NORM INEQUALITIES OF OSTROWSKI TYPE FOR ANALYTIC
FUNCTIONS IN BANACH ALGEBRAS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let B be a unital Banach algebra, a € B, G be a convex domain
of C with o (a) C G and v C G is a piecewise smooth path parametrized by
A(t), t € [0,1] from A(0) = a to A(1) = B, with 8 # a. If f : G — C is
analytic on G, then by using the analytic functional calculus we obtain among
others the following result

1 1
[f =7 [ <x g [la=atiav,

provided

K= sup [lF (1 =) X+ ta)|| < oo.
(A, t)eyx[0,1]

1. INTRODUCTION

In 1938, A. Ostrowski [12], proved the following inequality concerning the dis-
tance between the integral mean ;1 f: f () dt and the value f (2), x € [a, b].

Theorem 1 (Ostrowski, 1938 [12]). Let f : [a,b] — R be continuous on [a,d]
and differentiable on (a,b) such that f' : (a,b) — R is bounded on (a,b), i.e.,
lf'llo == sup |f' (t)] <oo. Then

te(a,b)

b o — atb 2
(1.1) 'f(cc)—bla/ f@)dt| < 411+<b2> ||f/||oo(b_a>7

for all x € [a,b] and the constant i is the best possible.

For a recent survey on Ostrowski’s inequality for scalar functions and Lebesgue
integral see [7].

In order to extend Ostrowski’s inequality for function defined on Banach algebras,
we need the following preparations.

Let B be an algebra. An algebra norm on B is a map ||-|| : B—[0, c0) such that
(B,|]]]) is a normed space, and, further: |ab| < |la| ||b]| for any a,b € B. The
normed algebra (B, ||-||) is a Banach algebra if ||-|| is a complete norm. We assume
that the Banach algebra is unital, this means that B has an identity 1 and that
1 =1

Let B be a unital algebra. An element a € B is invertible if there exists an
element b € B with ab = ba = 1. The element b is unique; it is called the inverse of
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a and written a=! or 1. The set of invertible elements of B is denoted by Inv (B).
If a,b € Inv (B) then ab € Inv (B) and (ab) ' =b~ta" L.
For a unital Banach algebra we also have:
(i) If a € B and lim, o [|a”||*/™ < 1, then 1 — a € Inv (B);
(ii) {a € B: |1 =b| <1} C Inv (B);
(iii) Inv (B) is an open subset of B;
v)

(i

For simplicity, we denote z1, where z € C and 1 is the identity of B, by z. The
resolvent set of a € B is defined by
pla):={2€C: z—aeu (B)};
the spectrum of a is o (a) , the complement of p (a) in C, and the resolvent function

of ais Ry : p(a) — Inv (B), Ry (2) := (z —a)~" . For each z, w € p (a) we have the
identity

The map Inv (B) 3 a — a~! € Inv (B) is continuous.

R, (w) — Ry (2) = (2 — w) Ry (2) Ry (w) .
We also have that
ogla)c{zeC: |z] <|a|}.
The spectral radius of a is defined as
v(a) =sup{|z|:z€0(a)}.
Let B a unital Banach algebra and a € B. Then
(i) The resolvent set p (a) is open in C;
(ii) For any bounded linear functionals X : B —C, the function Ao R, is analytic

on p(a);
(iii) The spectrum o (a) is compact and nonempty in C;

(iv) For each n € N and r > v (a), we have a" = - fl&\—T " (& —a)~ " de;
(v) We have v (a) = limy, o [la™||"/" .

Let B be a unital Banach algebra, a € B and G be a domain of C with o (a) C G.
If f: G — C is analytic on G, we define an element f (a) in B by

(12) =5 [FO €= de

where 6 C G is taken to be close rectifiable curve in G and such that o (a) C ins (J),
the inside of 6.

It is well known (see for instance [3, pp. 201-204]) that f (a) does not depend
on the choice of § and the Spectral Mapping Theorem (SMT)

(1.3) o (f(a)) = f(o(a))
holds.

Let $ol(a) be the set of all the functions that are analytic in a neighborhood
of o (a). Note that $ol(a) is an algebra where if f, g € $ol(a) and f and g have
domains D (f) and D (g), then fg and f + ¢ have domain D (f) N D (g). $Hol(a) is
not, however a Banach algebra.

