
LIPSCHITZ TYPE INEQUALITIES FOR ANALYTIC FUNCTIONS
IN BANACH ALGEBRAS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we provide some bounds for the quantity kf (y)� f (x)k
where f : D � C ! C is an analytic function on the domain D and x; y 2 B,
a Banach algebra, with the spectra � (x) ; � (y) � D: Applications for the
exponential and logarithmic function on the Banach algebra B are also given.

1. Introduction

Let B be an algebra over C. An algebra norm on B is a map k�k : B![0;1) such
that (B; k�k) is a normed space, and, further:

kabk � kak kbk
for any a; b 2 B: The normed algebra (B; k�k) is a Banach algebra if k�k is a
complete norm. We assume that the Banach algebra is unital, this means that B
has an identity 1 and that k1k = 1:
Let B be a unital algebra. An element a 2 B is invertible if there exists an

element b 2 B with ab = ba = 1: The element b is unique; it is called the inverse of
a and written a�1 or 1

a : The set of invertible elements of B is denoted by Inv (B).
If a; b 2 Inv (B) then ab 2 Inv (B) and (ab)�1 = b�1a�1:
For a unital Banach algebra we also have:

(i) If a 2 B and limn!1 kank1=n < 1; then 1� a 2 Inv (B);
(ii) fb 2 B: k1� bk < 1g � Inv (B);
(iii) InvB is an open subset of B;
(iv) The map InvB 3 a 7�! a�1 2 Inv (B) is continuous.
For simplicity, we denote �1; where � 2 C and 1 is the identity of B, by �: The

resolvent set of a 2 B is de�ned by
� (a) := f� 2 C : �� a 2 Inv (B)g ;

the spectrum of a is � (a) ; the complement of � (a) in C, and the resolvent function
of a is Ra : � (a)! Inv (B),

Ra (�) := (�� a)�1 :
For each �; 
 2 � (a) we have the identity

Ra (
)�Ra (�) = (�� 
)Ra (�)Ra (
) :
We also have that

� (a) � f� 2 C : j�j � kakg :
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The spectral radius of a is de�ned as

� (a) = sup fj�j : � 2 � (a)g :

Let B a unital Banach algebra and a 2 B. Then
(i) The resolvent set � (a) is open in C;
(ii) For any bounded linear functional � : B !C, the function ��Ra is analytic

on � (a) ;
(iii) The spectrum � (a) is compact and nonempty in C;
(iv) We have

� (a) = lim
n!1

kank1=n :

Let f be an analytic functions on the open disk D (0; R) given by the power
series

f (�) :=
1X
j=0

�j�
j (j�j < R) :

If � (a) < R; then the series
P1

j=0 �ja
j converges in the Banach algebra B becauseP1

j=0 j�j j


aj

 < 1; and we can de�ne f (a) to be its sum. Clearly f (a) is well

de�ned and there are many examples of important functions on a Banach algebra
B that can be constructed in this way. For instance, the exponential map on B
denoted exp and de�ned as

exp a :=
1X
j=0

1

j!
aj for each a 2 B.

If B is not commutative, then many of the familiar properties of the exponential
function from the scalar case do not hold. The following key formula is valid,
however with the additional hypothesis of commutativity for a and b from B

exp (a+ b) = exp (a) exp (b) :

In a general Banach algebra B it is di¢ cult to determine the elements in the range of
the exponential map exp (B) ; i.e. the element which have a "logarithm". However,
it is easy to see that if a is an element in B such that k1� ak < 1; then a is in
exp (B) : That follows from the fact that if we set

b = �
1X
n=1

1

n
(1� a)n ;

then the series converges absolutely and, as in the scalar case, substituting this
series into the series expansion for exp (b) yields exp (b) = a:
Concerning other basic de�nitions and facts in the theory of Banach algebras,

the reader can consult the classical books [13] and [16].
Let B be a unital Banach algebra, a 2 B and G be a domain of C with � (a) � G:

If f : G! C is analytic on G, we de�ne an element f (a) in B by

(1.1) f (a) :=
1

2�i

Z
�

f (�) (� � a)�1 d�;

where � � G is taken to be close recti�able curve in G and such that � (a) � ins (�) ;
the inside of �:
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It is well known (see for instance [6, pp. 201-204]) that f (a) does not depend
on the choice of � and the Spectral Mapping Theorem (SMT)

(1.2) � (f (a)) = f (� (a))

holds.
Let Hol (a) be the set of all the functions that are analytic in a neighborhood

of � (a) : Note that Hol (a) is an algebra where if f; g 2 Hol (a) and f and g have
domains D (f) and D (g), then fg and f + g have domain D (f)\D (g). Hol (a) is
not, however a Banach algebra.
The following result is known as the Riesz Functional Calculus Theorem [6, p.

