
NORM INEQUALITIES FOR THE ERROR IN APPROXIMATING
ANALYTIC FUNCTIONS IN BANACH ALGEBRAS BY

COMPLEX CHORDS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let B be a unital Banach algebra, a 2 B, G be a convex domain of
C with � (a) � G; �; � 2 G, � 6= � and f : G! C is analytic on G. By using
the analytic functional calculus in B we can de�ne the errors in approximating
analytic functions in Banach algebras by complex chords as follows

�f (a;�; �) :=
f (�) (� � a) + f (�) (a� �)

� � �
� f (a)

and e�f (a;�; �) := f (�) (a� �) + f (�) (� � a)
� � �

� f (a) :

In this paper we provide some norm inequalities involving the functions �f (a;�; �)
and e�f (a;�; �) de�ned above.

1. Introduction

Consider a function f : [a; b] ! R and assume that it is bounded on [a; b] : The
chord that connects its end points A = (a; f (a)) and B = (b; f (b)) has the equation

df : [a; b]! R; df (x) =
1

b� a [f (a) (b� x) + f (b) (x� a)] :

In [7], we introduced the error in approximating the value of the function f (x) by
df (x) with x 2 [a; b] by �f (x) ; i.e.; �f (x) is de�ned by:

(1.1) �f (x) :=
b� x
b� a � f (a) +

x� a
b� a � f (b)� f (x) :

The following simple result, which provides a sharp upper bound for the case of
bounded functions, has been stated in [6] as an intermediate result needed to obtain
a Grüss type inequality:
If f : [a; b]! R is a bounded function with �1 < m � f (x) �M <1 for any

x 2 [a; b] ; then

(1.2) j�f (x)j �M �m:

The multiplicative constant 1 in front of M �m cannot be replaced by a smaller
quantity.
The case of convex functions has been considered in [6] in order to prove another

Grüss type inequality:
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2 S. S. DRAGOMIR

If f : [a; b]! R is a convex function on [a; b] ; then

(1.3) 0 � �f (x) �
(b� x) (x� a)

b� a
�
f 0� (b)� f 0+ (a)

�
� 1

4
(b� a)

�
f 0� (b)� f 0+ (a)

�
for any x 2 [a; b] :
If the lateral derivatives f 0� (b) and f

0
+ (a) are �nite, then the second inequality

and the constant 1
4 are sharp.

The following estimation result holds [7]:

Theorem 1. If f : [a; b]! R is of bounded variation, then

j�f (x)j �
�
b� x
b� a

�
�
x_
a

(f) +

�
x� a
b� a

�
�
b_
x

(f)(1.4)

�

8>>>>>>>><>>>>>>>>:

h
1
2 +

���x� a+b
2

b�a

���iWba (f) ;h�
b�x
b�a

�p
+
�
x�a
b�a

�pi 1p h
(
Wx
a (f))

q
+
�Wb

x (f)
�qi 1q

if p > 1; 1
p +

1
q = 1;

1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)��� :
The �rst inequality in (1.4) is sharp. The constant 1

2 is best possible in the �rst
and third branches.

Corollary 1. If f : [a; b] ! R is L1-Lipschitzian on [a; x] and L2-Lipschitzian on
[x; b] ; L1; L2 > 0; then

(1.5) j�f (x)j �
(b� x) (x� a)

b� a (L1 + L2) �
1

4
(b� a) (L1 + L2)

for any x 2 [a; b] :
In particular, if f is L-Lipschitzian on [a; b], then

(1.6) j�f (x)j �
2 (b� x) (x� a)

b� a L � 1

2
(b� a)L:

The constants 1
4 ; 2 and

1
2 are best possible.

When more information on the derivative of the function is available, then we
can state the following results as well [7]:

Theorem 2. Assume that f : [a; b]! R is absolutely continuous on [a; b] : If f 0 is
of bounded variation on [a; b] ; then

(1.7) j�f (x)j �
(x� a) (b� x)

b� a �
b_
a

(f 0) � 1

4
(b� a)

b_
a

(f 0) ;

where
Wb
a (f

0) denotes the total variation of f 0 on [a; b] :
The inequalities are sharp and the constant 14 is best possible.