The following result is known as the Riesz Functional Calculus Theorem [3, p.
201-203]:

Theorem 2. Let B a unital Banach algebra and a € B.
(a) The map f — f(a) of Hol(a) — B is an algebra homomorphism.
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If f (2) = Yopey axz® has radius of convergence r > v (a), then f € $ol (a)
and f(a) = Y7o, aa®.

If f(2) =1, then f(a) = 1.

If f(2) = z for all z, f (a) = a.

If f, f1,.s fn... are analytic on G, o (a) C G and f, (z) — f (2) uniformly
on compact subsets of G, then || f, (a) — f (a)|]] = 0 as n — oo.

The Riesz Functional Calculus is unique and if a, b are commuting elements

in B and f € $Hol(a), then f(a)b=>bf (a).

For some recent norm inequalities for functions on Banach algebras, see [1]-[2]
and [5]-[11].

In what follows we establish some simple approximations for the element f (a)
with integral remainders where, as above, a € B, G is a convex domain of C with
o (a) C G and f is analytic on G. Norm estimates of these remainders in terms of p-
norms and Lipschitz constants are also provided. Several Ostrowski and perturbed
Ostrowski norm inequalities are given as well.

2. SOME IDENTITIES

‘We have:

Theorem 3. Let B be a unital Banach algebra, a € B and G be a convexr domain
of C with o (a) C G. If f : G — C is analytic on G, then for all X € G we have

(2.1)

1
f(a) f(A)Jr(a—A)/O I (1= t) X +ta)dt.

Moreover, for any b € B we have the perturbed identity

(2.2)

1
f(a):f()\)+(af)\)b+(a—)\)/0 [f (1 —t) X\ +ta) — b] dt.

Proof. Since f : G — C is analytic on G, which is convex, then for all A, £ € G we

have

(fA=A+2) = (=N (L =) A+15).

Therefore

f(g)—fm:/o (f((l—t)Athé))’dt:(&—A)/o (L= ) A+ t€) dt,

giving that

1
f<s>:f<x>+<a—x>/o =) A+ t6) di

for all £ € G.
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From (1.2) we get

:;m/f

=5 [ [Pw e A/f DX+ (€ - 0) "
m/f
o E A) (/ fA=t)X+1E) dt)(g a)~tde
Sr /0<271m/<5 A)f((lt)AHf)(fa)ldS)dt

where for the last equality we used Fubini’s theorem.
Since the function g : G — C

9(&) = (€=M ((1-t)A+1t8)
is analytic for each ¢ € [0,1] and A € G, then
g(a)=(a=X) f (1 =) A +ta)

! =N r-nrrme o

271'@

for all t € [0,1] and X € G.
Then

/01(1 - A)f’((l—t>A+t£><f—a>-1d5)dt

2ms
1 1
:/ (@ =N F (1= ) A+ ta) dt — (a—/\)/ F (1= t) A+ ta) dt
0 0
and by (2.3) we get the desired result (2.1). O

Remark 1. With the assumptions of Theorem 3 we have, by taking various values
for b, the following identities of interest

1

(2.4) f(a)=f()\)+(a—>\)f'(a)+(a—>\)/ (A =t) A +ta) = ' (a)] dt,

0

(2.5) f(a)=f(/\)+f’(>\)(a—/\)+(a—>\)/0 (= t) A +ta) — £ (V)] dt,

+(a—)\)/0 {f’((l—t))\—i-ta)—w dt,
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Fla—2) {f/(u—t)ﬂm)—f/("yﬂdt,

[}

—
[\
oo

SN~—

~

—
S

=

I

f(>\)+(a—>\)/0 F (1= $) A+ sa) ds

Jr(a/\)/o1 {f’((lt))\+ta)/Olf’((ls))\Jrsa)ds} dt.

Corollary 1. With the assumptions of Theorem 3 and if v C G is a piecewise
smooth path parametrized by A(t), t € [0,1] from A(0) = « to A(1) = S, with
B # «a, then

B —a

—ML(a—A) </01f’((1—t))\+ta)dt>d)\

_5104/01 (L(aA)f’((lt)A+ta)dA>dt.

Moreover, for any b € B we have the perturbed identity

(2.10) f(a)—ﬁiaLf(A)dA—(a_a;5>b
:ﬂia/w(a_/\) (/Ol[f’((l—t))\—i—ta)—b}dt)dA

zﬁia/; (L(a—A)[f’((l—t)A+ta)—b]dA)dt.

