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Abstract

Here we present very general and advanced fractional complex analytic
inequalities of the Ostrowski type.
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1 Introduction

Here we follow [5].

Suppose 7 is a smooth path parametrized by z (¢), t € [a,b] and f is a
complex function which is continuous on v. Put z(a) = u and z (b) = w with
u,w € C. We define the integral of f on v, ,, =7 as

/ fyde= [ [(2)dzo= / £ (2 (8) # (1) dt. (1)

We observe that the actual choice of parametrization of v does not matter.
This definition immediately extends to paths that are piecewise smooth.

Suppose 7 is parametrized by z(t), t € [a,b], which is differentiable on the

intervals [a, ¢] and [c, b], then assuming that f is continuous on v we define

(2)dz :== (z)dz + f(2)dz, (2)

Yu,w Yu,v Yv,w

where v := z (¢). This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

[ (2) |dz| ::/ f@)1Z @) dt 3)
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and the length of the curve + is then

b
)= [ lasli= [ 1 @ ()

u,w

Let f and g be holomorphic in G, and open domain and suppose v C G
is a piecewise smooth path from z(a) = u to z(b) = w. Then we have the
integration by parts formula

f(2) g (2)dz = f(w) g (w) = [ (u) g (v) —/ f'(2)g(z)dz (5)

Yu,w Yu,w

We recall also the triangle inequality for the complex integral, namely

Lf(z)dz

where || f], . = sup |f (2)].
z€y
We also define the p-norm with p > 1 by

= (/ ek |dz|)’17

T ::/\f(Z)IIdZI-
Y

If p,g > 1 with % + % =1, then by Holder’s inequality we have

< / F Oz < 1] L), (6)

/]

For p = 1 we have

11y S BN I, (7)

A motivation to our work follows: These are two complex Opial type in-
equalities.

Theorem 1 (/5]) Let f be analytic in G, a domain of complex numbers and
suppose v C G is a smooth path parametrized by z (t), t € [a,b] from z (a) = u
to z(b) = w and 2’ (t) #0 fort € (a,b).

(i) If f (u) =0 or f(w) =0, then

L e @l < Rl |dz)é ( RIS dz|)é

1 0
< 5t () [ 15/ GO 1

(it) If f (u) = f(w) =0, then
| (2) [/ (2)]]dz] <

v
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In this article we utilize on C the results of [1] related to Ostrowski type
inequalities for general Banach space valued functions. So we produce here
advanced and general complex Ostrowski type inequalities.

2 Background

Here we follow [1].
We need

Definition 2 (/1]) Let [a,b] C R, (X, |]|) @ Banach space, g € C* ([a,b]) and
increasing, f € C ([a,b],X), v > 0.

We define the left Riemann-Liouville generalized fractional Bochner integral
operator

(Jig ) () = ng) / (9(x)—g(2)"" g (2) f (2) dz, (10)

Y x € [a,b], where I' is the gamma function.

The last integral is of Bochner type ([6]). Since f € C([a,b],X), then
f € Lo ([a,b], X). By ([1]) we get that (J%,f) € C([a,b],X). Above we set
J0.f = f and see that (J(’{;gf) (a) =0.

‘We mention

Theorem 3 ([1]) Let all as in Definition 2. Let m,n > 0 and f € C ([a,b], X).
Then
JargJagf = Jg?;"f = JagJusg - (11)

‘We need

Definition 4 (/1)) Let [a,b] C R, (X,]|||) @ Banach space, g € C* ([a,b]) and
increasing, f € C ([a,b],X), v > 0.

We define the right Riemann-Liouville generalized fractional Bochner inte-
gral operator

1 b N
(Kool @ = 555 [ @G =g@) g @G 1)

Y z € [a,b], where T is the gamma function.



The last integral is of Bochner type. Since f € C(la,b],X), then f €
Lo ([a,b],X). By ([1]) we get that (Jé’f;gf> € C(la,b],X). Above we set

Ji_.,f = f and see that (J,’;_;gf> (b) =0.
We mention

Theorem 5 ([1]) Let all as in Definition 4. Let o, 8> 0 and f € C ([a,b], X).

