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Abstract

Here we present some important mixed generalized fractional com-
plex analytic inequalities of the following kinds: Polya’s, Ostrowski’s and
Poincaré’s.
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1 Introduction

Here we follow [5].

Suppose 7 is a smooth path parametrized by z(t), ¢ € [a,b] and f is a
complex function which is continuous on . Put 2z (a) = w and z (b) = w with
u,w € C. We define the integral of f on v, , = as

[f@a= [ e= [ e o

We observe that the actual choice of parametrization of v does not matter.
This definition immediately extends to paths that are piecewise smooth.

Suppose 7 is parametrized by z (t), t € [a,b], which is differentiable on the

intervals [a, c] and [e, b], then assuming that f is continuous on v we define

(2)dz := (2)dz +/ f(2)dz,

v, w

Yau,w

where v := z(¢). This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

b
£ (2)|dz] == / £z (®)]2 ()] dt
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and the length of the curve + is then

1) = / e / 1 @)l

Let f and g be holomorphic in G, and open domain and suppose v C G
is a piecewise smooth path from z(a) = u to z(b) = w. Then we have the
integration by parts formula

F(2) g () dz = f (w)g (w) — f (u) g (u) - / f (g de (1)

Yu,w Yu,w

We recall also the triangle inequality for the complex integral, namely

/Vf(z)dz

where || f[|,, o, = sup |f (2)]-
z€y
We also define the p-norm with p > 1 by

11, = ([y )P |dz|>‘l" .

1= / F(2)]|dz].

If p,q > 1 with % + % = 1, then by Holder’s inequality we have

< / If )1zl < flly,00 L (V) (2)

For p = 1 we have

I/

Iy < O IAL, -

Motivations to our work follow:
We mention the following Wirtinger type inequality for complex functions:

Theorem 1 (/5]) Let f be analytic in G, a domain of complex numbers and
suppose v C G is a smooth path parametrized by z (t), t € [a,b] from z(a) = u
to z(b) = w and 2’ (t) #0 fort € (a,b).

(i) If f (u) = f (w) =0, then

Ju@rie < e [ 15 e, Q
v 8l
The equality holds in (3) iff

f(v) = Ksin {W}, KeC, (4)

where v =z (t), t € [a,b] and | (yy.) = fat |2' (s)]ds.



(it) If f (u) =0, then
/If(z)l2 |dz| < %12 (7)/|f’ (2)|? |d=|. (5)

~

The equality holds in (5) iff

f(v) = Ksin {W} K eC, (6)

where v =z (t), t € [a,b].
We mention some complex trapezoid type inequalities:

Proposition 2 ([5]) Let g be analytic in G, a domain of complex numbers and
suppose v C G is a smooth path parametrized by z (t), t € [a,b] from z (a) = u
to z(b) =w, w#u and 2’ (t) # 0 fort € (a,b). Then

- Ag<z)dz_9<”);9<w)\g

w—u

1) (1 :
T |w — ul (l(’y)[{ ) : (7)

Proposition 3 ([5]) Let g be analytic in G, a domain of complex numbers and
suppose v C G is a smooth path parametrized by z (t), t € [a,b] from z(a) = u
to z(b) = w, w# w and 2’ (t) #0 fort € (a,b). Ifu+w—2z € G forz €7,

then
@/g@>dzg<“>;9<w>‘g

217rw—u< /' g (utw=2) IdZI)%, (8)

_ g(x)g(utw—z)
2

(w) —g (W[

(=)~ -

where g/(;) : , 2 €.

In this article we utilize on C the results of [4] which are for general Banach
space valued functions.

We give mixed fractional: C-Polya type integral inequality and C-Ostrowski
type integral inequality. We finish with right and left fractional C-Poincaré like
inequalities.

2 Background

Here C ([a,b],X) stands for the space of continuous functions from [a, b] into
X, where (X, ]|-]|) is a Banach space.



All integrals here are of Bochner type ([6]). By [2], we have that: if f €
C ([a,b],X), then f € Ly ([a,b],X) and f € Ly ([a,b],X). Derivatives for
vector valued functions are defined according to [7], p. 83, similar to numerical
ones.