Remark 2. With the assumptions of Corollary 1 we have,

(29) f(a)— - / £ dA
1

(2.11) f(a)—ﬁialyf()\)d)\—(a_a‘;'B)f’(a)
1

zﬂ_a/w(a—/\) (/Ol[f’((l—t))\—i—ta)—f’(a)]dt)d/\

:ﬂia/ol (L(a—A)[f’((l—t)A+ta)—f’(a)}dA)dt.

3. NORM INEQUALITIES

Let a € B and G be a convex domain of C with o (a) C G and A € G. We define
Gra:={(1—t)X+ta | with t € [0,1]}. We observe that G, is a convex subset
in B for every A\ € G.

For two distinct elements u, v in the Banach algebra B we say that the func-
tion g : G, — B belongs to the class A, ., (Gx,q) if it satisfies the boundedness
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condition

U+ v

(3.1) Hg«l A+ ta) < Lol

for all ¢ € [0,1]. We write g € Ay, (Ga,q) - This definition is an extension to Banach
algebras valued functions of the scalar case, see [4].

We say that the function g : G, — B is Lipschitzian on G , with the constant
Ly, >0, if for all z, y € Gy, we have

lg () =g Wl < Lxalle—yl-

This is equivalent to
(3.2) lg(L=t)A+ta) —g((1 =) A+ sa)l| < Laalt —s[fla— A

for all ¢, s € [0,1]. We write this by g € Lipy,  (Gxa)-

Let h : G — C be an analytic function on G. For t € [0,1] and A\ € G, the
auxiliary function hy » defined on G by hy  (§) := h ((1 — ) A + t€) is also analytic
and using the analytic functional calculus (1.2) for the element a € B, we can define

B3 -0+ = T (o) = o [ a(©€- 0t de

=L = r ) (6 —a) e

2mi ~

We say that the scalar function h € A, , (Gy,4) if its extension h: Gra — B
satisfies the boundedness condition (3.1). Also, we say that the scalar function
h € Lipy, . (Ga,q) if its extension h: G, — B satisfies the Lipschitz condition
(3.2).

From (2.1) we have the following fundamental inequalities

(34) (@)= F O] < lla—Al H [ ra-nrsu dtH
<l [ 17 (- 07+ )l < o= AL sup (1~ DA+ )],
0 te[0,1]

provided that f : G — C is analytic on G and A € G.
We have:

Theorem 4. Let B be a unital Banach algebra, a € B and G be a convex domain
of C with o (a) C G. Assume also that f : G — C is analytic on G and \ € G. If
there exists u, v € B with uw # v such that f' € Ay, (Gra), then

U+ v
2

1
< 5 lla= Ao —ull.

(35) Hf (@)= F ) = (-
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Proof. Since f' € Ay, (Gxq), then from (2.2) we have

lf@-r-a-» (a—»/ol a-oat - 50
<||a—)\||H/[ (L) A+ ta) - “;”]dtH

<lla—

1
((1—1) )\+ta)—Hdt§ §||a—)\|| lv =],
which gives (3.5). O

We also have:

Theorem 5. Let B be a unital Banach algebra, a € B and G be a convex domain
of C with o (a) C G. Assume also that f : G — C is analytic on G and \ € G. If
freLipy,  (Gra), then

(36) 15 (@)= FO) = (=) F' @l < 5 la = AI* L,
(37) I£(@) = FO) = 7' )@= X)) < 5 lla =N L
69 r@-rw-@-nr (5| < ple- Al
and

1 1 ,
lr@-r =@ [ £@=sassads] <l aP Lo

Proof. From the (2.4) and since f" € £ipy,  (Gx.a), hence we have

1f (@) = F(N) = (a=A) [ (a )H

<lla—

F{(1=t)A+ta) — f’(a)]dtH
< fla—A| / I (1= A+ta) — F (@) dt
1
<lla=AlLaalla= Al [ (L=t)dt = 5 Ja= A" L

and the inequality (3.6) is obtained.
The inequality follows similarly from (2.5).
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From (2.7) we have

(3.10) Hf(a)—f(A)—(a_A)f/ <Q+A)H

ol

(1=t) A+ ta) — f (

<|la—

S}
+ o
>
N———
Q
~

<lla =Xl Lxalla—

and the inequality (3.8) is proved.
From the identity (2.8) we also have

(3.11) Hf(a)—f(A>—(a—A)/lf’((l—s)AJrsa)ds

<a—/\||H/{ (1 —=t) A+ ta) — /f 1—3))\+sa)d3}dtH
|a—/\||H// (1= ) A +ta) — f’((l—s)/\+sa)]dsdtH
§||a—)\||/0 /0 If (L —=t)X+ta) — f ((1 — s) X\ + sa)| dsdt
1 1
<|la = Al L, ||a—)\||/0 /0 |t — s| dsdt.