Then
(Jl?*;g‘]li;gf) (@) = (Jl?jg ) (z) = (Jfﬂgjl?**gf) @), (13)
Yz €la,b.
We need

Definition 6 ([1]) Let « > 0, [a] = n, [-] the ceiling of the number. Let
f € C"([a,b],X), where [a,b] C R, and (X, ||-||) is a Banach space. Let g €
C1 ([a,b]), strictly increasing, such that g1 € C™ ([g (a), g (b)]) -

We define the left generalized g-fractional derivative X -valued of f of order
a as follows:

1 ¥ Ca— r
(Divof) @) = 7o / (9@) =g (®)" " g ) (Fog™)"™ () dt,
(14)
YV x € [a,b]. The last integral is of Bochner type.
Derivatives for vector valued functions are defined according to [8], p. 83,
similar to numerical ones.

If a ¢ N, by [1], we have that (DS, ., f) € C ([a,b], X).
We see that

(J;;a ((f og )™ og)) (2) = (D&, f) (@), Yaelabl. (15)
We set

Dy yf @)= ((fog™) " og) (@) €C(lab],.X), neN,  (16)

Doyof(2)=f(2), Va€lab].
When g = id, then
Dg+;gf = Dg+;idf = D¢ (17)

*xad 2

the usual left X -valued Caputo fractional derivative, see [2].
We need

Definition 7 ([1]) Let « > 0, [a] = n, [-] the ceiling of the number. Let
f € C"([a,b],X), where [a,b] C R, and (X, ||:||) is a Banach space. Let g €
C! ([a,b]), strictly increasing, such that g=* € C™ ([g (a), g (b)]).



We define the right generalized g-fractional derivative X -valued of f of order
a as follows:

05 0D @)= s [0 - g @) 0 (oo ) 0)
(13)

YV x € [a,b]. The last integral is of Bochner type.
Ifa ¢ N, by [1], we have that (Dg‘_;gf) € C([a,b],X).
We see that
Iy ((—1)" (f 09—1)(n) og) (x) = (Dg‘f;gf) (x), a<z<hb. (19)
We set
Dy yf (@)= (-1)" ((fog™)"0g) () € C(la,b],X), nEN,  (20)
Dg—;gf (SU) =f (:I,’), Vae [aab] :
When g = id, then
Dl?f;gf (.’L‘) = Dl(;:;idf (.’L’) = Dbaffﬂ (21)
the usual right X -valued Caputo fractional derivative, see [3], [4].
We mention the following general left fractional Taylor’s formula:

Theorem 8 ([1]) Let « > 0, n = [a], and f € C" ([a,b], X), where [a,b] C R
and (X, ||-|) is a Banach space. Let g € C* ([a,b]), strictly increasing, such that
g teC(g(a),g)]), a <z <b. Then

i [ @@ =) g O (D, ) (-

f(a) + z_: (g9 (x) zg(a)) (fog,l)(i) (0(a) 4 o)
1 g(z) ol . »
w0 = (D) o™ ()

We also mention the following general right fractional Taylor’s formula:

Theorem 9 ([1]) Let « > 0, n = [«], and f € C™ ([a,b], X), where [a,b] C R
and (X, ||-|) is a Banach space. Let g € C* ([a,b]), strictly increasing, such that
971 €C"(lg(a),g®))). a <z <b. Then



9(b)
ma [ @) T (D) o) ()

From Theorem 8 when 0 < a < 1, we get that

arigDatgl) (@) = f(2) = f(a) =

5 ‘
S~—
S
=
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Dg, o) o s™) (2) dz,

1 b )
F(a)/ (9(t) —g(@)" " g’ (t) (DF_of) (t)dt = (25)
g(b)
F(la) /( ) (2 g(x))aﬂ ((Dl?f;gf) 0971) (2)dz,

all a <z <b.
Above we considered f € C! ([a,b],X), g € C! ([a,b]), strictly increasing,
such that g~ € C* ([g (a), g (b)]).

Denote by
Dyt = Dgy g Doy Doty (n times), n € N. (26)
Also denote by
Ly =1y Iy g Doy, (n times), (27)
and remind
1/ o
(I20af) @ = 17 [ 6@ =9 @) OF Ot w>a 9

By convention Iy, ., = DY, = I (identity operator).
We mention the following g-left generalized modified X-valued Taylor’s for-

mula.



