Mixed Complex fractional inequalities

George A. Anastassiou
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Here we present some important mixed generalized fractional complex analytic inequalities of the following kinds: Polya's, Ostrowski's and Poincaré's.

2010 Mathematics Subject Classification: 26D10, 26D15, 30A10. **Keywords and phrases:** Complex inequalities, fractional inequalities, generalized fractional derivative.

1 Introduction

Here we follow [5].

Suppose γ is a smooth path parametrized by z(t), $t \in [a, b]$ and f is a complex function which is continuous on γ . Put z(a) = u and z(b) = w with $u, w \in \mathbb{C}$. We define the integral of f on $\gamma_{u,w} = \gamma$ as

$$\int_{\gamma} f(z) dz = \int_{\gamma_{u,w}} f(z) dz := \int_{a}^{b} f(z(t)) z'(t) dt.$$

We observe that the actual choice of parametrization of γ does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose γ is parametrized by z(t), $t \in [a, b]$, which is differentiable on the intervals [a, c] and [c, b], then assuming that f is continuous on γ we define

$$\int_{\gamma_{u,w}} f(z) dz := \int_{\gamma_{u,v}} f(z) dz + \int_{\gamma_{v,w}} f(z) dz,$$

where v := z(c). This can be extended for a finite number of intervals. We also define the integral with respect to arc-length

$$\int_{\mathcal{T}} f(z) |dz| := \int_{a}^{b} f(z(t)) |z'(t)| dt$$

and the length of the curve γ is then

$$l\left(\gamma\right) = \int_{\gamma_{u,w}} \left| dz \right| := \int_{a}^{b} \left| z'\left(t\right) \right| dt.$$

Let f and g be holomorphic in G, and open domain and suppose $\gamma \subset G$ is a piecewise smooth path from z(a) = u to z(b) = w. Then we have the integration by parts formula

$$\int_{\gamma_{u,w}} f(z) g'(z) dz = f(w) g(w) - f(u) g(u) - \int_{\gamma_{u,w}} f'(z) g(z) dz.$$
 (1)

We recall also the triangle inequality for the complex integral, namely

$$\left| \int_{\gamma} f(z) dz \right| \le \int_{\gamma} |f(z)| |dz| \le ||f||_{\gamma,\infty} l(\gamma), \tag{2}$$

where $\left\|f\right\|_{\gamma,\infty}:=\sup_{z\in\gamma}\left|f\left(z\right)\right|.$

We also define the p-norm with $p \ge 1$ by

$$||f||_{\gamma,p} := \left(\int_{\gamma} |f(z)|^p |dz| \right)^{\frac{1}{p}}.$$

For p = 1 we have

$$\left\|f\right\|_{\gamma,1}:=\int_{\gamma}\left|f\left(z\right)\right|\left|dz\right|.$$

If p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, then by Hölder's inequality we have

$$||f||_{\gamma,1} \le [l(\gamma)]^{\frac{1}{q}} ||f||_{\gamma,n}.$$

Motivations to our work follow:

We mention the following Wirtinger type inequality for complex functions:

Theorem 1 ([5]) Let f be analytic in G, a domain of complex numbers and suppose $\gamma \subset G$ is a smooth path parametrized by z(t), $t \in [a,b]$ from z(a) = u to z(b) = w and $z'(t) \neq 0$ for $t \in (a,b)$.

