NORM INEQUALITIES FOR THE ERROR IN APPROXIMATING
ANALYTIC FUNCTIONS IN BANACH ALGEBRAS BY
COMPLEX CHORDS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let B be a unital Banach algebra, a € B, G be a convex domain of
Cwith o(a) CG, o, BE G, a# B and f: G — C is analytic on G. By using
the analytic functional calculus in B we can define the errors in approximating
analytic functions in Banach algebras by complex chords as follows

fl@B-a+fBle—a)

@y (a5, ) i= - (@)
and
5 (wo )= LD DE0)

In this paper we provide some norm inequalities involving the functions ® ¢ (a; @, 8)
and ® (a; a, B) defined above.

1. INTRODUCTION

Consider a function f : [a,b] — R and assume that it is bounded on [a,b]. The
chord that connects its end points A = (a, f (a)) and B = (b, f (b)) has the equation
1
dr ot =R, dy (@) = 2 [f (@) (b—2) + () (x—a)].
In [7], we introduced the error in approximating the value of the function f (z) by
dy¢ (x) with « € [a,b] by ®¢ (x), ie., Py (x) is defined by:

b—x r—a

(1) O () = e @)+ T F )~ f(2).
The following simple result, which provides a sharp upper bound for the case of
bounded functions, has been stated in [6] as an intermediate result needed to obtain
a Griiss type inequality:

If f:]a,b] = R is a bounded function with —co < m < f(z) < M < oo for any
x € [a,b], then

(1.2) B ()] < M —m.

The multiplicative constant 1 in front of M — m cannot be replaced by a smaller
quantity.

The case of convex functions has been considered in [6] in order to prove another
Griiss type inequality:
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If f:[a,b] — R is a convex function on [a,b], then

(b—z)(z—

(13) 0< @) < U= ) gt @)] < T a) [ 0) - £ ()]

] =

for any x € [a,b].

If the lateral derivatives f' (b) and f) (a) are finite, then the second inequality
and the constant % are sharp.

The following estimation result holds [7]:

Theorem 1. If f: [a,b] — R is of bounded variation, then

(14 |‘I’f(ff)|§<Z:Z>'\z/(f)+(z:z>'\b/(f)
3+ wgiﬁ%b}\/l;(f);
=)+ =) o+ (o)

b T b
GRS IAGERVAGIE
The first inequality in (1.4) is sharp. The constant % 18 best possible in the first
and third branches.

Corollary 1. If f : [a,b] — R is Ly-Lipschitzian on [a,z] and Lo-Lipschitzian on
[x,0], L1, Ls > 0, then
(b—z)(z—a)

b—a (L1+L2)§i(b_a)(L1+L2)

(1.5) [®y (2)] <
for any x € [a,b].
In particular, if f is L-Lipschitzian on [a,b], then
2(b—2z)(z—a) 1
b—a -2

The constants i, 2 and % are best possible.

(1.6) @ (2)] <

When more information on the derivative of the function is available, then we
can state the following results as well [7]:

Theorem 2. Assume that f : [a,b] — R is absolutely continuous on [a,b]. If [’ is
of bounded variation on [a,b], then

b b
(1.7 e VT ERIEAVITAY

where \/Z (f") denotes the total variation of f' on [a,b].
The inequalities are sharp and the constant i 1s best possible.

In order to extend some of these results for functions defined on Banach algebras,
we need the following preparation.

Let B be an algebra. An algebra norm on B is a map ||-|| : B—[0,c0) such that
(B,|I-]) is a normed space, and, further: ||ab|| < |la| ||b|| for any a,b € B. The
normed algebra (B, ||-||) is a Banach algebra if ||-|| is a complete norm. We assume
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that the Banach algebra is unital, this means that B has an identity 1 and that
11 = 1.

Let B be a unital algebra. An element a € B is invertible if there exists an
element b € B with ab = ba = 1. The element b is unique; it is called the inverse of
a and written ! or <. The set of invertible elements of B is denoted by Inv (B).
If a,b € Inv (B) then ab € Inv (B) and (ab)™' = b~ta~L.