In order to extend some of these results for functions de�ned on Banach algebras,
we need the following preparation.
Let B be an algebra. An algebra norm on B is a map k�k : B![0;1) such that

(B; k�k) is a normed space, and, further: kabk � kak kbk for any a; b 2 B: The
normed algebra (B; k�k) is a Banach algebra if k�k is a complete norm. We assume
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that the Banach algebra is unital, this means that B has an identity 1 and that
k1k = 1:
Let B be a unital algebra. An element a 2 B is invertible if there exists an

element b 2 B with ab = ba = 1: The element b is unique; it is called the inverse of
a and written a�1 or 1

a : The set of invertible elements of B is denoted by Inv (B).
If a; b 2 Inv (B) then ab 2 Inv (B) and (ab)�1 = b�1a�1:
For a unital Banach algebra we also have:

(i) If a 2 B and limn!1 kank1=n < 1; then 1� a 2 Inv (B);
(ii) fa 2 B: k1� bk < 1g � Inv (B);
(iii) Inv (B) is an open subset of B;
(iv) The map Inv (B) 3 a 7�! a�1 2 Inv (B) is continuous.
For simplicity, we denote z1; where z 2 C and 1 is the identity of B, by z: The

resolvent set of a 2 B is de�ned by
� (a) := fz 2 C : z � a 2 Inv (B)g ;

the spectrum of a is � (a) ; the complement of � (a) in C, and the resolvent function
of a is Ra : � (a)! Inv (B), Ra (z) := (z � a)�1 : For each z; w 2 � (a) we have the
identity

Ra (w)�Ra (z) = (z � w)Ra (z)Ra (w) :
We also have that

� (a) � fz 2 C : jzj � kakg :
The spectral radius of a is de�ned as

� (a) = sup fjzj : z 2 � (a)g :
Let B a unital Banach algebra and a 2 B. Then
(i) The resolvent set � (a) is open in C;
(ii) For any bounded linear functionals � : B !C, the function ��Ra is analytic

on � (a) ;
(iii) The spectrum � (a) is compact and nonempty in C;
(iv) For each n 2 N and r > � (a) ; we have an = 1

2�i

R
j�j=r �

n (� � a)�1 d�;
(v) We have � (a) = limn!1 kank1=n :
Let B be a unital Banach algebra, a 2 B and G be a domain of C with � (a) � G:

If f : G! C is analytic on G, we de�ne an element f (a) in B by

(1.8) f (a) :=
1

2�i

Z
�

f (�) (� � a)�1 d�;

where � � G is taken to be close recti�able curve in G and such that � (a) � ins (�) ;
the inside of �:
It is well known (see for instance [3, pp. 201-204]) that f (a) does not depend

on the choice of � and the Spectral Mapping Theorem (SMT)

(1.9) � (f (a)) = f (� (a))

holds.
Let Hol (a) be the set of all the functions that are analytic in a neighborhood

of � (a) : Note that Hol (a) is an algebra where if f; g 2 Hol (a) and f and g have
domains D (f) and D (g), then fg and f + g have domain D (f)\D (g). Hol (a) is
not, however a Banach algebra.
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The following result is known as the Riesz Functional Calculus Theorem [3, p.
201-203]:

Theorem 3. Let B a unital Banach algebra and a 2 B.
(a) The map f 7! f (a) of Hol (a)! B is an algebra homomorphism.
(b) If f (z) =

P1
k=0 �kz

k has radius of convergence r > � (a) ; then f 2 Hol (a)
and f (a) =

P1
k=0 �ka

k:
(c) If f (z) � 1; then f (a) = 1:
(d) If f (z) = z for all z; f (a) = a:
(e) If f , f1; :::; fn::: are analytic on G; � (a) � G and fn (z)! f (z) uniformly

on compact subsets of G; then kfn (a)� f (a)k ! 0 as n!1:
(f) The Riesz Functional Calculus is unique and if a; b are commuting elements

in B and f 2 Hol (a) ; then f (a) b = bf (a) :
For some recent norm inequalities for functions on Banach algebras, see [1]-[2]

and [10]-[16].
Let B be a unital Banach algebra, a 2 B and G be a convex domain of C with

� (a) � G: If f : G ! C is analytic on G and �; � 2 G with � 6= �;then we
can de�ne the errors in approximating analytic functions in Banach algebras by
complex chords as follows

�f (a;�; �) :=
f (�) (� � a) + f (�) (a� �)

� � � � f (a)

and e�f (a;�; �) := f (�) (a� �) + f (�) (� � a)
� � � � f (a) :

Motivated by the above results, in this paper we provide some norm inequalities
involving the functions �f (a;�; �) and e�f (a;�; �) de�ned above.