Since

/01/01|ts|d5dt/01 {/Ot(ts)ds+/tl(st)ds] dt

hence by (3.11) we get (3.9). O

4. OSTROWSKI TYPE INEQUALITIES
We have the following Ostrowski type inequalities:
Theorem 6. Let B be a unital Banach algebra, a € B, G be a convexr domain of

C with o (a) C G and v C G is a piecewise smooth path parametrized by A (t),
t € [0,1] from A (0) = « to A(1) = B, with 8 # «. If f : G — C is analytic on G,



then
(41) Hf<a> -
1
<
~|B—q
and
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oo

1
<l

1 "(T=t) A+ ta) dtH [dA|

subsey lla = AlLf, [ o £ (1 = ) A+ ta) | d,

(1, a2 1a) ™ (1,

where p, q > 1 with 1 —|— =

f’ (1 =) A+ ta) dtH |d/\\)

Iy lla = Al 4] supsc. Hfol F1((1 =) A+ ta) di

R / |

< -
~B—qa

< gy [l H/OIf'<<1—t>A+m>dtH|dA

1 1
§|ﬁ_a|//0 lla = Al LF (1 =) A+ ta)|| dt [dA]
Y

1
suprey lla = All [, fo [1f" (L =) X +ta) || dt |dA|,

(£, la= AP 1ax) " (S0 (= A+ )7 atjar)

where p, q>1with}%+%:1,

[ lla = All1dAlsupaey vepo, 1 (1 =) A+ ta)]l.

Proof. From the first equality in (2.9) we have

(43) Hf(a) -

ia/vf(/\)dAH
:“ﬁiaL(a_A) (/Olf’((l—t)/\—i—ta)dt>d)\H

<
L

N (/1f’((1 — ) A +ta) dt)H )
e [l [ @ ons i
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If we use Holder’s integral inequality for the integral fv we have

[/Ha— Al H/Olf’(u — ) A+ ta) dtH )|
supse lla — All [, Hfol £ (1= t)A+ta) dtH A

(F, o= 21 1) (0 Hfo £ (= a+ ] jan))

where p, ¢ > 1 with * —|— =

IN

[y la = Al dAsupsc, | o £ (1 =) A+ ta)

which together with (4.3) gives (4.1).
The first two inequalities in (4.2) are obvious from above. The rest follows by

Holder’s inequality for the double integral fﬁ/ fol and we omit the details. O

Remark 3. Using the second identity in (2.9) we get

o borstzfmel

w F((1 =)\ +ta) d/\Hdt

Iﬁ—al/ (/Ha— 1—t)/\+ta)|||d)\|)
<ot [ (1= =2+ i) e

By Holder’s inequality for fv we have

[ la= NI (@ = 93+ )] ax
Yy
supsey la = AL 17 (1 =) A+ ta) 14N,

(f, la = AP ax)) (f 17 (1 =2+t ax) "
where p, q>1withp+5:1

IN

[ lla = Al1dA[supse, [1f (1 =) A +ta)]l,
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which implies that

1 L ,
49 | ( / la— AllLf <<1—t>A+ta>|||dA|) dt
supre o = A2 L L (1= ) A+ ta)[ 142 dr,

L) (e e an) (1,15 @ =0r+ 0 ax)

gi
18 —«a wherep,q>1wz'th%+a:1,

S lla = AlAA] fg supyey [ ((1 =) A+ ta) | dt.
Therefore, by (4.4) and (4.5) we get the bounds
O / |

1
SuPxey lla = All fo [, [1f" (1 =) A+ ta) | |dA| dt,

L) (= arran) ny 17 = ) A ta) 1))

< -
18 —«af wherep,q>lwith1%+§:1,

1
[, la = AlldA] fg supxe, 1 (1 =) A+ ta) || dt.
Corollary 2. With the assumptions of Theorem 2 and if