(i) If
$$f(u) = f(w) = 0$$
, then

$$\int_{\gamma} |f(z)|^{2} |dz| \le \frac{1}{\pi^{2}} l^{2}(\gamma) \int_{\gamma} |f'(z)|^{2} |dz|.$$
 (3)

The equality holds in (3) iff

$$f(v) = K \sin \left[\frac{\pi l(\gamma_{u,v})}{l(\gamma)} \right], \quad K \in \mathbb{C},$$
 (4)

where $v = z\left(t\right), \ t \in \left[a, b\right] \ and \ l\left(\gamma_{u, v}\right) = \int_{a}^{t} \left|z'\left(s\right)\right| ds.$

(ii) If f(u) = 0, then

$$\int_{\gamma} |f(z)|^{2} |dz| \le \frac{4}{\pi^{2}} l^{2}(\gamma) \int_{\gamma} |f'(z)|^{2} |dz|.$$
 (5)

The equality holds in (5) iff

$$f(v) = K \sin \left[\frac{\pi l(\gamma_{u,v})}{2l(\gamma)} \right], \quad K \in \mathbb{C},$$
 (6)

where $v = z(t), t \in [a, b]$.

We mention some complex trapezoid type inequalities:

Proposition 2 ([5]) Let g be analytic in G, a domain of complex numbers and suppose $\gamma \subset G$ is a smooth path parametrized by z(t), $t \in [a,b]$ from z(a) = u to z(b) = w, $w \neq u$ and $z'(t) \neq 0$ for $t \in (a,b)$. Then

$$\left| \frac{1}{w - u} \int_{\gamma} g(z) dz - \frac{g(u) + g(w)}{2} \right| \leq \frac{1}{\pi} \frac{l(\gamma)}{|w - u|} \left(\frac{1}{l(\gamma)} \int_{\gamma} \left| g'(z) - \frac{g(w) - g(u)}{w - u} \right|^{2} |dz| \right)^{\frac{1}{2}}.$$
 (7)

Proposition 3 ([5]) Let g be analytic in G, a domain of complex numbers and suppose $\gamma \subset G$ is a smooth path parametrized by z(t), $t \in [a,b]$ from z(a) = u to z(b) = w, $w \neq u$ and $z'(t) \neq 0$ for $t \in (a,b)$. If $u + w - z \in G$ for $z \in \gamma$, then

$$\left| \frac{1}{w-u} \int_{\gamma} \widehat{g(z)} dz - \frac{g(u) + g(w)}{2} \right| \leq \frac{1}{2\pi} \frac{l(\gamma)}{|w-u|} \left(\frac{1}{l(\gamma)} \int_{\gamma} |g'(z) - g'(u + w - z)|^{2} |dz| \right)^{\frac{1}{2}}, \tag{8}$$

where $\widehat{g\left(z\right)}:=\frac{g\left(z\right)+g\left(u+w-z\right)}{2},\;z\in\gamma.$

In this article we utilize on \mathbb{C} the results of [4] which are for general Banach space valued functions.

We give mixed fractional: \mathbb{C} -Polya type integral inequality and \mathbb{C} -Ostrowski type integral inequality. We finish with right and left fractional \mathbb{C} -Poincaré like inequalities.

2 Background

Here C([a,b],X) stands for the space of continuous functions from [a,b] into X, where $(X,\|\cdot\|)$ is a Banach space.

All integrals here are of Bochner type ([6]). By [2], we have that: if $f \in C([a,b],X)$, then $f \in L_{\infty}([a,b],X)$ and $f \in L_{1}([a,b],X)$. Derivatives for vector valued functions are defined according to [7], p. 83, similar to numerical ones.

We need

Definition 4 ([4]) Let $f \in C([a,b],X)$, where X is a Banach space. Let $\nu > 0$, we define the right Riemann-Liouville fractional Bochner integral operator

$$(J_{b-}^{\nu} f)(x) := \frac{1}{\Gamma(\nu)} \int_{x}^{b} (z - x)^{\nu - 1} f(z) dz, \quad \forall \ x \in [a, b],$$
 (9)

where Γ is the gamma function.

In [3], we have proved that

$$\left(J_{b-}^{\nu}f\right)\in C\left(\left[a,b\right],X\right).$$

Furthermore in [3], we have proved that

$$J_{b-}^{\nu}J_{b-}^{\mu}f = J_{b-}^{\nu+\mu}f = J_{b-}^{\mu}J_{b-}^{\nu}f,$$

for any $\mu, \nu > 0$; any $f \in C([a, b], X)$.