201-203]:

Theorem 1. Let B a unital Banach algebra and a 2 B.
(a) The map f 7! f (a) of Hol (a)! B is an algebra homomorphism.
(b) If f (z) =

P1
k=0 �kz

k has radius of convergence r > � (a) ; then f 2 Hol (a)
and f (a) =

P1
k=0 �ka

k:
(c) If f (z) � 1; then f (a) = 1:
(d) If f (z) = z for all z; f (a) = a:
(e) If f , f1; :::; fn::: are analytic on G; � (a) � G and fn (z)! f (z) uniformly

on compact subsets of G; then kfn (a)� f (a)k ! 0 as n!1:
(f) The Riesz Functional Calculus is unique and if a; b are commuting elements

in B and f 2 Hol (a) ; then f (a) b = bf (a) :

For some recent norm inequalities for functions on Banach algebras, see [3]-[5]
and [7]-[12].
One of the central problems in perturbation theory is to �nd bounds for

kf (A)� f (B)k

in terms of kA�Bk for di¤erent classes of measurable functions f for which the
function of operators A and B can be de�ned. For some results on this topic, see
[4], [14] and the references therein.
In [2] the author obtained the following Lipschitz type inequality

(1.3) kf (A)� f (B)k � f 0 (a) kA�Bk

where f is an operator monotone function on (0;1) and A; B are bounded linear
operators on an Hilbert space with A; B � aIH > 0:
In this paper we provide some bounds for the quantity kf (y)� f (x)k where

f : D � C! C is an analytic function on the domain D and x; y 2 B with � (x) ;
� (y) � D: Applications for the exponential and logarithmic function on the Banach
algebra B are also given.

2. The Results

We start with the following lemma that is of interest in itself:

Lemma 1. For any x; y 2 B with kxk ; kyk < 1 we have

(2.1)



(1� y)�1 � (1� x)�1


 � ky � xk

(1� kyk) (1� kxk) :
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Proof. We use the identity (see for instance [3, p. 254])

(2.2) an � bn =
n�1X
j=0

an�1�j (a� b) bj

that holds for any a; b 2 B and n � 1:
For x; y 2 B we consider the function ' : [0; 1] ! B de�ned by ' (t) =

[(1� t)x+ ty]n : For t 2 (0; 1) and " 6= 0 with t+ " 2 (0; 1) we have from (2.2) that

' (t+ ")� ' (t) = [(1� t� ")x+ (t+ ") y]n � [(1� t)x+ ty]n

= "
n�1X
j=0

[(1� t� ")x+ (t+ ") y]n�1�j (y � x) [(1� t)x+ ty]j :

Dividing with " 6= 0 and taking the limit over " ! 0 we have in the norm
topology of B that

'0 (t) = lim
"!0

1

"
[' (t+ ")� ' (t)](2.3)

=

n�1X
j=0

[(1� t)x+ ty]n�1�j (y � x) [(1� t)x+ ty]j :

Integrating on [0; 1] we get from (2.3) thatZ 1

0

'0 (t) dt =
n�1X
j=0

Z 1

0

[(1� t)x+ ty]n�1�j (y � x) [(1� t)x+ ty]j dt

and since Z 1

0

'0 (t) dt = ' (1)� ' (0) = yn � xn

then we get the following equality of interest

yn � xn =
n�1X
j=0

Z 1

0

[(1� t)x+ ty]n�1�j (y � x) [(1� t)x+ ty]j dt

for any x; y 2 B and n � 1:
Taking the norm and utilizing the properties of Bochner integral for vector valued

functions (see for instance [15, p. 21]) we have

kyn � xnk �
n�1X
j=0





Z 1

0

[(1� t)x+ ty]n�1�j (y � x) [(1� t)x+ ty]j dt




(2.4)