I sup [If (1 =) A +ta)|| < oo,
(A t)evx[0,1]

a,yx[0,1],00 *7

then from (4.2) we get

(17) ”f(a) - o ‘“H <

ocpstonoo | lla= Al I,
Y

5. PERTURBED OSTROWSKI TYPE INEQUALITIES

Let a € B and G be a convex domain of C with o(a) C G and v C G is a
piecewise smooth path parametrized by A (¢), ¢t € [0, 1] from A (0) = o to A (1) = 3,
with 8 # «. We define the following subset of the Banach algebra B

G%a = U,\EA/G,\)Q = Uxey {(1 —t)A+ta ‘ with t € [0, 1]}

For two distinct elements u, v in the Banach algebra B we say that the func-
tion g : G-, — B belongs to the class A, , (G,,q) if it satisfies the boundedness
condition

u—+v

6.1) o= 0r s -5 < ol

for all t € [0,1] and X € v. We write g € Ay, (Gra) -
We say that the function ¢ : G, , — B is Lipschitzian on G, with the constant
Ly >0, if for all z, y € G, we have

lg (@) =g W)l < Lyallz —yll.
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This is equivalent to
(5.2) lg (L=t)A+ta) = g((1 = s) A+ sa)|| < Lyalt = s[lla— A

for all ¢, s € [0,1] and A € v. We write this by g € Lip,_  (Gy.a)-

We say that the scalar function h € A, , (G,,q) if its extension h Gya —
B defined by (3.3) satisfies the boundedness condition (5.1). Also, we say that
the scalar function h € Lip;,_ (G,,q) if its extension h G, — B satisfies the
Lipschitz condition (5.2). ’

Theorem 7. Let B be a unital Banach algebra, a € B, G be a convexr domain of
C with o(a) C G and v C G is a piecewise smooth path parametrized by A(t),
t € [0,1] from A(0) = a to A(1) = B, with 8 # . If f : G — C is analytic on G
and there exists u, v € B with u # v such that f' € Ay, (G,4), then

63 |r@- 5t [ r- (o o2yt

1 _
s‘”z“/w—wwm
—a J,

2 |8

Proof. Using the identity (2.10) and taking into account that f' € A, , (G,,4), we
have

1 a+ B\ u+v
Hf _a/f(A)d)\—<a— 5 ) 5

([ remme- 2] )

=1 —al
1
/||a—)\||(/ (1= ) A+ ta) — 210 dt>|d/\
O 2
< Lo - UH/
— Al [dA
<5 [ la=Allax.
which proves the desired result (5.3). O

We also have:
Theorem 8. Let B be a unital Banach algebra, a € B, G be a conver domain of
C with o (a) C G and v C G is a piecewise smooth path parametrized by A (t),

t €[0,1] from A(0) =« to A(1) = B, with 8 # «. If f : G — C is analytic on G
and there exists Lo > 0 so that f' € Lipy_ (Gy.a), then

(5.4) meﬁialﬂmw—@—“?ﬂﬂmw

< gpar [ oA
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Proof. From the identity (2.11) and since f" € €ip;,_ (G,q), hence

Hf(a)—1/f(A)dA—(a—a+5>f’(a)H

([ - - @) o
/ o3| [ =03+ t0) 1 alan] hax

< j/ o3 ([ 17 =03 10) - 7 @) o

< Lo [l ([ 0= 0ar) 3= g2 [ o,

which proves the desired result (5.4). O

W

We also have:

Theorem 9. Let B be a unital Banach algebra, a € B, G be a convexr domain of
C with o(a) C G and v C G is a piecewise smooth path parametrized by A (t),
t €[0,1] from A(0) = « to A(1) = B, with 8 # «. If f : G — C is analytic on G
and there exists Ly > 0 so that f' € Lipy_ (Gya), then

- Hl{f(aHf(b’)(ﬁ—aB)Jrf(a)(a—a)] _Bia[{f()\)d)\H

2 —«
L
< _—me /a—AQd)\.
ST 7|| I

Proof. From the identity (2.5) we get by taking the integral mean that

(5.6) f(a)=ﬂia/7f( dA+—/f

+g1afy(a—k) (/0 [f ((1—t))\+ta)—f’()\)]dt)d)\.
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hence
ﬁia/fmd“ﬁ%/(a—A)f'(x)dA
o L )(B—a)+ f(a)(a—a)
_ﬁ—a/ d)\+ /f )dX — -
= C(B-a)fB)+(@-a)f(a)
_ﬂafyf ) dA A
and by (5.6) we get
_B-a)fB)+@—a)f(a)
5@Lf(A)dA o
+ﬂ%a/(“”) (/0 [f/((l_t))“"m)—f’()\)]dt)d)\,
fB)(B—-a)+ f(a)(a—a) 9 -
fla) + 5 a B_a/vf(A)dA
1 L /
+ﬁ_aL(aA) </0 (A=) N+ta)— f ()\)]dt>d/\

namely, we get the following equality of interest

FBE-a)+ @] 1
e [
1

:ML(G_A) (/Ol[f’((l—t))\+ta)—f’()\)]dt)d)\.