2. Some Identities

We have the following simple identities:

Theorem 4. Let B be a unital Banach algebra, a 2 B and G be a convex domain
of C with � (a) � G: If f : G ! C is analytic on G, then for all �; � 2 G with
� 6= �; we have

(2.1) e�f (a;�; �) = 1

� � � (� � a)
2
Z 1

0

f 0 ((1� t) a+ t�) dt

� 1

� � � (a� �)
2
Z 1

0

f 0 ((1� t) a+ t�) dt

and

(2.2) �f (a;�; �)

=
(� � a) (a� �)

� � �

Z 1

0

[f 0 ((1� t) a+ t�)� f 0 ((1� t) a+ t�)] dt:

Proof. Due to the convexity of D, for any �; � 2 D we can de�ne the function
'�;� : [0; 1]! R by '�;� (t) := f ((1� t) � + t�) : The function '�;� is di¤erentiable
on (0; 1) and

d'�;� (t)

dt
= (� � �) f 0 ((1� t) � + t�) for t 2 (0; 1) :
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We have

f (�)� f (�) = '�;� (1)� '�;� (0) =
Z 1

0

d'�;� (t)

dt
dt

= (� � �)
Z 1

0

f 0 ((1� t) � + t�) dt

namely

(2.3) f (�) = f (�) + (� � �)
Z 1

0

f 0 ((1� t) � + t�) dt

for any �; � 2 D:
Therefore, by (2.3) we get

(2.4) f (�) = f (�) + (�� �)
Z 1

0

f 0 ((1� t) � + t�) dt

and

(2.5) f (�) = f (�) + (� � �)
Z 1

0

f 0 ((1� t) � + t�) dt

for any � 2 D:
If we multiply (2.4) and (2.5) by � and 1 � � and add, we get the following

identity that is of interest in itself

(2.6) �f (�) + (1� �) f (�)� f (�)

= � (�� �)
Z 1

0

f 0 ((1� t) � + t�) dt+ (1� �) (� � �)
Z 1

0

f 0 ((1� t) � + t�) dt

for any � 2 D:
If we take � = ���

��� , then 1� � =
���
��� and by (2.6) we get

(2.7)
� � �
� � �f (�) +

� � �
� � �f (�)� f (�)

=
(� � �)2

� � �

Z 1

0

f 0 ((1� t) � + t�) dt� (� � �)
2

� � �

Z 1

0

f 0 ((1� t) � + t�) dt;

for any � 2 D:
Also, if we take � = ���

��� ; then 1� � =
���
��� and by (2.6) we get

(2.8)
� � �
� � �f (�) +

� � �
� � �f (�)� f (�)

=
(� � �) (� � �)

� � �

�Z 1

0

f 0 ((1� t) � + t�) dt�
Z 1

0

f 0 ((1� t) � + t�) dt
�
;

for any � 2 D:
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From the identity (2.7) we get

(2.9)
f (�)

� � �
1

2�i

Z
�

(� � �) (� � a)�1 d� + f (�)

� � �
1

2�i

Z
�

(� � �) (� � a)�1 d�

� 1

2�i

Z
�

f (�) (� � a)�1 d�

=
1

� � �
1

2�i

Z
�

(� � �)2
�Z 1

0

f 0 ((1� t) � + t�) dt
�
(� � a)�1 d�

� 1

� � �
1

2�i

Z
�

(� � �)2
�Z 1

0

f 0 ((1� t) � + t�) dt
�
(� � a)�1 d�

=
1

� � �

Z 1

0

�
1

2�i

Z
�

(� � �)2 f 0 ((1� t) � + t�) (� � a)�1 d�
�
dt

� 1

� � �

Z 1

0

�
1

2�i

Z
�

(� � �)2 f 0 ((1� t) � + t�) (� � a)�1 d�
�
dt;

where for the last equality we used Fubini�s theorem.
Since the functions

G 37! (� � �)2 f 0 ((1� t) � + t�) 2 C

and

G 37! (� � �)2 f 0 ((1� t) � + t�) 2 C
are analytic on G for all �; � 2 G and t 2 [0; 1] ; then by the analytic functional
calculus we have