Theorem 10 ([1]) Let 0 < a < 1, n € N, f € C'([a,b],X), g € C'([a,b]),
strictly increasing, such that g=' € C*([g(a), g (b)]). Let Fy := DY, f, k =
1,...,n, that fulfill Fy, € C* ([a,b],X), and F,4+1 € C ([a,b], X).

Then

F@ =) “Faarn — Pl @+

1 ’ n+l)a—1 (n+1)a
Fore L @ =g @) o (D) a0

vz € [a,b].

Denote by
oy = Dy gDy Dy, (n times), n € N. (30)
Also denote by
I, = Iy g Iy, (0 times), (31)
and remind
1

b
(o) @) = 7 | 0O - 9@ O F @, w<b (32)

(a)
We also mention the following g-right generalized modified X-valued Taylor’s
formula.

Theorem 11 (/1)) Let f € C'([a,b],X), g € C' ([a,b]), strictly increasing,

such that g~ € C([g(a),g(b)]). Suppose that Fj := D{ff;gf, kE=1,..,n

fulfill Fy, € C* ([a,b],X), and F,,1 € C([a,b],X), where 0 < a <1, n €N,
Then

Z ml;) (Dlé(i;gf) (b) +
=0
b
m / (9(0) =g (@)™ () (D)) F) e (33)

Ve lab.
Next we refer to a related generalized fractional Ostrowski type inequality:

Theorem 12 ([1]) Let g € C'([a,b]) and strictly increasing, such that g=' €
Cl(lg(a),g®)]), and 0 < o < 1, n € N, f € C!([a,b],X), where (X,]])
is a Banach space. Let xo € [a,b] be fived. Assume that F° := Dk f,

To—39g

for k = 1,..,n, fulfill £ € C'(la,b],X) and Fo, € C’([a xo] X) and
(Dio_ f) (w) =0,i=1,..,n

Similarly, we assume that G}° = D’;3+ of s for k= 1,...n, fulfill G} €

C' ([z0,b], X) and G5, € C([xo,b} ,X) and (D, f) (z0) =0,i=1,...,n



Then

1
= b—a)l (n+Da+1)

b
7 | F@da = f )

{o®) = ge)™ 2 06— an) | D500
s[zo,b]
(9(e0) ~ 9 @) (o - a0 (3)

We mention
Remark 13 Some examples for g follow:

g(x)=z, x€]la,bl,

g(z)=¢€", z€a,b] CR, (35)
also
g (z) =sinz, (36)
g (z) = tanz, when x € [a,b] := [—% +¢e,5 - 5] , €>0 small,
and
g (x) = cosz, when z € [a,b] := 1 +¢,2m —¢], € >0 small. (37)

Above all g’s are strictly increasing, g € C* ([a,b]), and g~ € C™ ([g (a), g (b)]),
for any n € N.

Applications od Theorem 12 follow:
We give the following exponential Ostrowski type fractional inequality:

Theorem 14 ([1]) Let 0 < a < 1, n € N, f € C'([a,b], X), where (X,]])
is a Banach space, xo € [a,b]. Assume that F}° := D’;(’fﬁetf, fork=1..n
Fulfill F]fo € C' (la, 0], X) and F*, € C ([a,m0], X) and (D;‘iﬂet f) (20) = 0,
1=1,.
Szmzlarly, we assume that G7° := Da:0+ ofs for k= 1,...n, fulfill G}° €
C* ([w0,5], X) and G2y, € C (z0,6), X) and (D2, .o f ) (w0) =0, i =1,...,m
Then

ot 1
ﬂ/ J@de = @) < G T s Dav 1) (38)
(ot oo foziie],,

(egpo _ ea)(n+1)a (xo o a) HD("“Fl

oo,[a,rg]} '




We finish this section with the following trigonometric Ostrowski type frac-
tional inequality:

Theorem 15 ([1]) Let 0 < a < 1,neN, fe C'([r+¢&,2n—¢],X), e >0
small, where (X,||-||) is a Banach space, xy € [w+¢,2m —e]. Assume that
o= D of for k =1,..n, fulfill F° € C* ([r +&,x0],X) and F33, €

n+1
C([m+e,20],X) and (D _..oof) (w0) =0, i=1,...,n.
Similarly, we assume that G}° = D§?+;Cosf, for k =1,....n, fulfill G;° €