‘We need

Definition 4 ([{]) Let f € C ([a,b], X), where X is a Banach space. Letv > 0,
we define the right Riemann-Liowville fractional Bochner integral operator

(T2 f) () = ﬁ

where I is the gamma function.

b
/ (z—2)"" ' f(2)dz, Vx€lab], (9)

In [3], we have proved that
(1) € C (la,b]. X)..
Furthermore in [3], we have proved that
FIE = T = T,

for any pu,v > 0; any f € C ([a,b], X).
We need

Definition 5 ([4]) Let v > 0, n := [v], where [] is the integral part, « = v —n,
0 <a<1,v¢N. Define the subspace of functions

Cy (fa,b], X) := {f € C" ([a,0], X) : L= f ™) € €' (la,B], X) } . (10)

Define the Banach space valued right generalized v-fractional derivative of f
over [a,b] as
!/

Dy f = (1" (52 ) (11)

Notice that

b
JIme ) (4) = ﬁ / (2= 2)" F™ () dz (12)
ezists for f € CY_ ([a,b],X), and
o n—1 b
(Dg_f) (CU) = Ig(ll)—oz)c;l],‘/ (z — (t)ia f(n) (z) dz. (13)
Le. - ,
O41) 0= e yrmyas [, o A s

IfveN, thena=0,n=v, and

(Dy_f) (@) = (Dy_f) (@) = (=1)" /") (2). (15)
Notice that Dy_f € C ([a,b],X).



We mention the following right fractional Taylor’s formula.

Theorem 6 ([4]/) Let f € C¢_([a,b],X), v >0, n:= [v]. Then
1) If v > 1, we get

n—1 (k)
Fa) =S Gy (D) @), Vel (16)

2)If0<v <1, we get
f(x)=J_Dy_f(z), Yac€lab].
We have that

b
JV DY f(x) = sz/ (z—x)" ' (Dy_f) (2)dz, ¥ € l[ab].

Definition 7 ([{]) Let f € C ([a,b],X). Let v > 0, we define the left Riemann-
Liowville fractional Bochner integral operator

TV F) (@) = ﬁ /m (@—2)"" f(2)dz, Vaelal]. (17)

In [2], we have proved that
(Jaf) € C([a,0], X).
Furthermore in [2], we have proved that
T i f =T = JiTL S (18)
Vou,v>0VfeC((ab,X).

Definition 8 (/4]) Let v >0, n:=[v], a =v—n, 0 < a <1, v ¢ N. Define
the subspace of functions

Cy ([a,b], X) = {1 € €™ (la,b], X) s 7o € € (0, 8], X) | (19)

Define the Banach space valued left generalized v-fractional derivative of f over
[a,b] as

(D1f) = () (20)
Notice that
B @) = e [ e 0 s (21)
exists for f € C (Ja,b], X), and
(DLN @) = g | (0= 1 () (22)



Le.
DL @) = e [ @ @ (2)
IfveN, thena =0, n=v, and
(D21) () = (D) (&) = £ ). (21)
Notice that D* f € C ([a,0] , X).

We mention the following left fractional Taylor’s formula.

Theorem 9 ([4]) Let f € C¥ ([a,b],X), v >0, n:=[v]. Then
1) If v > 1, we get

n—1 (k) a
F@) =S @ o D @), Ve (@)
k=0 ’

2)If0<v <1, we get
fx)=JDgf(x), Vz€lab]. (26)
We have that

KDL @) = s [ - i s Yoelat. )

We mention the following fractional Polya type integral inequality without
any boundary conditions, see also [1], p. 4.

Theorem 10 ([{/) Let 0 < v < 1, f € C([a,b],X). Assume that f €
7 ([a. %52, X) and f € Gy ([23%, J X). Set
M (£) = max { 1Dl fo, o) IDF oo fose g} 29)
Then
©) dx </ I @)l de < M (/) (b(w););ly (29)

Inequality (29) is sharp, namely it is attained by
%
(x—a) i, z€[a, %],
«(z) = » , O<v<l, 30
fe(@) {(b—m)?,xe[abb] (30)
Tex |71
Clearly here non zero constant vector function f are excluded.

We also mention the following fractional Ostrowski type inequality, see also
[1], pp. 379-381.



Theorem 11 ([4]) Let v > 1, n = [v], f € C([a,b],X), zo € [a,b]. Assume
that f|[aw0 € Oy _([a, 0], X), flizo,p) € C¥, ([70,0], X), and f@® (xg) =0, for
i=1,....,n— 1, which is void when 1 < v < 2. Then

b
[ F@ s f )

1
Sh-aTw+2)

{102, Al g @0 = @ 4 102, £l gy 0 = 20) | <
1
(IO (HHD I Mo ooy - 1PZo F11]] oo [xo,b]>'

(b= 20) " + (w0 — )] < (31)

(b—a)”

s (1102, -l oy 11250 W go1) Twr2)

We continue with a right fractional Poincaré like inequality:
Theorem 12 ([4]) Let p,q > 1 : 7—i—7 =1 a> %, m = [a]. Let f €
Cs ([a,b], X). Assume that f*) (b )—O k—O 1,...,m—1, when a > 1. Then
(b—a) HDl?—fHLq([a,b],X)

11, (e, x) < (32)

T (a) (p(a—1)+1)% (qa)7

We finally mention a Poincaré like left fractional inequality:

Theorem 13 ([4]) Let p,g > 1 : %—i—% =1, and v > %, n = [v]. Let f €
CY (la,b], X). Assume that f*) (a) =0, k =0,1,....,n — 1, if v > 1. Then
(b_a’)V v
1Ay, o < DYl - (33)

) -1)+1)7 (qv)*

All this background next is applied for X = C, the complex numbers with
I-|| = |-] the absolute value.