1

2�i

Z
�

(� � �)2 f 0 ((1� t) � + t�) (� � a)�1 d� = (� � a)2 f 0 ((1� t) a+ t�)

and

1

2�i

Z
�

(� � �)2 f 0 ((1� t) � + t�) (� � a)�1 d� = (a� �)2 f 0 ((1� t) a+ t�) :

Also, we have

1

2�i

Z
�

(� � �) (� � a)�1 d� = a� �; 1

2�i

Z
�

(� � �) (� � a)�1 d� = � � a

and by (2.9) we get (2.1).
The identity (2.2) follows in a similar way from (2.8) and we omit the details. �

We have the following perturbed versions of the identities above:

Corollary 2. With the assumptions of Theorem 4 and if b; c 2 B, then

(2.10) e�f (a;�; �)� 1

� � � (� � a)
2
b+

1

� � � (a� �)
2
c

=
1

� � � (� � a)
2
Z 1

0

[f 0 ((1� t) a+ t�)� b] dt

� 1

� � � (a� �)
2
Z 1

0

[f 0 ((1� t) a+ t�)� c] dt
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and

(2.11) �f (a;�; �)�
(� � a) (a� �)

� � � (b� c) = (� � a) (a� �)
� � �

�
�Z 1

0

[f 0 ((1� t) a+ t�)� b] dt�
Z 1

0

[f 0 ((1� t) a+ t�)� c] dt
�
:

In particular, for c = b; we have

(2.12) e�f (a;�; �) + 2 (� � �)�a� � + �
2

�
b

=
1

� � � (� � a)
2
Z 1

0

[f 0 ((1� t) a+ t�)� b] dt

� 1

� � � (a� �)
2
Z 1

0

[f 0 ((1� t) a+ t�)� b] dt

and

(2.13) �f (a;�; �) =
(� � a) (a� �)

� � �

�
�Z 1

0

[f 0 ((1� t) a+ t�)� b] dt�
Z 1

0

[f 0 ((1� t) a+ t�)� b] dt
�
:

Remark 1. If we take b = f 0 (�) and c = f 0 (�) in (2.10) and (2.11), then we get

(2.14) e�f (a;�; �)� f 0 (�)

� � � (� � a)
2
+
f 0 (�)

� � � (a� �)
2

=
1

� � � (� � a)
2
Z 1

0

[f 0 ((1� t) a+ t�)� f 0 (�)] dt

� 1

� � � (a� �)
2
Z 1

0

[f 0 ((1� t) a+ t�)� f 0 (�)] dt

and

(2.15) �f (a;�; �)�
f 0 (�)� f 0 (�)

� � � (� � a) (a� �)

=
(� � a) (a� �)

� � �

�
�Z 1

0

[f 0 ((1� t) a+ t�)� f 0 (�)] dt�
Z 1

0

[f 0 ((1� t) a+ t�)� f 0 (�)] dt
�
:

If we take b = f 0 (a) in (2.12) and (2.13), then we get

(2.16) e�f (a;�; �) + 2 (� � �)�a� � + �
2

�
f 0 (a)

=
1

� � � (� � a)
2
Z 1

0

[f 0 ((1� t) a+ t�)� f 0 (a)] dt

� 1

� � � (a� �)
2
Z 1

0

[f 0 ((1� t) a+ t�)� f 0 (a)] dt
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and

(2.17) �f (a;�; �) =
(� � a) (a� �)

� � �

�
�Z 1

0

[f 0 ((1� t) a+ t�)� f 0 (a)] dt�
Z 1

0

[f 0 ((1� t) a+ t�)� f 0 (a)] dt
�
:

3. Norm Inequalities

We have:

Theorem 5. Let B be a unital Banach algebra, a 2 B and G be a convex domain
of C with � (a) � G: If f : G ! C is analytic on G, then for all �; � 2 G with
� 6= �; we have

(3.1)



e�f (a;�; �)


 � 1

j� � �j k� � ak
2
Z 1

0

kf 0 ((1� t) a+ t�)k dt

+
1

j� � �j ka� �k
2
Z 1

0

kf 0 ((1� t) a+ t�)k dt

� 1

j� � �j k� � ak
2
sup
t2[0;1]

kf 0 ((1� t) a+ t�)k

+
1

j� � �j ka� �k
2
sup
t2[0;1]

kf 0 ((1� t) a+ t�)k

� 1

j� � �j max
(
sup
t2[0;1]

kf 0 ((1� t) a+ t�)k ; sup
t2[0;1]

kf 0 ((1� t) a+ t�)k
)

�
h
k� � ak2 + ka� �k2

i

and

(3.2) k�f (a;�; �)k

� k(� � a) (a� �)k
j� � �j

Z 1

0

kf 0 ((1� t) a+ t�)� f 0 ((1� t) a+ t�)k dt

� k� � ak ka� �k
j� � �j

Z 1

0

[kf 0 ((1� t) a+ t�)k+ kf 0 ((1� t) a+ t�)k] dt

� k� � ak ka� �k
j� � �j sup

t2[0;1]
[kf 0 ((1� t) a+ t�)k+ kf 0 ((1� t) a+ t�)k] :
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Proof. By taking the norm in the identity (2.1), we get




e�f (a;�; �)


 � 1

j� � �j





(� � a)2 Z 1

0

f 0 ((1� t) a+ t�) dt






+
1

j� � �j





(a� �)2 Z 1

0

f 0 ((1� t) a+ t�) dt






� 1

j� � �j




(� � a)2






Z 1

0

f 0 ((1� t) a+ t�) dt






+
1

j� � �j




(a� �)2






Z 1

0

f 0 ((1� t) a+ t�) dt






� 1

j� � �j k� � ak
2
Z 1

0

kf 0 ((1� t) a+ t�)k dt

+
1

j� � �j ka� �k
2
Z 1

0

kf 0 ((1� t) a+ t�)k dt;

which proves the desired inequality (3.1).
The inequality (3.2) follows by (2.2). �

Corollary 3. With the assumptions of Theorem 5 and if

kf 0ka;G := sup
(t;�)2[0;1]�G

kf 0 ((1� t) a+ t�)k <1;

then

(3.3)



e�f (a;�; �)


 � 1

j� � �j kf
0ka;G

h
k� � ak2 + ka� �k2

i
:

Corollary 4. With the assumptions of Theorem 5 and if

kf 0 ((1� t) a+ t�)� f 0 ((1� t) a+ t�)k � tL�;� j� � �j for t 2 [0; 1] ;

then

(3.4) k�f (a;�; �)k �
1

2
k(� � a) (a� �)kL�;� �

1

2
k� � ak ka� �kL�;� :

Let a 2 B and G be a convex domain of C with � (a) � G and � 2 G: We de�ne
G�;a := f(1� t)�+ ta j with t 2 [0; 1]g : We observe that G�;a is a convex subset
in B for every � 2 G:
We say that the function g : G�;a ! B is Lipschitzian on G�;a with the constant

L�;a > 0; if for all x; y 2 G�;a we have

kg (x)� g (y)k � L�;a kx� yk :

This is equivalent to

(3.5) kg ((1� t)�+ ta)� g ((1� s)�+ sa)k � L�;a jt� sj ka� �k

for all t; s 2 [0; 1] : We write this by g 2 LipL�;a (G�;a) :
Let h : G ! C be an analytic function on G. For t 2 [0; 1] and � 2 G, the

auxiliary function ht;� de�ned on G by ht;� (�) := h ((1� t)�+ t�) is also analytic
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and using the analytic functional calculus (1.8) for the element a 2 B, we can de�ne

eh ((1� t)�+ ta) := ht;� (a) = 1

2�i

Z



ht;� (�) (� � a)�1 d�(3.6)

=
1

2�i

Z



h ((1� t)�+ t�) (� � a)�1 d�:

We say that the scalar function h 2 LipL�;a (G�;a) if its extension eh : G�;a ! B

satis�es the Lipschitz condition (3.5).