C! ([xo, 27 — €], X) and Gy € C(wo,2m — €], X) and (Di%ﬁr;cosf) (x9) =0,
1=1,...,n.
Then

1
= (r=2)T((n+1)a+1)

! /”_Efw)dx—f(xo) -

T—2 Jrie

+

xo-+;cos

‘oo,[zo,Qﬂ'fa]

. 39
)oo,[‘n'+6,:vo]} ( )

Important results of this background: Theorems 12, 14, 15 next are applied
for X = C, the Banach space of complex numbers with ||-|| = |-|, the absolute
value.

(coszg — cos (m +€)) "V (g — 7 — €) HD("H)O‘f

To—;Cos

3 Main Results

We start with some history of the topic of Ostrowski type inequalities:
In 1938, A. Ostrowski [7], proved the following inequality concerning the

distance between the integral mean ;1 ff f (t) dt and the value f (x), x € [a,b].

Theorem 16 (Ostrowski, 1938 [7]) Let f : [a,b] — R be continuous on [a,b]
and differentiable on (a,b) such that f' : (a,b) — R is bounded on (a,b), i.c.,
I f'll :== sup |f'(t)] < oo. Then

t€(a,b)
1 b 1 x — afb ?
‘f(x)—b_a/ f (#) de| < 4+< 2 ) 17l G=a),  (40)

1 . .
for all x € [a,b] and the constant 7 is the ebst possible.

We present the following advanced generalized fractional C-Ostrowski type
inequalities:



Theorem 17 Let g € C' ([a,b]) and strictly increasing, such that g=* € C ([g (a), g (b)]),
and 0 < o < 1, n € N, h € C!(]a, ],(C). Let zy € [a,b] be fived. As-
sume that F}° = D’;g“_ h, for k = 1,..,n, fulfill F;’° € C*([a,b],C) and
F3b, € C([a,20],C) and (D;‘gf Jh) (z ) =0,i=1,..,n
Similarly, we assume that G}° := D’;(H_ ghs for k= 1,....n, fulfill Gi* €
C' ([z0,b],C) and G°, € C([xg,b] ,C) and (D, . h) (z0) =0,i=1,..,n
Then

1 b 1
b—a/ah(”j)df‘_h(%) St-aT(ntDatl) (41)

o
OOV[EOJ)}

oo,[a,xo}} '

Theorem 18 Let 0 < a < 1, n € N, h € C'([a,b],C), z¢ € [a,b]. Assume
that Fl° := Dko_ othy for k=1,..,n, fulfill F° € C'([a,z0],C) and F,9, €

C (Ja, zo],C) and (Dw“ efh)( )fo i=1,..n
Similarly, we assume that G}° = DIOJr ohs for k= 1,...,n, fulfill G}° €
C ([20,b],C) and G2, € C ([zo,b],C) and (Dt +Pth)( 0)=0,i=1,..n
Then

{0®) = a2 6~ an) | DG

(9 (z0) — 9.(a) " (w0 — a) || DL )"

Proof. By Theorem 12. m

10 1
h(z) da — h (z0)| < : 42
b—a/a (@) de—h(@0)| < G F T Dat D) (42)
x (TL—‘rl)Oé n+1
{(eb_e 0) HD;OJF ot ‘ (ro.b
)
(e = e) D (g — a) | DI e } .
To—se 00,[a,z0]

Proof. By Theorem 14. m

Theorem 19 Let 0 < a < 1,n €N, h € C*([r+¢,2r —¢],C), € > 0 small,
xrg € [m+¢€,2m —¢|. Assume that F° = Dl;s‘_ coshs for k = 1,...,n, fulfill
Froect ([7r +¢,20],C) and F,%, € C ([ +¢,30],C) and (D_, CObh) (19) =
0,7=1,.