For a unital Banach algebra we also have:

(i) If a € B and lim, o [|a”]|*/™ < 1, then 1 — a € Inv (B);
(ii) {a € B: |1 =b|| <1} C Inv (B);

(iii) Inv(B) is an open subset of B;

(iv) The map Inv (B) 3 a — a~! € Inv (B) is continuous.

For simplicity, we denote z1, where z € C and 1 is the identity of B, by z. The
resolvent set of a € B is defined by

pla):={z2€C: z—a€Inv(B)};
the spectrum of a is o (a) , the complement of p (a) in C, and the resolvent function
of ais R, : p(a) — Inv (B), Ry (2) := (2 —a)~". For each z, w € p (a) we have the
identity
Ry (w) — Ry (2) = (2 — w) Ry (2) Re (w) .
We also have that
o(a) C{zeC: |z| <|al}-

The spectral radius of a is defined as

v(a) =sup{|z|: z€0(a)}.
Let B a unital Banach algebra and a € B. Then
(i) The resolvent set p (a) is open in C;
(ii) For any bounded linear functionals X : B —C, the function Ao R, is analytic

on p(a);
(iii) The spectrum o (a) is compact and nonempty in C;

(iv) For each n € N and r > v (a), we have a" = - fIE\ L€ (6 - )"t de;
(v) We have v (a) = limy,_.o [|a™]"/™ .

Let B be a unital Banach algebra, @ € B and G be a domain of C with o (a) C G.
If f: G — C is analytic on G, we define an element f (a) in B by

(1.8) =57 [ HO €0 i

where § C G is taken to be close rectifiable curve in G and such that o (a) C ins (),
the inside of 6.

It is well known (see for instance [3, pp. 201-204]) that f (a) does not depend
on the choice of § and the Spectral Mapping Theorem (SMT)

(1.9) o (f(a)) = f(o(a))
holds.

Let $ol(a) be the set of all the functions that are analytic in a neighborhood
of o (a). Note that $ol(a) is an algebra where if f, g € $Hol(a) and f and g have
domains D (f) and D (g), then fg and f + ¢ have domain D (f) N D (g). $Hol(a) is
not, however a Banach algebra.
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The following result is known as the Riesz Functional Calculus Theorem [3, p.
201-203]:

Theorem 3. Let B a unital Banach algebra and a € B.

(a) The map f — f(a) of Hol(a) — B is an algebra homomorphism.
(b) If f(2) = Ypep awz® has radius of convergence r > v (a), then f € $Hol(a)
and f (a) =Y ey cxak.
c) If f(2) =1, then f(a) = 1.
(d) If f(z) =z for all z, f (a) = a.
Y If f, f1,-ees froeer are analytic on G, o (a) C G and f, (z) — f(2) uniformly
on compact subsets of G, then || fn (a) — f (a)]] = 0 as n — oco.

(f) The Riesz Functional Calculus is unique and if a, b are commuting elements
in B and f € $Hol(a), then f(a)b=>bf (a).

For some recent norm inequalities for functions on Banach algebras, see [1]-[2]
and [10]-[16].

Let B be a unital Banach algebra, a € B and G be a convex domain of C with
c(a) C G. If f: G — C is analytic on G and «, § € G with a # [,then we
can define the errors in approximating analytic functions in Banach algebras by
complex chords as follows

fla)(B—a)+ f(B)(a—a)

¥ (@0 ) = L - f(@
and
&)f(a;&,ﬂ) . f(a)(a’_aﬁ)ti(ﬁ)(ﬁ_a) —f(a).

Motivated by the above results, in this paper we provide some norm inequalities
involving the functions @ (a; @, 8) and ®; (a; o, B) defined above.