Theorem 6. Let B be a unital Banach algebra, a 2 B and G be a convex domain
of C with � (a) � G: If f : G ! C is analytic on G, �; � 2 G with � 6= � and
f 0 2 LipL�;a (G�;a) \ LipL�;a (G�;a) for some L�;a; L�;a > 0; then we have

(3.7)





e�f (a;�; �)� f 0 (�)

� � � (� � a)
2
+
f 0 (�)

� � � (a� �)
2






� 1

2 j� � �j

h
k� � ak3 L�;a + ka� �k3 L�;a

i
� 1

2 j� � �j max fL�;a; L�;ag
h
k� � ak3 + ka� �k3

i
and

(3.8)





�f (a;�; �)� f 0 (�)� f 0 (�)� � � (� � a) (a� �)






� k(� � a) (a� �)k
2 j� � �j [k� � akL�;a + ka� �kL�;a]

� k(� � a) (a� �)k
2 j� � �j max fL�;a; L�;ag [k� � ak+ ka� �k] :

Proof. From the identity (2.14) and by the fact that f 0 2 LipL�;a (G�;a)\LipL�;a (G�;a) ;
we have





e�f (a;�; �)� 1

� � �f
0 (�) (� � a)2 + 1

� � �f
0 (�) (a� �)2






� 1

j� � �j





(� � a)2 Z 1

0

[f 0 ((1� t) a+ t�)� f 0 (�)] dt






+
1

j� � �j





(a� �)2 Z 1

0

[f 0 ((1� t) a+ t�)� f 0 (�)] dt






� 1

j� � �j




(� � a)2






Z 1

0

[f 0 ((1� t) a+ t�)� f 0 (�)] dt






+
1

j� � �j




(a� �)2






Z 1

0

[f 0 ((1� t) a+ t�)� f 0 (�)] dt
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� 1

j� � �j k� � ak
2
Z 1

0

kf 0 ((1� t) a+ t�)� f 0 (�)k dt

+
1

j� � �j ka� �k
2
Z 1

0

kf 0 ((1� t) a+ t�)� f 0 (�)k dt

� 1

j� � �j k� � ak
3
L�;a

Z 1

0

(1� t) dt+ 1

j� � �j ka� �k
3
Z 1

0

(1� t) dt

=
1

2 j� � �j

h
k� � ak3 L�;a + ka� �k3 L�;a

i
� 1

2 j� � �j max fL�;a; L�;ag
h
k� � ak3 + ka� �k3

i
;

which proves (3.7).
The inequality (3.8) follows by (2.15). �

Theorem 7. With the assumptions of Theorem 7 we have

(3.9)





e�f (a;�; �)� 2 (� � �)�� + �2 � a
�
f 0 (a)






� 1

2 j� � �j

h
k� � ak3 L�;a + ka� �k3 L�;a

i
� 1

2 j� � �j max fL�;a; L�;ag
h
k� � ak3 + ka� �k3

i
and

(3.10) k�f (a;�; �)k �
k(� � a) (a� �)k

2 j� � �j [k� � akL�;a + ka� �kL�;a]

� k(� � a) (a� �)k
2 j� � �j max fL�;a; L�;ag [k� � ak+ ka� �k] :

Proof. By using the identity (2.16), we get after several steps, that



e�f (a;�; �) + 2 (� � �)�a� � + �2
�
f 0 (a)






� 1

j� � �j k� � ak
2
Z 1

0

kf 0 ((1� t) a+ t�)� f 0 (a)k dt

+
1

j� � �j ka� �k
2
Z 1

0

kf 0 ((1� t) a+ t�)� f 0 (a)k dt

� 1

2 j� � �j

h
k� � ak3 L�;a + ka� �k3 L�;a

i
� 1

2 j� � �j max fL�;a; L�;ag
h
k� � ak3 + ka� �k3

i
;

which proves (3.9).
The inequality (3.10) follows by the identity (2.17) and we omit the details. �
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4. Some Examples for Exponential

For the exponential function on the Banach algebra B we have

�exp (a;�; �) :=
exp (�) (� � a) + exp (�) (a� �)