We need

Definition 5 ([4]) Let $\nu > 0$, $n := [\nu]$, where $[\cdot]$ is the integral part, $\alpha = \nu - n$, $0 < \alpha < 1$, $\nu \notin \mathbb{N}$. Define the subspace of functions

$$C_{b-}^{\nu}\left(\left[a,b\right],X\right):=\left\{ f\in C^{n}\left(\left[a,b\right],X\right):J_{b-}^{1-\alpha}f^{(n)}\in C^{1}\left(\left[a,b\right],X\right)\right\} .\tag{10}$$

Define the Banach space valued right generalized ν -fractional derivative of f over [a,b] as

$$D_{b-}^{\nu}f := (-1)^{n-1} \left(J_{b-}^{1-\alpha}f^{(n)}\right)'. \tag{11}$$

Notice that

$$J_{b-}^{1-\alpha}f^{(n)}(x) = \frac{1}{\Gamma(1-\alpha)} \int_{x}^{b} (z-x)^{-\alpha} f^{(n)}(z) dz$$
 (12)

exists for $f \in C_{b-}^{\nu}([a,b],X)$, and

$$(D_{b-}^{\nu}f)(x) = \frac{(-1)^{n-1}}{\Gamma(1-\alpha)} \frac{d}{dx} \int_{x}^{b} (z-x)^{-\alpha} f^{(n)}(z) dz.$$
 (13)

I.e.

$$(D_{b-}^{\nu}f)(x) = \frac{(-1)^{n-1}}{\Gamma(n-\nu+1)} \frac{d}{dx} \int_{x}^{b} (z-x)^{n-\nu} f^{(n)}(z) dz.$$
 (14)

If $\nu \in \mathbb{N}$, then $\alpha = 0$, $n = \nu$, and

$$(D_{b-}^{\nu}f)(x) = (D_{b-}^{n}f)(x) = (-1)^{n} f^{(n)}(x).$$
(15)

Notice that $D_{b-}^{\nu} f \in C([a,b], X)$.

We mention the following right fractional Taylor's formula.

Theorem 6 ([4]) Let $f \in C_{b-}^{\nu}([a,b],X), \nu > 0, n := [\nu]$. Then 1) If $\nu \geq 1$, we get

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(b)}{k!} (x-b)^k + (J_{b-}^{\nu} D_{b-}^{\nu} f) (x), \quad \forall \ x \in [a,b].$$
 (16)

2) If $0 < \nu < 1$, we get

$$f(x) = J_{b-}^{\nu} D_{b-}^{\nu} f(x), \quad \forall \ x \in [a, b].$$

We have that

$$J_{b-}^{\nu}D_{b-}^{\nu}f\left(x\right) = \frac{1}{\Gamma\left(\nu\right)} \int_{x}^{b} \left(z - x\right)^{\nu - 1} \left(D_{b-}^{\nu}f\right)(z) \, dz, \quad \forall \ x \in [a, b] \, .$$

Definition 7 ([4]) Let $f \in C([a,b], X)$. Let $\nu > 0$, we define the left Riemann-Liouville fractional Bochner integral operator

$$(J_a^{\nu} f)(x) := \frac{1}{\Gamma(\nu)} \int_a^x (x - z)^{\nu - 1} f(z) dz, \quad \forall \ x \in [a, b].$$
 (17)

In [2], we have proved that

$$(J_a^{\nu}f) \in C([a,b],X)$$
.