2. SOME IDENTITIES
We have the following simple identities:

Theorem 4. Let B be a unital Banach algebra, a € B and G be a conver domain
of C with o (a) C G. If f : G — C is analytic on G, then for all o, € G with
a # B, we have

~ 1 5 1 ,
(2.1) éf(a,a,ﬁ)zﬁ_a(ﬁ—a)/()f((l—t)a+tg)dt
1 o [N
e Gl /0 F(1—t)a+ta)dt

and
(2.2) @y (a; e, )

_B-aa=a) [Ty (1 atta

- O [ as ) = 1 (= Dk ta)]

Proof. Due to the convexity of D, for any £, v € D we can define the function
0ep [0,1] = R by ¢, (t) := f((1 —t)§ +tv). The function ¢, , is differentiable
on (0,1) and

d‘Pg,u (t)

S = (= F (1= )+ ) fort € (0,1).
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We have
FW)=f€)=we, (1) =9, (0) = /0 dﬁpgc,ll; (t) gt
1
- (fo)/o (A=t +tv)dt
namely
(2.3) 0= 1O+ w=9 [ r-nerma

for any &, v € D.
Therefore, by (2.3) we get

(2.4) f(a)—f(fH(aé“)/olf’((lt)£+ta)dt
and

(25) f(ﬂ)=f(€)+(ﬁ—£)/01f’((1—t)§+tﬁ)dt
for any & € D.

If we multiply (2.4) and (2.5) by A and 1 — A and add, we get the following
identity that is of interest in itself

(26) Af(a)+(1-N)f(8)— 1)
1 1
:A(afé)/o f’((l*t)£+ta)dt+(1fk)(ﬁf§)/0 £ =€+ tp) dt

for any £ € D.
Ifwetake)\*g,— thenlf)\*g_—iandby(lfi)weget
§— B¢
@n = f()+5 af(ﬁ) G
)2 '
5 ; f'( t)E+ta)d
for any £ € D.
Also, ifwetake)\:%,thenl—)\:%and by (2.6) we get
p—-¢ §-a
@8 i@+t -1
_B=9( —a[ _ _
- /f 1€+ 15) dt /f (1= 1)+ ta) dt|,

for any £ € D.
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From the identity (2.7) we get

[ L [e-ae-o e+ 22 L

(2:9) B—a2mifs B — a2mi

A(ﬁ—f)(ﬁ—a)_ldf

- [FO €0 e
:5;% 5(5—5)2 </01f’((1—t)§+t6)dt> (€ —a)~tde
‘giaﬁ 6<€—a)2 (/Olf/((l—t)§+ta)dt> (€ —a)"tde
=ﬁia/01 (5 [6-0*ra-0e+ (- )
_gia/ol (;m./5<£—a>2f'<<1—t)gm)(&—a)1d§>dt,

where for the last equality we used Fubini’s theorem.
Since the functions

Gom (B—8)°f(1-t)E+tB)eC
and
Go— (B—6)°f(1-t)E+1tB)eC

are analytic on G for all o, 8 € G and t € [0,1], then by the analytic functional
calculus we have

s [(B-er (@ -neris) - de= =/ (1-1a+)
and
P (E-)’f(A-te+ta)(E-a) = (a-a)’ f(1-tatta).

Also, we have

1 . 1
_ _ dé = a — . —
o [0 dmama o |
and by (2.9) we get (2.1).
The identity (2.2) follows in a similar way from (2.8) and we omit the details. O

B-&(E—a) tde=B—a

We have the following perturbed versions of the identities above:

Corollary 2. With the assumptions of Theorem 4 and if b, ¢ € B, then

(2.10) E)f(a;a”@)_B%a(ﬁ_a)zb—i_ﬁia(a_ayc
—L —a)? ' / —Ha B
“5 )/o[f (L—t)a+tB) —bldt
1

1
(@0 [ 17 (1= ta+t0)=dds

—
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and

(2.11) @y (a;0,8) —

G- ,_ (g

B - f—a
1 1
x[/o [f ((1—t)a+t,8)—b]dt—/0 [f'(1—-t)a+ta)—cldt].