Szmzlarly, we assume that G° = D’;g‘+ coshts for k =1,....n, fulfill G}° €
C! ([x0,27 — €] ,C) and Gy € C([wo,2m —¢],C) and (Di2,. CObh) (x0) = 0,
1=1,...,n

10



Then

1
SGo T (miDary B

! / " b (@) do — h (o)

T —2€ Joie

‘Oo,[l‘g,zﬂ'—f;‘]

cos (2 — &) — cos xg (ntle g o z0) ||D (n+D)ap
(cos ( ) )

xo-+;cos
(cos mg — cos (m + &))" (g — HDgflcOSh ’ } .
00,[m+e,x0]

Proof. By Theorem 15. m

From now on f(z), z(t), t € (a,b), v will be as in section 1. Introduction.
Put 2 (a) = u, 2z (b) = w and z (¢) = v, where u, w,v € C, with ¢ € [a, b].

We will use here h(t) := f (2 (t)) 2’ (t), t € [a, b].

In that case we will have

b
ﬁ / Fz(®)2 (t)dt — f (2(c) 2 (c)

b

bla/bh(t)dt—h(c)

[ r@a-rF @

Yu,w

1 ,
) RIC I CRIC

—

o (44)

where v, , = 7.
We have the following advanced generalized fractional complete C-Ostrowski
type inequalities:

Theorem 20 Let g € C' ([a,b]) and strictly increasing, such that g=* € C ([g (a), g (b)]),
and 0 <a<l,neN, f(z())= ()601([a b],C). Let ¢ € [a,b] be fized. As-
sume that F¢ := DF*. (f (2 (-) 2’ (), for k =1,...,n, fulfill Ff € C*([a,b],C)
and FS. € C([a,d], (C) and (D, (f(z(:) 2 (-))) (¢)=0,i=1,...,n

Similarly, we assume that G, := Dk o (f(z() 2" (), fork=1,....n, fulfil
G & C (e1],€) and Gy € C(e1,€) and (Di (- )+ () ) =0
i=1,.,n

Then
bi(}/y F(2)dz— f ()2 (0)] < (b_a)r((nlﬂ)aﬂ). (45)
{<g<b>—g<><"“ 2] = el RCIOIEAO)] (S
(00— a(a) " o) [0 e, )

Proof. By Theorem 17. m
We continue with

11



Theorem 21 Let 0 < a < 1, n € N, f(2(1)2' () € C*([a,}],C), ¢ €
[a,b]. Assume that F¢ = D*_, (f(2(-))2'(-), for k = 1,..,n, fulfill F¢ €

c—se

C'([0,¢],©) and Fyy € Clad],©) and (D, (F ()7 () (©) = 0,
1=1,...,n
Similarly, we assume that G, = Dfﬁ o (f ()2 (), fork =1,...,n, fulfill

Gf € C1([6,1],C) and G5y, € C (e,b],©) and (D (F (2 ()2 () (e) =0,
1=1,..,n
Then

1
b—a)L(n+1Da+1)

1 ,
e ) 1@E- 0@

<

(46)

{@-e"0-a s ueor o, ¢

00, [c,b]
(e —e) " (e - HDC”*;’“(f(z<->>Z’<'>>Hm,[a,c]}'

Proof. By Theorem 18. m

Finally and additionally, we choose that a =7+ ¢, b = 27 — ¢, where € > 0
is small, and ¢ € [r +¢&,27 —¢]. So here it is z(m +¢) =u, 2 (2r —e) = w and
z (¢) = v, where u,w,u € C.

‘We present

Theorem 22 Let 0 < a < 1, n € N, f(2() 2 (-) € CY([r +¢,2n —¢],C),
e > 0 small, ¢ € [m+e,2m—e]. Assume that Ff := D (f(z(-) 2 (),
for k =1,...n, fulfill F¢ € C* ([7T+5,c],(C) and F il € C’([7r+5 c],C) and
(DE scos (f (2 () 2" (1)) () =0, i =1,.

Similarly, we assume that G5 := ijf cos ([ (2() 2" ("), for k = 1,..,n,

(
fulfill G§ € C' ([e, 2 — €] ,C) and GC_H € C’([c 21 —¢],C) and

(DZ?I(- cos (f (Z ()) 4 ())) (C) =0,71=1,.
Then

W_2€/ 2)dz— f () (0)

{(eos (2 — &) = cos¢) "I (27 — e — ) [ DELL (£ (2 () 2 ()

1
(mr—26)T((n+1)a+1)

(47)

<

00,[c,2m—¢]

(oosc = conr+2) " = m -2 o ey o) b

Proof. By Theorem 19. m

12
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