Furthermore in [2], we have proved that

$$J_a^{\nu} J_a^{\mu} f = J_a^{\nu + \mu} f = J_a^{\mu} J_a^{\nu} f, \tag{18}$$

 $\forall \mu, \nu > 0, \forall f \in C([a, b], X).$

Definition 8 ([4]) Let $\nu > 0$, $n := [\nu]$, $\alpha = \nu - n$, $0 < \alpha < 1$, $\nu \notin \mathbb{N}$. Define the subspace of functions

$$C_{a}^{\nu}\left(\left[a,b\right],X\right):=\left\{ f\in C^{n}\left(\left[a,b\right],X\right):J_{a}^{1-\alpha}f^{(n)}\in C^{1}\left(\left[a,b\right],X\right)\right\} .\tag{19}$$

Define the Banach space valued left generalized ν -fractional derivative of f over [a,b] as

$$(D_a^{\nu}f) := \left(J_a^{1-\alpha}f^{(n)}\right)'. \tag{20}$$

Notice that

$$J_a^{1-\alpha} f^{(n)}(x) = \frac{1}{\Gamma(1-\alpha)} \int_a^x (x-z)^{-\alpha} f^{(n)}(z) dz$$
 (21)

exists for $f \in C_a^{\nu}([a,b],X)$, and

$$\left(D_a^{\nu}f\right)(x) = \frac{1}{\Gamma(1-\alpha)} \frac{d}{dx} \int_a^x (x-z)^{-\alpha} f^{(n)}(z) dz. \tag{22}$$

I.e.

$$(D_a^{\nu} f)(x) = \frac{1}{\Gamma(n-\nu+1)} \frac{d}{dx} \int_a^x (x-z)^{n-\nu} f^{(n)}(z) dz.$$
 (23)

If $\nu \in \mathbb{N}$, then $\alpha = 0$, $n = \nu$, and

$$(D_a^{\nu}f)(x) = (D_a^n f)(x) = f^{(n)}(x).$$
 (24)

Notice that $D_a^{\nu} f \in C([a,b], X)$.

We mention the following left fractional Taylor's formula.

Theorem 9 ([4]) Let $f \in C_a^{\nu}([a,b],X), \nu > 0, n := [\nu]$. Then 1) If $\nu \geq 1$, we get

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + (J_a^{\nu} D_a^{\nu} f)(x), \quad \forall \ x \in [a,b].$$
 (25)

2) If $0 < \nu < 1$, we get

$$f(x) = J_a^{\nu} D_a^{\nu} f(x), \quad \forall \ x \in [a, b]. \tag{26}$$

We have that

$$J_{a}^{\nu}D_{a}^{\nu}f\left(x\right) = \frac{1}{\Gamma\left(\nu\right)} \int_{a}^{x} \left(x-z\right)^{\nu-1} \left(D_{a}^{\nu}f\right)\left(z\right) dz, \quad \forall \ x \in \left[a,b\right]. \tag{27}$$

We mention the following fractional Polya type integral inequality without any boundary conditions, see also [1], p. 4.

Theorem 10 ([4]) Let $0 < \nu < 1$, $f \in C([a,b],X)$. Assume that $f \in C_a^{\nu}\left(\left[a,\frac{a+b}{2}\right],X\right)$ and $f \in C_{b-}^{\nu}\left(\left[\frac{a+b}{2},b\right],X\right)$. Set

$$M(f) = \max \left\{ \| \| D_a^{\nu} f \| \|_{\infty, \left[a, \frac{a+b}{2}\right]}, \| \| D_{b-}^{\nu} f \| \|_{\infty, \left[\frac{a+b}{2}, b\right]} \right\}.$$
 (28)

Then

$$\left\| \int_{a}^{b} f(x) dx \right\| \le \int_{a}^{b} \|f(x)\| dx \le M(f) \frac{(b-a)^{\nu+1}}{\Gamma(\nu+2) 2^{\nu}}.$$
 (29)

Inequality (29) is sharp, namely it is attained by

$$f_*(x) = \left\{ \begin{array}{l} (x-a)^{\nu} \overrightarrow{i}, & x \in \left[a, \frac{a+b}{2}\right], \\ (b-x)^{\nu} \overrightarrow{i}, & x \in \left[\frac{a+b}{2}, b\right] \end{array} \right\}, \quad 0 < \nu < 1, \tag{30}$$

$$\overrightarrow{i} \in X : \left\| \overrightarrow{i} \right\| = 1$$

 $\overrightarrow{i} \in X : \left\| \overrightarrow{i} \right\| = 1.$ Clearly here non zero constant vector function f are excluded.