In particular, for c = b, we have

(2.12) ﬁv)f(a;a,ﬁ)+2(ﬁ—a) (a— ﬁ—;—a)b

- ! B - > [! ! —t)a+ -
B—a( a) /o [f (=1 t3) — b dt
: —a)? 1 ! —t)a+ta) —
5_0[(0‘ )/O[f((l t) ta) — bl dt
and
(—Ea)(aa)

(2.13) @ (a;0,8) = 3-a

1 1
"((1- —bldt — "(1- —bldt| .
| [ r-nasm g [1Q-nare -
Remark 1. If we take b= f'(8) and c = f' (a) in (2.10) and (2.11), then we get

@11) Brwas) -T2 -0t L1 0oy
1 5 [t
-1 (5-a / (L= t)a+8)— f (B)]dt
0

8-«
! 2 (M- a+ta)— f («
- a=a) [ (= Dat i)~ f (@)
and
215) @) - L0 5000
_B-a)a-a)
b8 —a

[/ [f’((l—t)a+t6)—f’(B)]dt—/O (1= t)a+ta) — ' ()] dt] .

If we take b= f'(a) in (2.12) and (2.13), then we get

(2.16) B (a5, ) +2(5 — ) (a— ﬂ;“) f' ()

1 —a)? ! / “Ha — ' (a
- )/O[f((l t)a+t6) - f ()] dt

1

—

1
(a— ) / (1= t)a+ta) — f (a)]dt
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and
(6 —a)(a—a)
b —«
X[A[ful—wa+uﬂ—fwwmv—A[ﬁ«l—wa+uw—f%@wt.

(2.17) @ (a;0,8) =

3. NORM INEQUALITIES

‘We have:

Theorem 5. Let B be a unital Banach algebra, a € B and G be a convexr domain
of C with o (a) C G. If f : G — C is analytic on G, then for all o, € G with
a # B, we have

@1)Héﬂmmmﬂ<wfan—MQAWu%u—wa+wmﬁ

na—mf/\u%u—wa+mmw

*\
<B= |||/5’—a|| sup If (1 —t)a+1tB)|
1
B al la — a? Sup I/ (1 —t)a+ta)|

SMmax{ sup ||f (1 —t)a+tB)|, sup ||f'((1—t)a+ta)||}

t€[0,1] t€[0,1]

x 18 = all* + Jla - al?]

and

(3-2) ||<I>f (a a,ﬂ)H

”/|u fatt8)— £ ((1—t)a+ ta)] dt

||5fa||||a all/ N (=t a+tB)] + f (1 —t)a+ta)]]dt

< w sup [[[f" (L =t)a+tB)||+[If (1 —t)a+ta)l].
|6 — «af t€[0,1]
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Proof. By taking the norm in the identity (2.1), we get

s @an| < s 6o [ £ @ -narinal
bt a2 [ 7 -nas i af
< o fo-a?| | 7a-varma
+ a7 - na o) af
< s al? [ 17 - e+l
+|ﬂ_1a|||a—a|2/01 1 (1= t)a + ta)]| dt,

which proves the desired inequality (3.1).
The inequality (3.2) follows by (2.2). O

Corollary 3. With the assumptions of Theorem & and if

1l = sup  [[f' (1 —t)a+ta)] < oo,
(t,a)€[0,1]x G
then
T 1 2 2
3.3 H(P a;a,ﬂHgi Il B—al +la—al.
(3.3) r@eB)|| S o I g (18— al + la — ol

Corollary 4. With the assumptions of Theorem & and if
If (A =t)a+t8) = f (1 —t)a+ta)| <tLag|B —al fortel0,1],

then
1 1
(3.4) 125 (a;0, )l < 5 (B —a) (a—a)| Las < 5 118 ~alllla—al La,s.

Let a € B and G be a convex domain of C with ¢ (a) C G and A € G. We define
Gro :={(1—t) X+ ta | with t € [0,1]}. We observe that G , is a convex subset
in B for every A € G.