�
n�1X
j=0

Z 1

0




[(1� t)x+ ty]n�1�j (y � x) [(1� t)x+ ty]j


 dt
�

n�1X
j=0

Z 1

0




[(1� t)x+ ty]n�1�j


 ky � xk


[(1� t)x+ ty]j


 dt
�

n�1X
j=0

Z 1

0

k(1� t)x+ tyk
n�1�j

ky � xk k(1� t)x+ tykj dt

= n ky � xk
Z 1

0

k(1� t)x+ tyk
n�1

dt
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for any x; y 2 B and n � 1:
Now, for any m � 1, by making use of the inequality (2.4) we have






mX
n=0

yn �
mX
n=0

xn






 =






mX
n=1

(yn � xn)





(2.5)

�
mX
n=1

kyn � xnk

� ky � xk
mX
n=1

n

Z 1

0

k(1� t)x+ tyk
n�1

dt

= ky � xk
Z 1

0

 
mX
n=1

n k(1� t)x+ tyk
n�1

!
dt:

Moreover, since kxk ; kyk < 1, then the series
P1

n=0 y
n;
P1

n=0 x
n and

1X
n=1

n k(1� t)x+ tyk
n�1

are convergent and

1X
n=0

yn = (1� y)�1 ;
1X
n=0

xn = (1� x)�1

while
1X
n=1

n k(1� t)x+ tyk
n�1

= (1� k(1� t)x+ tyk)�2 :

Therefore, by taking the limit over m ! 1 in the inequality (2.5) we deduce the
following inequality that is of interest in itself

(2.6)



(1� y)�1 � (1� x)�1


 � ky � xkZ 1

0

(1� k(1� t)x+ tyk)�2 dt

for all kxk ; kyk < 1:
Now, by the triangle inequality and the fact that kxk ; kyk < 1 we have

1� k(1� t)x+ tyk � 1� (1� t) kxk � t kyk > 0

for all t 2 [0; 1] :
This implies that

(2.7) (1� k(1� t)x+ tyk)�2 � (1� (1� t) kxk � t kyk)�2

for all t 2 [0; 1] :
Integrating (2.7) over t 2 [0; 1] ; we get

(2.8)
Z 1

0

(1� k(1� t)x+ tyk)�2 dt �
Z 1

0

(1� (1� t) kxk � t kyk)�2 dt:
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Observe that for kxk 6= kyk we haveZ 1

0

(1� (1� t) kxk � t kyk)�2 dt

= � 1

kxk � kyk

Z 1

0

d
h
(1� kxk+ t (kxk � kyk))�1

i
= � 1

kxk � kyk

h
(1� kyk)�1 � (1� kxk)�1

i
=

1

1� kyk
1

1� kxk :

Therefore

(2.9)
Z 1

0

(1� k(1� t)x+ tyk)�2 dt � 1

1� kyk
1

1� kxk :

We also observe that, by (2.8) for kyk = kxk the inequality (2.9) also holds.
By employing (2.6), (2.8) and (2.9) we obtain the desired result (2.1). �

Our main result is as follows:

Theorem 2. Let f : D � C ! C be an analytic function on the domain D and
x; y 2 B with � (x) ; � (y) � D and 
 a recti�able path in D and such that � (x) ;
� (y) � ins (�) : Then we have

(2.10) kf (y)� f (x)k � 1

2�
ky � xk

Z



jf (�)j jd�j
(j�j � kyk) (j�j � kxk) :

Proof. Using the Riesz functional calculus, we have

f (y)� f (x) = 1

2�i

Z



f (�) (� � y)�1 d� �
Z



f (�) (� � x)�1 d�

=
1

2�i

Z



f (�)
h
(� � y)�1 � (� � x)�1

i
d�:

By taking the norm in this equality and using the integral�s properties we get

kf (y)� f (x)k � 1

2�

Z



jf (�)j
h


(� � y)�1 � (� � x)�1


i jd�j(2.11)

=
1

2�

Z



jf (�)j j�j�1
"





�
1� y

�

��1
�
�
1� x

�

��1





#
jd�j :

Since



y�


 ; 


x� 


 < 1 for � 2 
 then we can apply Lemma 1 to get






�
1� y

�

��1
�
�
1� x

�

��1




 �



y� � x

�




�
1�




y�


��1� 


x� 


�
=

j�j ky � xk
(j�j � kyk) (j�j � kxk) ;
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which gives by integration that