We also mention the following fractional Ostrowski type inequality, see also [1], pp. 379-381.

Theorem 11 ([4]) Let $\nu \geq 1$, $n = [\nu]$, $f \in C([a,b],X)$, $x_0 \in [a,b]$. Assume that $f|_{[a,x_0]} \in C^{\nu}_{x_0-}([a,x_0],X)$, $f|_{[x_0,b]} \in C^{\nu}_{x_0}([x_0,b],X)$, and $f^{(i)}(x_0) = 0$, for i=1,...,n-1, which is void when $1 \leq \nu < 2$. Then

$$\left\| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f(x_{0}) \right\| \leq \frac{1}{(b-a) \Gamma(\nu+2)} \cdot \left\{ \left\| \left\| D_{x_{0}-}^{\nu} f \right\| \right\|_{\infty,[a,x_{0}]} (x_{0}-a)^{\nu+1} + \left\| \left\| D_{x_{0}}^{\nu} f \right\| \right\|_{\infty,[x_{0},b]} (b-x_{0})^{\nu+1} \right\} \leq \frac{1}{(b-a) \Gamma(\nu+2)} \max \left(\left\| \left\| D_{x_{0}-}^{\nu} f \right\| \right\|_{\infty,[a,x_{0}]}, \left\| \left\| D_{x_{0}}^{\nu} f \right\| \right\|_{\infty,[x_{0},b]} \right) \cdot \left[(b-x_{0})^{\nu+1} + (x_{0}-a)^{\nu+1} \right] \leq (31)$$

$$\max \left(\left\| \left\| D_{x_{0}-}^{\nu} f \right\| \right\|_{\infty,[a,x_{0}]}, \left\| \left\| D_{x_{0}}^{\nu} f \right\| \right\|_{\infty,[x_{0},b]} \right) \frac{(b-a)^{\nu}}{\Gamma(\nu+2)}.$$

We continue with a right fractional Poincaré like inequality:

Theorem 12 ([4]) Let p,q > 1: $\frac{1}{p} + \frac{1}{q} = 1$, $\alpha > \frac{1}{q}$, $m = [\alpha]$. Let $f \in C_{b-}^{\alpha}([a,b],X)$. Assume that $f^{(k)}(b) = 0$, k = 0,1,...,m-1, when $\alpha \geq 1$. Then

$$||f||_{L_{q}([a,b],X)} \le \frac{(b-a)^{\alpha} ||D_{b-}^{\alpha}f||_{L_{q}([a,b],X)}}{\Gamma(\alpha) (p(\alpha-1)+1)^{\frac{1}{p}} (q\alpha)^{\frac{1}{q}}}.$$
 (32)

We finally mention a Poincaré like left fractional inequality:

Theorem 13 ([4]) Let p,q > 1: $\frac{1}{p} + \frac{1}{q} = 1$, and $\nu > \frac{1}{q}$, $n = [\nu]$. Let $f \in C_a^{\nu}([a,b],X)$. Assume that $f^{(k)}(a) = 0$, k = 0,1,...,n-1, if $\nu \geq 1$. Then

$$||f||_{L_q([a,b],X)} \le \frac{(b-a)^{\nu}}{\Gamma(\nu) \left(p(\nu-1)+1\right)^{\frac{1}{p}} \left(q\nu\right)^{\frac{1}{q}}} ||D_a^{\nu}f||_{L_q([a,b],X)}. \tag{33}$$

All this background next is applied for $X=\mathbb{C},$ the complex numbers with $\|\cdot\|=|\cdot|$ the absolute value.

