \in [a,b].$$

Next we describe an abstract Hilbert-Pachpatte right fractional inequality:

Theorem 14 ([2]) Let p,q > 1: $\frac{1}{p} + \frac{1}{q} = 1$, and $\alpha_1 > \frac{1}{q}$, $\alpha_2 > \frac{1}{p}$, $m_i := \lceil \alpha_i \rceil$, i = 1, 2. Here $[a_i, b_i] \subset \mathbb{R}$, i = 1, 2; X is a Banach space. Let $f_i \in C^{m_i-1}\left([a_i, b_i], X\right)$, i = 1, 2. Set

$$F_{x_i}(t_i) := \sum_{i=0}^{m_i-1} \frac{(x_i - t_i)^{j_i}}{j_i!} f_i^{(j_i)}(t_i), \qquad (24)$$

 $\forall t_i \in [x_i, b_i], where \ x_i \in [a_i, b_i]; i = 1, 2.$ Assume that $f_i^{(m_i)}$ exists outside a μ -null Borel set $B_{x_i} \subseteq [x_i, b_i],$ such that

$$h_1(F_{x_i}(B_{x_i})) = 0, \ \forall \ x_i \in [a_i, b_i]; \ i = 1, 2.$$
 (25)

We also assume that $f_i^{(m_i)} \in L_1([a_i, b_i], X)$, and

$$f_i^{(k_i)}(b_i) = 0, \quad k_i = 0, 1, ..., m_i - 1; \quad i = 1, 2,$$
 (26)

and

$$(D_{b_1}^{\alpha_1} f_1) \in L_q([a_1, b_1], X), \quad (D_{b_2}^{\alpha_2} f_2) \in L_p([a_2, b_2], X).$$
 (27)

Then

$$\int_{a_{1}}^{b_{1}}\int_{a_{2}}^{b_{2}}\frac{\left\|f_{1}\left(x_{1}\right)\right\|\left\|f_{2}\left(x_{2}\right)\right\|dx_{1}dx_{2}}{\left(\frac{\left(b_{1}-x_{1}\right)^{p\left(\alpha_{1}-1\right)+1}}{p\left(p\left(\alpha_{1}-1\right)+1\right)}+\frac{\left(b_{2}-x_{2}\right)^{q\left(\alpha_{2}-1\right)+1}}{q\left(q\left(\alpha_{2}-1\right)+1\right)}\right)}\leq$$

$$\frac{(b_1 - a_1)(b_2 - a_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \|D_{b_1}^{\alpha_1} f_1\|_{L_q([a_1, b_1], X)} \|D_{b_2}^{\alpha_2} f_2\|_{L_p([a_2, b_2], X)}.$$
(28)

3 Main Results

We need a special case of Definition 5 over \mathbb{C} .

Definition 15 Let $[a,b] \subset \mathbb{R}$, $\nu > 0$; $n := \lceil \nu \rceil \in \mathbb{N}$, $\lceil \cdot \rceil$ is the ceiling of the number and $f \in C^n([a,b],\mathbb{C})$. We call Caputo-Complex right fractional derivative of order ν :

$$\left(D_{b-}^{\nu}f\right)(x) := \frac{\left(-1\right)^{n}}{\Gamma\left(n-\nu\right)} \int_{x}^{b} \left(\lambda - x\right)^{n-\nu-1} f^{(n)}\left(\lambda\right) d\lambda, \quad \forall \ x \in [a,b], \tag{29}$$

where the derivatives $f', ... f^{(n)}$ are defined as the numerical derivative.

If $\nu \in \mathbb{N}$, we set $D_{b-}^{\nu}f := (-1)^{\nu}f^{(\nu)}$ the ordinary \mathbb{C} -valued derivative and also $D_{b-}^0f := f$.

Notice here (by [2]) that $D_{b-}^{\nu} f \in C([a,b],\mathbb{C})$.

We give the following right-fractional C-Taylor's formula:

Theorem 16 Let $h \in C^n([a,b],\mathbb{C}), n = [\nu], \nu \geq 0$. Then

$$h(t) = \sum_{i=0}^{n-1} \frac{(t-b)^i}{i!} h^{(i)}(b) + \frac{1}{\Gamma(\nu)} \int_t^b (\lambda - t)^{\nu-1} (D_{b-}^{\nu} h)(\lambda) d\lambda, \tag{30}$$

 $\forall t \in [a,b]$

in particular when $h(t) := f(z(t)) z'(t) \in C^n([a,b], \mathbb{C})$, where $f(z), z(t), t \in [a,b]$ are as in 1. Introduction, it holds,

$$f(z(t))z'(t) = \sum_{i=0}^{n-1} \frac{(t-b)^i}{i!} (f(z(b))z'(b))^{(i)} +$$

$$\frac{1}{\Gamma(\nu)} \int_{t}^{b} (\lambda - t)^{\nu - 1} \left(D_{b-}^{\nu} f(z(\cdot)) z'(\cdot) \right) (\lambda) d\lambda, \tag{31}$$

 $\forall t \in [a, b]$.