1

2�

Z



jf (�)j j�j�1
"





�
1� y

�

��1
�
�
1� x

�

��1





#
jd�j(2.12)

� 1

2�

Z



jf (�)j j�j�1 j�j ky � xk
(j�j � kyk) (j�j � kxk) jd�j

=
1

2�
ky � xk

Z



jf (�)j
(j�j � kyk) (j�j � kxk) jd�j :

By making use of (2.11) and (2.12) we get (2.10). �

Corollary 1. With the assumptions of Theorem 2 and if

kfk
;1 := sup
�2


jf (�)j <1;

then

(2.13) kf (y)� f (x)k � 1

2�
ky � xk kfk
;1

Z



jd�j
(j�j � kyk) (j�j � kxk) :

Remark 1. If we assume that f : D � C ! C is an analytic function on the
domain D and x; y 2 B with � (x) ; � (y) � D (0; R) � D where D (0; R) is an open
disk centered in 0 and of radius R; then by taking 
 parametrized by � (t) = Re2�it

where t 2 [0; 1] ; then d� (t) = 2�iRe2�itdt; jd� (t)j = 2�Rdt; j�j = R and by (2.10)
we get

(2.14) kf (y)� f (x)k � R ky � xk
(R� kyk) (R� kxk)

Z 1

0

��f �Re2�it��� dt:
Moreover, if

kfkR;1 := sup
t2[0;1]

��f �Re2�it��� <1;
then we have the simpler inequality

(2.15) kf (y)� f (x)k �
R kfkR;1 ky � xk
(R� kyk) (R� kxk) :

3. Some Examples

Consider the exponential function f (a) = exp a; a 2 B. Assume that x; y 2 B
and kxk ; kyk < R for some R > 0: Observe that��exp �Re2�it��� = jexp [R (cos (2�t) + i sin (2�t))]j = exp [R cos (2�t)]
and then by (2.14) we get

(3.1) kexp y � expxk � R ky � xk
(R� kyk) (R� kxk)

Z 1

0

exp [R cos (2�t)] dt:

The modi�ed Bessel function of the �rst kind I�(z) for real number � can be
de�ned by the power series as [1, p. 376]

I�(z) =

�
1

2
z

�� 1X
k=0

�
1
4z
2
�k

k!� (� + k + 1)
;
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where � is the gamma function. For n = 0 we have I0(z) given by

I0(z) =
1X
k=0

�
1
4z
2
�k

(k!)
2 :

An integral formula for real number � is

I�(z) =
1

�

Z �

0

ez cos � cos (��) d� � sin (��)
�

Z 1

0

e�z cosh t��tdt;

which simpli�es for � an integer n to

In(z) =
1

�

Z �

0

ez cos � cos (n�) d�:

For n = 0 we have

I0(z) =
1

�

Z �

0

ez cos �d�:

If we change the variable � = 2�t; then dt = 1
2�d� andZ 1

0

exp [R cos (2�t)] dt =
1

2�

Z 2�

0

exp [R cos �] d�

=
1

2

�
1

�

Z �

0

exp [R cos �] d� +
1

�

Z 2�

�

exp [R cos �] d�

�
=
1

2

�
1

�

Z �

0

exp [R cos �] d� +
1

�

Z �

0

exp [�R cos �] d�
�

=
1

2
(I0(R) + I0(�R)) = I0(R):

From (3.1) we then get

(3.2) kexp y � expxk � RI0(R) ky � xk
(R� kyk) (R� kxk) ;

for x; y 2 B with kxk ; kyk < R:
By using the power series

f (z) := ln (1� z)�1 =
1X
n=1

1

n
zn

that is convergent on open disk D (0; 1) ; we can de�ne

ln (1� a)�1 :=
1X
n=1

1

n
an

for all elements a in B with kak < 1:
We observe that ���ln (1� z)�1��� � 1X

n=1

1

n
jzjn = ln (1� jzj)�1

for jzj < 1:
Now if we assume that x; y 2 B and kxk ; kyk < R < 1; then by (2.14) we get

(3.3)



ln (1� y)�1 � ln (1� x)�1


 � R ln

h
(1�R)�1

i
ky � xk

(R� kyk) (R� kxk) :
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