3 Main Results

From now on here f(z) and z(t), $t \in [a, b]$, are as in section 1. Introduction. We give a fractional \mathbb{C} -Polya inequality

Theorem 14 Let $0 < \nu < 1$, $h \in C([a, b], \mathbb{C})$. Assume that $h \in C_a^{\nu}(\left[a, \frac{a+b}{2}\right], \mathbb{C})$ and $h \in C_{b-}^{\nu}(\left[\frac{a+b}{2}, b\right], \mathbb{C})$. Set

$$M(h) = \max \left\{ \||D_a^{\nu} h|\|_{\infty, \left[a, \frac{a+b}{2}\right]}, \||D_{b-}^{\nu} h|\|_{\infty, \left[\frac{a+b}{2}, b\right]} \right\}. \tag{34}$$

Then

$$\left| \int_{a}^{b} h(x) dx \right| \leq \int_{a}^{b} |h(x)| dx \leq M(h) \frac{(b-a)^{\nu+1}}{\Gamma(\nu+2) 2^{\nu}}.$$
 (35)

Inequality (35) is sharp, namely it is attained by

$$h_*(x) = \left\{ \begin{array}{l} (x-a)^{\nu} \widetilde{c}, & x \in \left[a, \frac{a+b}{2}\right], \\ (b-x)^{\nu} \widetilde{c}, & x \in \left[\frac{a+b}{2}, b\right], \end{array} \right\}, \quad 0 < \nu < 1, \tag{36}$$

where $\widetilde{c} \in \mathbb{C} : |\widetilde{c}| = 1$.

Clearly here non-zero constant functions h are excluded.

Proof. By Theorem 10 for $X = \mathbb{C}$.

Next we apply Theorem 14 for h(t) = f(z(t))z'(t), $t \in [a,b]$, to derive the following complex fractional Polya inequality:

 $\begin{array}{l} \textbf{Theorem 15} \;\; Let \; 0 < \nu < 1, \; f\left(z\left(\cdot\right)\right)z'\left(\cdot\right) \in C\left(\left[a,b\right],\mathbb{C}\right). \;\; Assume \; that \; f\left(z\left(\cdot\right)\right)z'\left(\cdot\right) \in C_{a}^{\nu}\left(\left[a,\frac{a+b}{2}\right],\mathbb{C}\right) \;\; and \; f\left(z\left(\cdot\right)\right)z'\left(\cdot\right) \in C_{b-}^{\nu}\left(\left[\frac{a+b}{2},b\right],\mathbb{C}\right). \;\; Set \end{array}$

$$M\left(f\left(z\left(\cdot\right)\right)z'\left(\cdot\right)\right) =$$

$$\max \left\{ \left\| \left| D_{a}^{\nu}\left(f\left(z\left(\cdot\right)\right)z'\left(\cdot\right)\right)\right| \right\|_{\infty,\left[a,\frac{a+b}{2}\right]}, \left\| \left| D_{b-}^{\nu}\left(f\left(z\left(\cdot\right)\right)z'\left(\cdot\right)\right)\right| \right\|_{\infty,\left[\frac{a+b}{2},b\right]} \right\}. \tag{37}$$

Then

$$\left| \int_{\gamma} f(z) \, dz \right| = \left| \int_{\gamma_{u,w}} f(z) \, dz \right| = \left| \int_{a}^{b} f(z(t)) \, z'(t) \, dt \right|$$

$$\leq \int_{a}^{b} \left| f(z(t)) \right| \left| z'(t) \right| dt = \int_{\gamma_{u,w}} \left| f(z) \right| \left| dz \right| \leq M \left(f(z(\cdot)) \, z'(\cdot) \right) \frac{(b-a)^{\nu+1}}{\Gamma(\nu+2) \, 2^{\nu}}.$$
(38)

Proof. By Theorem 14.

Note: No boundary conditions are needed in Theorems 14, 15.