3 Main Results

From now on here f (z) and z (t), t € [a,b], are as in section 1. Introduction.
We give a fractional C-Polya inequality

Theorem 14 Let0 < v <1, h € C([a,b],C). Assume thath € CY ([a, %£*] ,C)

and h € Cf_ ([a;b, },C). Set

M (h) = max{IIIDZhllloo,[

oot DAl ose ]}. (34)



Then

(b _ a)u+1
< <M (
2) dz u/)|h ) da < M (h) g (35)
Inequality (35) is sharp, namely it is attained by
_J@—a)’C we€a, PP,
h* (m){(bx)ug, T e [a-{-b b] 9 0<V<]-a (36)

wherece C: |¢] = 1.
Clearly here non-zero constant functions h are excluded.

Proof. By Theorem 10 for X =C. m
Next we apply Theorem 14 for h (t) = f (2 (t)) 2’ (t), t € [a,b], to derive the
following complex fractional Polya inequality:

Theorem 15 Let0 <v <1, f(z(-) 2 (-) € C([a,b],C). Assume that f (z(-))2'(:) €
C¥ (la, %] ,C) and f (2 (-)) 7' (-) € Cy_ ([242,b] ,C). Set

M (f(2()) % () =
mae {105 (7 (2 () Ol fo 2521 11D (F 2D 2 Ol oo } - 37

Then
/ f(z)dz
(b—a)

/u NI ©ld = [ 7 @Nldel < M(F GOV ) gy
e (38)

Yu,w

Proof. By Theorem 14. m
Note: No boundary conditions are needed inTheorems 14, 15.
We continue with a fractional C-Ostrowski type inequality:

Theorem 16 Let v > 1, n = [v], h € C([a,b],C), zg € [a,b]. Assume that
h|a10] € Cy _(la,v0],C), hlz,p € Cy ([0,0],C), and K@) (x9) = 0, for

i=1,. —Iojwhich s void when 1 < v < 2. Then
’ 1
b—a/a h(x)dx—h(xo) Sm
(128l oy (0= 0+ 1D 0= 20 <
1

(b—a)T (v+2)

IDZ A ) [0 0+ + (00— ] <
(39)

dl

Tro—

max (||| D

00,[a,x0]

b—a)’
0 (1102, s gy DD ) T



Proof. By Theorem 11. m
Next we apply Theorem 16 for h (t) = f (2 (¢)) 2’ (¢), t € [a,b], to derive the
following complex fractional Ostrowski type inequality:

Theorem 17 Let v > 1, n = [v], f(2(:)2' () € C([a,}],C), ¢ € [a,b];
v:=z(c). Assume thatf( ())z’()|[aC € CY_(la,c],C), f(2(:) 2 () e €
CY ([e,b],C), and (f (z(-)) '()(2)()—0 fori=1,...,n — 1, which is void

when 1 <v < 2. Then
e SpE-rwe

1 S
(b—a)T (v+2)

_a/ P @) (@t~ f ((e)) 2 (0)] =

/f Ydz— f (v) 2 (¢)| <

{|||Dc”f<f<z<- O g (€= @ NDE(F ()2 Ol oy (0= 0"} <

oty ™ (1P 0 OV Dl 1P G GO Ol

.Ub—@”*+@—ay“}§ (40)
e (D25 00 = Dl g 11D GO Ol o) o

Proof. By Theorem 16. m
Next comes a right fractional C-Poincaré like inequality:

Theorem 18 Let p,qg > 1: %—i— ; = La> 7, m = [a]. Let f(z()7 () €

Cy ([a,b],C). Assume that (f (z(-)) 2’ (-))(k) (b)=0, k=0,1,....,m — 1, when
a>1. Then

(b—a)* |Dg (f (=()) 2" O], (280 )
I'(@) (pla—1)+1)7 (qa)

I1f (2 () 2" Ollr, (jap10) <

Proof. By Theorem 12. m
We finish with a left fractional C-Poincaré like inequality:
Theorem 19 Let p,g > 1: %—f— % =1, andv > %, n=1[]. Let f(2(:)2'(-) €
C¥ ([a,b],C). Assume that (f (z()) 2 ()™ (@) =0, k=0,1,...,n—1, ifv > 1.
Then
(b—a)”

1f ()2 Oz, a0 W) D+ @)

IN

105 (f (2 () 2" Dy (faer.c) -
(42)

Q=

Proof. By Theorem 13. =
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