We say that the function ¢ : G , — B is Lipschitzian on G , with the constant
Lyq >0, if for all z, y € G, we have

lg () =g Wl < Lxallz =yl
This is equivalent to
(3.5) lg(L=t)A+ta) —g((1 = s) A+ sa)l| < Laalt —s[lla= Al

for all ¢, s € [0,1]. We write this by g € £ipy,  (Gr.a)-
Let h : G — C be an analytic function on G. For t € [0,1] and A € G, the
auxiliary function hy x defined on G by hy x (§) := h ((1 — ) A + t£) is also analytic
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and using the analytic functional calculus (1.8) for the element a € B, we can define

(3.6) E«1—wx+ug:JMAmyzéé/VMAgng—@*Hg

Y

211

:i/h(u_mﬁg)(g—a)—ldf.

We say that the scalar function h € Lipy,, | (Ga,q) if its extension h: Gro.— B
satisfies the Lipschitz condition (3.5).

Theorem 6. Let B be a unital Banach algebra, a € B and G be a convexr domain
of C with o (a) C G. If f : G — C is analytic on G, o, f € G with o #  and
/e Lipyr,,. . (Gra)N Lipr, (Ga,a) for some Ly,q, Lgq > 0, then we have

[ (B) L)

(3.7) H(ff(a;a,ﬁ)ﬂ (B—a)+ ) 0 o)
1 5 ,
§2W—mDW*M|%ﬂ+mfangw}
1
< 2B —al max {Lga; La,a} [Hﬁ —al® +lla— af?

and

f1(B) = f'(a)

(3.8) chf (a;c, B) — (B—a)(a—a)

b —«
[(8—a)(a—a]
< S8 — all L + o - o Lo
(8 —a)(a—a
T max {Lg.a; La,a} [[|6 — all + [[a — o] .

Proof. From the identity (2.14) and by the fact that f € Lip;,_ (Gra)NLipy, , (Gra),
we have

o @as) = 2ol -0 4 o f @ (0o
< A fo-ar [ 1@ -n0sm) -7 @)1
e (a—a)z/ol[f’((l—t)a+ta)—f’<a)]dtH
< a6 (1= t)a+t5) - f(ﬁ)]dtH

+MH(“

(1-t)a+ta)—f (a)]dt”
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1 2 ! / /
<z ——1B—d [ (A=t)a+t3)— f(B)]dt
1B —af 0

1
+ Iﬁiia\ la — aIIQ/O £/ (1= t)a+ta) — f' (o) dt

1
a||3Lﬁ,a/O( )dt+| a||/ (1-1)d

IBI

1 [ 3
=——|||B—qal"Lg,g+|la—a La,a}
sTr—ar 18—l Lo+ | n
1 3 3
< ———max{Lg 4, Laag {Bfa +la — a },
38—l {Lg,ar Loyt |l °+| |
which proves (3.7).
The inequality (3.8) follows by (2.15). O

Theorem 7. With the assumptions of Theorem 7 we have

39 i @an 20— (T -0) 1@

[18 = alf* Lp.a + lla = ol La.d]

<
< grma s L Lo} (18- alf + la—off
and
3.10) fos o)l < 1T 115 £+ o - ) 2]
< MO O v (L, Lo} 18—l + o]

Proof. By using the identity (2.16), we get after several steps, that

H§>f(a;a,5)+2(ﬁ—a) (a‘ ﬁ?) fl(a)”

< el [ 15 (- Da+19) -~ 7 @)l
~|B—q] 0

5 : IIGOZIIZ/O1 1F" (1 =t) a+te) — ' (a)] dt

= ﬂ a'3L,a+ a_a3La,a:|
< sr5—a (13—l Lo+ la=al

1 3 3
< — L avLaa - - )
< 575 —ap " s Lo} |18 = ol + o — ol

which proves (3.9).
The inequality (3.10) follows by the identity (2.17) and we omit the details. O
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4. SOME EXAMPLES FOR EXPONENTIAL