Now, if we take the norm, then we get

I [f(aHf(ﬁ)(ﬁ—a)Jrf( oza))__1 /wf“)c“”

1

67) [f (a) +

2

(0% —

< 5o [e=» ([ ra-0r s -7 e o
< s /na A [ 1= 0310 - 5 g an
SMLaA|| (/ I (=) A ta) = ()] dt )

P g AL ([ ) ar= 5 [ e AR

which produces the desired result (5.5). O

6. SOME EXAMPLES

Consider the function f (z) = Log (z), the "principal branch" of the complex log-
arithmic function. The function f is analytic on all of C; := C\ {z + iy : <0, y = 0}
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and
f/( ) !
z Z’ Ze((jg.

Suppose v C Cy is a smooth path parametrized by z (¢), t € [0,1] with 2 (0) = «
and z (1) = 8 where «, § € C;. Then

Lf(z)dz= f(z)dz=L Log (z)dz =

Ya,B a,B

= zLog (z)\g - / (Log (2)) zdz

a,B

~sLog() —aLog(e)— [ ds

Ya,B

= BLog (B) — aLog(a) - (8- a).

Let B be a unital Banach algebra, a € B, G be a convex domain in C, with
o(a) C G and v C G is a piecewise smooth path parametrized by A(t), t € [0,1]
from A (0) = ato A (1) = B, with 8 # «. We can define Log a by using the functional
calculus (1.2)

(61) Loga = 5 [ Log () (€~ )" i

where § C G C Cy is taken to be close rectifiable curve in G and such that o (a) C
ins (0) , the inside of 4.
By using the inequality (4.7) we get

BLogf — aLoga H 1 /
6.2 Loga — w1l < == | Ja— AN,
©62)  |os - o [ =i
where
M= sup H((l—t)/\+ta)_1H.
(A, t)evyx[0,1]

Observe that

(L=t A+ta) " =271 ((1 —t) + ;a)_l =t (1 - (1 - /1\> ta>_1.

If
1
namely
1
- e <.
then

(o3 B3y

n=0
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If we take the norm and use the triangle inequality, then we get

H((1 A +ta)‘1H

—1 oo n
1 1 1 11 . n
_ _ - < - n
|\l (1 (1 A) ta> <Al 7;) 1 3 t" |al
_ 1 . 1
S e = A
T &efal T2 al
_ 1
A=A = 1]t lall"
So, if
1
‘1 - /\'t||a|| <1
for all (A, t) € v x [0,1] and if we put
1
K= sup
(peyxfon] (Al = A= 1]t ]lall
and assume that K < oo, then by (6.2) we get
BLog 8 — aLoga H 1 /

6.3 Loga — +1|| < ——K a— M| |dA|.
(6.3 . o [ e

Suppose v C C is a smooth path parametrized by A (t), t € [0,1] with A (0) = «
and A (1) =, o, 8 € C with 8 # «. Then by (4.7) we get

expf —expa 1 /
6.4 expa — < T a— Al |[dA],
(6.4) TS e e
where
T:= sup |lexp((1—t)\+ta)l.
(A, t)evx]0,1]

Observe that
exp (1 —t) A +ta) = exp[(1 —t) A] exp (ta),

which gives

llexp (1 =) A+ ta)|
= lexp [(1 — #) A]| [lexp (ta)[| = exp [(1 —t) Re A} [lexp (ta)]]
<exp[(1—t)ReAexp(tal]) =exp[(1—t)ReX+t]|al].

So, if we put

S:= sup exp[(l—t)ReX+t|al],
(M t)evyx[0,1]

then we get by (6.4) that

1

epf —expa) s/wa—xan.
‘5704 ¥y

08—«

(6.5) expa —




(1]
2]

[11]

[12]
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