Proof. By Theorem 6. ■

It follows a right fractional C-Ostroswski type inequality

Theorem 17 Let $n \in \mathbb{N}$ and $h \in C^n([a,b],\mathbb{C})$, where $[a,b] \subset \mathbb{R}$, and let $\nu > 0$: $n = \lceil \nu \rceil$. Assume that $h^{(i)}(b) = 0$, i = 1, ..., n - 1. Then

$$\left| \frac{1}{b-a} \int_{a}^{b} h(t) dt - h(b) \right| \leq \frac{\left\| D_{b-}^{\nu} h \right\|_{\infty, [a,b]}}{\Gamma(\nu+2)} (b-a)^{\nu}, \tag{32}$$

in particular when $h(t) := f(z(t))z'(t) \in C^n([a,b],\mathbb{C})$, where f(z), z(t), $t \in [a,b]$ are as in 1. Introduction, and $(f(z(t))z'(t))^{(i)}|_{t=b} = 0$, i = 1,...n-1, we get

$$\left| \frac{1}{b-a} \int_{\gamma_{u,w}} f(z) dz - f(w) z'(b) \right| = \left| \frac{1}{b-a} \int_{a}^{b} f(z(t)) z'(t) dt - f(z(b)) z'(b) \right|$$

$$\leq \frac{\left\| D_{b-}^{\nu} f(z(t)) z'(t) \right\|_{\infty,[a,b]}}{\Gamma(\nu+2)} (b-a)^{\nu}. \tag{33}$$

Proof. By Theorem 7.

The corresponding \mathbb{C} -Ostrowski type L_p inequality follows:

Theorem 18 Let p,q > 1: $\frac{1}{p} + \frac{1}{q} = 1$, and $\nu > \frac{1}{q}$, $n = \lceil \nu \rceil$. Here $h \in C^n([a,b],\mathbb{C})$. Assume that $h^{(i)}(b) = 0$, i = 1,...,n-1. Then

$$\left| \frac{1}{b-a} \int_{a}^{b} h(t) dt - h(b) \right| \leq \frac{\left\| D_{b-}^{\nu} h \right\|_{L_{q}([a,b],\mathbb{C})}}{\Gamma(\nu) \left(p(\nu-1) + 1 \right)^{\frac{1}{p}} \left(\nu + \frac{1}{p} \right)} (b-a)^{\nu - \frac{1}{q}}, \quad (34)$$

in particular when $h(t) := f(z(t))z'(t) \in C^n([a,b],\mathbb{C})$, where f(z), z(t), $t \in [a,b]$ are as in 1. Introduction, and $(f(z(t))z'(t))^{(i)}|_{t=b} = 0$, i = 1,...n-1, we get:

$$\left| \frac{1}{b-a} \int_{\gamma_{u,w}} f(z) dz - f(w) z'(b) \right| = \left| \frac{1}{b-a} \int_{a}^{b} f(z(t)) z'(t) dt - f(z(b)) z'(b) \right|$$

$$\leq \frac{\left\|D_{b-}^{\nu}\left(f\left(z\left(t\right)\right)z'\left(t\right)\right)\right\|_{L_{q}([a,b],\mathbb{C})}}{\Gamma\left(\nu\right)\left(p\left(\nu-1\right)+1\right)^{\frac{1}{p}}\left(\nu+\frac{1}{p}\right)}\left(b-a\right)^{\nu-\frac{1}{q}}.$$
(35)

Proof. By Theorem 9.

It follows

Corollary 19 (to Theorem 18, case of p = q = 2). We have that

$$\left| \frac{1}{b-a} \int_{\gamma_{u,w}} f(z) dz - f(w) z'(b) \right| \leq \frac{\left\| D_{b-}^{\nu} \left(f(z(t)) z'(t) \right) \right\|_{L_{2}([a,b],\mathbb{C})}}{\Gamma(\nu) \sqrt{2\nu - 1} \left(\nu + \frac{1}{2} \right)} \left(b - a \right)^{\nu - \frac{1}{2}}.$$
(36)

We continue with an L_1 fractional \mathbb{C} -Ostrowski type inequality:

Theorem 20 Let $\nu \geq 1$, $n = \lceil \nu \rceil$. Assume that $h(t) := f(z(t))z'(t) \in C^n([a,b],\mathbb{C})$, where $f(z), z(t), t \in [a,b]$ are as in 1. Introduction, and such that $h^{(i)}(b) = 0$, i = 1, ..., n-1. Then

$$\left| \frac{1}{b-a} \int_{\gamma_{u,w}} f(z) dz - f(w) z'(b) \right| \leq \frac{\left\| D_{b-}^{\nu} \left(f(z(t)) z'(t) \right) \right\|_{L_{1}([a,b],\mathbb{C})}}{\Gamma(\nu+1)} (b-a)^{\nu-1}.$$
(37)

Proof. By Theorem 8.

It follows a Poincaré like C-fractional inequality:

Theorem 21 Let p,q > 1: $\frac{1}{p} + \frac{1}{q} = 1$, and $\nu > \frac{1}{q}$, $n = \lceil \nu \rceil$. Let $h \in C^n([a,b],\mathbb{C})$. Assume that $h^{(i)}(b) = 0$, i = 1,...,n-1. Then

$$||h||_{L_q([a,b],\mathbb{C})} \le \frac{(b-a)^{\nu} ||D_{b-}^{\nu}h||_{L_q([a,b],\mathbb{C})}}{\Gamma(\nu) (p(\nu-1)+1)^{\frac{1}{p}} (q\nu)^{\frac{1}{q}}},$$
(38)

in particular when $h(t) := f(z(t))z'(t) \in C^n([a,b],\mathbb{C})$, where f(z), z(t), $t \in [a,b]$ are as in 1. Introduction, and $(f(z(t))z'(t))^{(i)}|_{t=b} = 0$, i = 1,...n-1, we get:

$$\|f(z(t))z'(t)\|_{L_{q}([a,b],\mathbb{C})} \leq \frac{(b-a)^{\nu}}{\Gamma(\nu)(p(\nu-1)+1)^{\frac{1}{p}}(q\nu)^{\frac{1}{q}}} \|D_{b-}^{\nu}(f(z(t))z'(t))\|_{L_{q}([a,b],\mathbb{C})}.$$
(39)

Proof. By Theorem 11.

The corresponding Sobolev like inequality follows:

Theorem 22 All as in Theorem 21. Let r > 0. Then

$$||f(z(t))z'(t)||_{L_{\sigma}([a,b],\mathbb{C})} \le$$

$$\frac{\left(b-a\right)^{\nu-\frac{1}{q}+\frac{1}{r}}}{\Gamma\left(\nu\right)\left(p\left(\nu-1\right)+1\right)^{\frac{1}{p}}\left(r\left(\nu-\frac{1}{q}\right)+1\right)^{\frac{1}{r}}}\left\|D_{b-}^{\nu}\left(f\left(z\left(t\right)\right)z'\left(t\right)\right)\right\|_{L_{q}\left([a,b],\mathbb{C}\right)}.\tag{40}$$

Proof. By Theorem 12. ■

We continue with an Opial type C-fractional inequality

Theorem 23 Let $p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1$, and $\nu > \frac{1}{q}$, $n := \lceil \nu \rceil$, $h \in C^n([a, b], \mathbb{C})$. Assume $h^{(k)}(b) = 0$, k = 0, 1, ..., n - 1. Then

$$\int_{x}^{b}\left|h\left(t\right)\right|\left|\left(D_{b-}^{\nu}h\right)\left(t\right)\right|dt\leq$$

$$\frac{(b-x)^{\nu-1+\frac{2}{p}}}{2^{\frac{1}{q}}\Gamma(\nu)\left((p(\nu-1)+1)\left(p(\nu-1)+2\right)\right)^{\frac{1}{p}}}\left(\int_{x}^{b}\left|\left(D_{b-}^{\nu}h\right)(t)\right|^{q}dt\right)^{\frac{2}{q}},\qquad(41)$$

 $\forall x \in [a, b],$

in particular when $h(t) := f(z(t)) z'(t) \in C^n([a,b], \mathbb{C})$, where $f(z), z(t), t \in [a,b]$ are as in 1. Introduction, and $(f(z(t)) z'(t))^{(i)}|_{t=b} = 0, i = 1,...n-1$, we get:

$$\int_{x}^{b}\left|f\left(z\left(t\right)\right)\right|\left|\left(D_{b-}^{\nu}\left(f\left(z\left(t\right)\right)z'\left(t\right)\right)\right)\right|\left|z'\left(t\right)\right|dt\leq$$

$$\frac{(b-x)^{\nu-1+\frac{2}{p}}}{2^{\frac{1}{q}}\Gamma(\nu)\left((p(\nu-1)+1)\left(p(\nu-1)+2\right)\right)^{\frac{1}{p}}}\left(\int_{x}^{b}\left|D_{b-}^{\nu}\left(f(z(t))z'(t)\right)\right|^{q}dt\right)^{\frac{2}{q}},\tag{42}$$

 $\forall x \in [a, b]$.