We continue with a fractional C-Ostrowski type inequality:

Theorem 16 Let $\nu \geq 1$, $n = [\nu]$, $h \in C([a,b],\mathbb{C})$, $x_0 \in [a,b]$. Assume that $h|_{[a,x_0]} \in C^{\nu}_{x_0-}([a,x_0],\mathbb{C})$, $h|_{[x_0,b]} \in C^{\nu}_{x_0}([x_0,b],\mathbb{C})$, and $h^{(i)}(x_0) = 0$, for i = 1,...,n-1, which is void when $1 \leq \nu < 2$. Then

$$\left| \frac{1}{b-a} \int_{a}^{b} h(x) dx - h(x_{0}) \right| \leq \frac{1}{(b-a) \Gamma(\nu+2)} \cdot \left\{ \left\| \left| D_{x_{0}-}^{\nu} h \right| \right\|_{\infty,[a,x_{0}]} (x_{0}-a)^{\nu+1} + \left\| \left| D_{x_{0}}^{\nu} h \right| \right\|_{\infty,[x_{0},b]} (b-x_{0})^{\nu+1} \right\} \leq \frac{1}{(b-a) \Gamma(\nu+2)} \cdot \max\left(\left\| \left| D_{x_{0}-}^{\nu} h \right| \right\|_{\infty,[a,x_{0}]}, \left\| \left| D_{x_{0}}^{\nu} h \right| \right\|_{\infty,[x_{0},b]} \right) \left[(b-x_{0})^{\nu+1} + (x_{0}-a)^{\nu+1} \right] \leq \frac{1}{(39)^{2}} \cdot \left\| \left| D_{x_{0}-}^{\nu} h \right| \right\|_{\infty,[a,x_{0}]}, \left\| \left| D_{x_{0}}^{\nu} h \right| \right\|_{\infty,[x_{0},b]} \cdot \left\| \left| D_{x_{0}-}^{\nu} h \right| \right\|_{\infty,[x_{0},b]}.$$

Proof. By Theorem 11. ■

Next we apply Theorem 16 for h(t) = f(z(t))z'(t), $t \in [a,b]$, to derive the following complex fractional Ostrowski type inequality:

Theorem 17 Let $\nu \geq 1$, $n = [\nu]$, $f(z(\cdot))z'(\cdot) \in C([a,b],\mathbb{C})$, $c \in [a,b]$; v := z(c). Assume that $f(z(\cdot))z'(\cdot)|_{[a,c]} \in C^{\nu}_{c-}([a,c],\mathbb{C})$, $f(z(\cdot))z'(\cdot)|_{[c,b]} \in C^{\nu}_{c-}([c,b],\mathbb{C})$, and $(f(z(\cdot))z'(\cdot))^{(i)}(c) = 0$, for i = 1,...,n-1, which is void when $1 \leq \nu \leq 2$. Then

$$\left| \frac{1}{b-a} \int_{a}^{b} f(z(t)) z'(t) dt - f(z(c)) z'(c) \right| = \left| \frac{1}{b-a} \int_{\gamma_{u,w}} f(z) dz - f(v) z'(c) \right|$$

$$= \left| \frac{1}{b-a} \int_{\gamma} f(z) dz - f(v) z'(c) \right| \le \frac{1}{(b-a) \Gamma(\nu+2)}.$$

$$\left\{ \left\| \left| D_{c-}^{\nu} (f(z(\cdot)) z'(\cdot)) \right| \right\|_{\infty,[a,c]} (c-a)^{\nu+1} + \left\| \left| D_{c}^{\nu} (f(z(\cdot)) z'(\cdot)) \right| \right\|_{\infty,[c,b]} (b-c)^{\nu+1} \right\} \le \frac{1}{(b-a) \Gamma(\nu+2)} \max \left(\left\| \left| D_{c-}^{\nu} (f(z(\cdot)) z'(\cdot)) \right| \right\|_{\infty,[a,c]}, \left\| \left| D_{c}^{\nu} (f(z(\cdot)) z'(\cdot)) \right| \right\|_{\infty,[c,b]} \right) \cdot \left[(b-c)^{\nu+1} + (c-a)^{\nu+1} \right] \le (40)$$