For the exponential function on the Banach algebra B we have

exp (@) (B —a) +exp (P) (a — )

(I)exp (a§a7ﬂ) = B_O‘

—exp (a)

and
exp (a) (a —a) +exp (B) (B —a)
b —«

EI;exp (a; «, ﬁ) =

where a € B, a, § € C and a # 5.
From the first inequality in (3.1) we have

— €xXp (a) ’

(4.1) )

@expaaﬁH_m 16 — al® / lexp (1= t)a + t8)]] dt

1 2/
4+ —la— exp ((1 —t)a+ ta)|| dt.
7ol | I ; llexp (1 —¢) )l

Observe that

llexp (ta + (1 —t) p)|| = [lexp [(1 — ¢) p exp (ta)[| = |exp [(1 — ¢) ]| [lexp (ta)||
— exp(1 — &) Re ] lexp (ta)]] < exp [(1 — ) Re ] exp (¢ [al)
=exp[(1 —t)Rep +t|al]

forall t €[0,1], p € C and a € B.
This implies that

1 1
[lewtasq-owlde < [ expl(t-tReu+taflae
0 0
{ exp(\la\l)*?P(Reu) if Rep # |all,

lall—Re p

exp ([lal) if Rep = [|af| .
Therefore, by (4.1) we get

(4.2) )

(5exp (a7 Ol7 /B)H
op(lel)-expRed) jf Re g £ |la

1 ol e
< —al 18— al®
exp ([|a]) if Res = |lall

exp(|la]]) —exp(Re a) -
% if Rea # ||al|

1 2
+ = lla—qf

— |
15 = exp (Jlaf)) if Rea = la].

Using the first inequality in (3.2) we have
(4.3)  [|Pexp (a; 0, )|

16— a) @ - )] ['
< WS [ exn (1= ) a +49) = exp (1 = Do+ 1)

Observe that
exp ((1—t)a+1tB) —exp((1—1t)a+ta)=lexp(¢B) — exp (ta)] [exp (1 — ) a] ,
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which implies that

(4.4) Jlexp((1 —t)a+1tB8) —exp ((1 —t)a+ta)]
= lexp (t8) — exp (ta)| [lexp [(1 = #) a]|| < |exp (£8) — exp ()| exp (1 —2) [[a]]

In the recent paper [11] we obtained the following norm inequality for the exponen-
tial function

1
(4.5) lexpy —expz| < [ly — / exp ([(1 = s)z + syl|) ds.
0
This implies that
1
(4.6) lexp (t8) —exp (ta)| < |8 — qf / exp [t|(1—s) B+ sal]lds
0

<t|f- a|/0 exp (1 - 8)¢|8] + st |a])] ds

expt|8] — exptlal _ |8 - al
t8—tlal 161 Iad

=t|8—q [exp (¢ |5]) — exp (t |a)]
and by (4.4) we get

llexp (1 —t)a+tB) —exp ((1 —t)a+ ta)||

< exp (1= )] = foxp (¢180) — exp (¢ )
- m fexp (1 — 1) lal] + ¢ |8]) — exp (1 — #) lal| +t|a])].

By integrating this inequality in [0, 1] we get

/O lexp (1= )@+ £8) — exp (1 — £) a + ta)| dt

7%704 1eX —t)|la — 1ex —1)||la e
< k| [ ew@ =0 tal+ elahar— [ exp -0 al + tlal)

_ 18-qf [expllall —exp|f] _ expllaf —expla]
18] = la| llall =15 llall = fed ’

provided [[a]| # [5], [la]l # |o -
Therefore by (4.3) we obtain:

(4.7) | Pexp (a5, B)|
< 1B =a)(a—a [GXP 18] —explall  exp|lal| —exp |a|}
- 18] = || 18] = [lall lal — |l
provided a € B, a, f € C and o # B, |lal] # |5], ||la]l # |-

Similar inequalities may be obtained by employing the other general results
above, however the details are not presented here.
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