Proof. By Theorem 13. ■

We finish with Hilbert-Pachpatte left C-fractional inequalities:

Theorem 24 Let p, q > 1: $\frac{1}{p} + \frac{1}{q} = 1$, and $\nu_1 > \frac{1}{q}$, $\nu_2 > \frac{1}{p}$, $n_i := \lceil \nu_i \rceil$, i = 1, 2. Let $h_i \in C^{n_i}([a_i, b_i], \mathbb{C})$, i = 1, 2. Assume $h_i^{(k_i)}(b_i) = 0$, $k_i = 0, 1, ..., n_i - 1$; i = 1, 2. Then

$$\int_{a_{1}}^{b_{1}}\int_{a_{2}}^{b_{2}}\frac{\left|h_{1}\left(t_{1}\right)\right|\left|h_{2}\left(t_{2}\right)\right|dt_{1}dt_{2}}{\left(\frac{\left(b_{1}-t_{1}\right)^{p\left(\nu_{1}-1\right)+1}}{p\left(p\left(\nu_{1}-1\right)+1\right)}+\frac{\left(b_{2}-t_{2}\right)^{q\left(\nu_{2}-1\right)+1}}{q\left(q\left(\nu_{2}-1\right)+1\right)}\right)}\leq$$

$$\frac{(b_1 - a_1)(b_2 - a_2)}{\Gamma(\nu_1)\Gamma(\nu_2)} \|D_{b_1}^{\nu_1} h_1\|_{L_q([a_1, b_1], \mathbb{C})} \|D_{b_2}^{\nu_2} h_2\|_{L_p([a_2, b_2], \mathbb{C})}, \qquad (43)$$

in particular when $h_1(t_1) := f_1(z_1(t_1)) z_1'(t_1)$ and $h_2(t_2) := f_2(z_2(t_2)) z_2'(t_2)$ as in 1. Introduction, with $h_i^{(k_i)}(b_i) = 0$, $k_i = 0, 1, ..., n_i - 1$; i = 1, 2, we get:

$$\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \frac{|f_{1}(z_{1}(t_{1})) z'_{1}(t_{1})| |f_{2}(z_{2}(t_{2})) z'_{2}(t_{2})| dt_{1} dt_{2}}{\left(\frac{(b_{1}-t_{1})^{p(\nu_{1}-1)+1}}{p(p(\nu_{1}-1)+1)} + \frac{(b_{2}-t_{2})^{q(\nu_{2}-1)+1}}{q(q(\nu_{2}-1)+1)}\right)} \leq \frac{(b_{1}-a_{1}) (b_{2}-a_{2})}{\Gamma(\nu_{1}) \Gamma(\nu_{2})}.$$

$$\left\|D_{b_{1}-}^{\nu_{1}}\left(f_{1}\left(z_{1}\left(t_{1}\right)\right)z_{1}'\left(t_{1}\right)\right)\right\|_{L_{q}\left(\left[a_{1},b_{1}\right],\mathbb{C}\right)}\left\|D_{b_{2}-}^{\nu_{2}}\left(f_{2}\left(z_{2}\left(t_{2}\right)\right)z_{2}'\left(t_{2}\right)\right)\right\|_{L_{p}\left(\left[a_{2},b_{2}\right],\mathbb{C}\right)}.\tag{44}$$

Proof. By Theorem 14. ■

References

- [1] G. Anastassiou, Advances on fractional inequalities, Springer, New York, 2011.
- [2] G. Anastassiou, Strong right fractional calculus for Banach space valued functions, Revista Proyecciones, 36(1) (2017), 149-186.
- [3] S.S. Dragomir, Extensions of Stekloff and Almansi inequalities to the complex integral, RGMIA Res. Rep. Coll. 22 (2019), Art 10, 10 pp., rgmia.org/v22.php.
- [4] S.S. Dragomir, Two points Ostrowski type rules for approximating the integral of analytic complex functions on paths from convex domains, RGMIA Res. Rep. Coll. 22 (2019), Art, 14, 16 pp; rgmia.org/v22.php.
- [5] C. Volintiru, A proof of the fundamental theorem of Calculus using Hausdorff measures, Real Analysis Exchange, 26 (1), 2000/2001, pp. 381-390.