$$\max \left(\left\| \left| D_{c-}^{\nu} (f(z(\cdot)) z'(\cdot)) \right| \right\|_{\infty,[a,c]}, \left\| \left| D_{c}^{\nu} (f(z(\cdot)) z'(\cdot)) \right| \right\|_{\infty,[c,b]} \right) \frac{(b-a)^{\nu}}{\Gamma(\nu+2)}.$$

Proof. By Theorem 16.

Next comes a right fractional C-Poincaré like inequality:

Theorem 18 Let $p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1$, $\alpha > \frac{1}{q}$, $m = [\alpha]$. Let $f(z(\cdot))z'(\cdot) \in C_{b-}^{\alpha}([a,b],\mathbb{C})$. Assume that $(f(z(\cdot))z'(\cdot))^{(k)}(b) = 0$, k = 0, 1, ..., m-1, when $\alpha > 1$. Then

$$\|f\left(z\left(\cdot\right)\right)z'\left(\cdot\right)\|_{L_{q}\left([a,b],\mathbb{C}\right)} \leq \frac{\left(b-a\right)^{\alpha} \left\|D_{b-}^{\alpha}\left(f\left(z\left(\cdot\right)\right)z'\left(\cdot\right)\right)\right\|_{L_{q}\left([a,b],\mathbb{C}\right)}}{\Gamma\left(\alpha\right)\left(p\left(\alpha-1\right)+1\right)^{\frac{1}{p}}\left(q\alpha\right)^{\frac{1}{q}}}.$$

$$(41)$$

Proof. By Theorem 12. ■

We finish with a left fractional C-Poincaré like inequality:

Theorem 19 Let $p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1$, and $\nu > \frac{1}{q}$, $n = [\nu]$. Let $f(z(\cdot))z'(\cdot) \in C_a^{\nu}([a,b],\mathbb{C})$. Assume that $(f(z(\cdot))z'(\cdot))^{(k)}(a) = 0$, k = 0, 1, ..., n-1, if $\nu \geq 1$. Then

$$||f(z(\cdot))z'(\cdot)||_{L_{q}([a,b],\mathbb{C})} \leq \frac{(b-a)^{\nu}}{\Gamma(\nu)(p(\nu-1)+1)^{\frac{1}{p}}(q\nu)^{\frac{1}{q}}} ||D_{a}^{\nu}(f(z(\cdot))z'(\cdot))||_{L_{q}([a,b],\mathbb{C})}.$$
(42)

Proof. By Theorem 13. ■

References

- [1] G.A. Anastassiou, *Intelligent Comparisons: Analytic Inequalities*, Springer, New York, Heidelberg, 2016.
- [2] G.A. Anastassiou, A strong Fractional Calculus Theory for Banach space valued functions, Nonlinear Functional Analysis and Applications, 22 (3) (2017), 495-524.
- [3] G.A. Anastassiou, Strong Right Fractional Calculus for Banach space valued functions, Revista Proyecciones, 36(1) (2017), 149-186.
- [4] G.A. Anastassiou, Strong mixed and generalized fractional calculus for Banach space valued functions, Mat. Vesnik, 69 (3) (2017), 176-191.
- [5] S.S. Dragomir, An extension of Wirtinger's inequality to the complex integral, RGMIA Res. Rep. Coll. 22 (2019), Art 8, 9 pp., rgmia.org/v22.php.
- [6] J. Mikusinski, The Bochner integral, Academic Press, New York, 1978.
- [7] G.E. Shilov, *Elementary Functional Analysis*, Dover Publications, Inc., New York, 1996.