� � � � exp (a)

and e�exp (a;�; �) := exp (�) (a� �) + exp (�) (� � a)
� � � � exp (a) ;

where a 2 B, �; � 2 C and � 6= �:
From the �rst inequality in (3.1) we have

(4.1)



e�exp (a;�; �)


 � 1

j� � �j k� � ak
2
Z 1

0

kexp ((1� t) a+ t�)k dt

+
1

j� � �j ka� �k
2
Z 1

0

kexp ((1� t) a+ t�)k dt:

Observe that

kexp (ta+ (1� t)�)k = kexp [(1� t)�] exp (ta)k = jexp [(1� t)�]j kexp (ta)k
= exp [(1� t)Re�] kexp (ta)k � exp [(1� t)Re�] exp (t kak)
= exp [(1� t)Re�+ t kak]

for all t 2 [0; 1] ; � 2 C and a 2 B.
This implies thatZ 1

0

kexp (ta+ (1� t)�)k dt �
Z 1

0

exp [(1� t)Re�+ t kak] dt

=

8<:
exp(kak)�exp(Re�)

kak�Re� if Re� 6= kak ;

exp (kak) if Re� = kak :
Therefore, by (4.1) we get

(4.2)



e�exp (a;�; �)




� 1

j� � �j k� � ak
2

8<:
exp(kak)�exp(Re �)

kak�Re � if Re� 6= kak

exp (kak) if Re� = kak

+
1

j� � �j ka� �k
2

8<:
exp(kak)�exp(Re�)

kak�Re� if Re� 6= kak

exp (kak) if Re� = kak :
Using the �rst inequality in (3.2) we have

(4.3) k�exp (a;�; �)k

� k(� � a) (a� �)k
j� � �j

Z 1

0

kexp ((1� t) a+ t�)� exp ((1� t) a+ t�)k dt:

Observe that

exp ((1� t) a+ t�)� exp ((1� t) a+ t�) = [exp (t�)� exp (t�)] [exp (1� t) a] ;
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which implies that

(4.4) kexp ((1� t) a+ t�)� exp ((1� t) a+ t�)k
= jexp (t�)� exp (t�)j kexp [(1� t) a]k � jexp (t�)� exp (t�)j exp [(1� t) kak]

In the recent paper [11] we obtained the following norm inequality for the exponen-
tial function

(4.5) kexp y � expxk � ky � xk
Z 1

0

exp (k(1� s)x+ syk) ds:

This implies that

(4.6) jexp (t�)� exp (t�)j � t j� � �j
Z 1

0

exp [t j(1� s)� + s�j] ds

� t j� � �j
Z 1

0

exp [((1� s) t j�j+ st j�j)] ds

= t j� � �j exp t j�j � exp t j�j
t j�j � t j�j =

j� � �j
j�j � j�j [exp (t j�j)� exp (t j�j)]

and by (4.4) we get

kexp ((1� t) a+ t�)� exp ((1� t) a+ t�)k

� exp [(1� t) kak] j� � �jj�j � j�j [exp (t j�j)� exp (t j�j)]

=
j� � �j
j�j � j�j [exp ((1� t) kak+ t j�j)� exp ((1� t) kak+ t j�j)] :

By integrating this inequality in [0; 1] we getZ 1

0

kexp ((1� t) a+ t�)� exp ((1� t) a+ t�)k dt

� j� � �j
j�j � j�j

�Z 1

0

exp ((1� t) kak+ t j�j) dt�
Z 1

0

exp ((1� t) kak+ t j�j) dt
�

=
j� � �j
j�j � j�j

�
exp kak � exp j�j

kak � j�j � exp kak � exp j�jkak � j�j

�
;

provided kak 6= j�j ; kak 6= j�j :
Therefore by (4.3) we obtain:

(4.7) k�exp (a;�; �)k

� k(� � a) (a� �)k
j�j � j�j

�
exp j�j � exp kak

j�j � kak � exp kak � exp j�jkak � j�j

�
provided a 2 B, �; � 2 C and � 6= �; kak 6= j�j ; kak 6= j�j :
Similar inequalities may be obtained by employing the other general results

above, however the details are not presented here.
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