GENERALIZED OSTROWSKI TYPE NORM INEQUALITIES FOR ANALYTIC FUNCTIONS IN BANACH ALGEBRAS

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. Let \mathcal{B} be a unital Banach algebra, $a \in \mathcal{B}$, G be a convex domain of \mathbb{C} with $\sigma(a) \subset G$ and $\gamma \subset G$ is a piecewise smooth path parametrized by $\lambda(t)$, $t \in [0,1]$ from $\lambda(0) = \alpha$ to $\lambda(1) = \beta$. If $f: G \to \mathbb{C}$ is analytic on G, then by using the analytic functional calculus we obtain among others the following result

$$\left\| \int_{\gamma} f(z) dz - \sum_{k=0}^{n} \frac{1}{(k+1)!} f^{(k)}(a) \left[(\beta - a)^{k+1} + (-1)^{k} (a - \alpha)^{k+1} \right] \right\|$$

$$\leq \frac{1}{(n+1)!} K_{a,\gamma}^{(n+1)} \int_{\gamma} \|z - a\|^{n+1} |dz|$$

provided

$$K_{a,\gamma}^{(n+1)} := \sup_{(s,z)\in[0,1]\times\gamma} \left\| f^{(n+1)} \left[(1-s) \, a + sz \right] \right\| < \infty, \ n \ge 0.$$

Applications for the exponential function of elements in Banach algebras are also given.

1. Introduction

In 1938, A. Ostrowski [24], proved the following inequality concerning the distance between the integral mean $\frac{1}{b-a} \int_a^b f(t) dt$ and the value f(x), $x \in [a, b]$.

Theorem 1 (Ostrowski, 1938 [24]). Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b) such that $f':(a,b) \to \mathbb{R}$ is bounded on (a,b), i.e., $||f'||_{\infty} := \sup_{t \in (a,b)} |f'(t)| < \infty$. Then

(1.1)
$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \leq \left[\frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a} \right)^{2} \right] \|f'\|_{\infty} (b-a),$$

for all $x \in [a, b]$ and the constant $\frac{1}{4}$ is the best possible.

For a recent survey on Ostrowski's inequality for scalar functions and Lebesgue integral see [12].

In order to extend Ostrowski's inequality for analytic functions defined on Banach algebras, we need the following preparations.

Let \mathcal{B} be an algebra. An algebra norm on \mathcal{B} is a map $\|\cdot\| : \mathcal{B} \to [0, \infty)$ such that $(\mathcal{B}, \|\cdot\|)$ is a normed space, and, further: $\|ab\| \leq \|a\| \|b\|$ for any $a, b \in \mathcal{B}$. The normed algebra $(\mathcal{B}, \|\cdot\|)$ is a Banach algebra if $\|\cdot\|$ is a complete norm. We assume

1

¹⁹⁹¹ Mathematics Subject Classification. 47A63; 47A99.

Key words and phrases. Banach algebras, Ostrowski inequality, Norm inequalities, Analytic functional calculus, Exponential function.

that the Banach algebra is *unital*, this means that \mathcal{B} has an identity 1 and that ||1|| = 1.

Let \mathcal{B} be a unital algebra. An element $a \in \mathcal{B}$ is *invertible* if there exists an element $b \in \mathcal{B}$ with ab = ba = 1. The element b is unique; it is called the *inverse* of a and written a^{-1} or $\frac{1}{a}$. The set of invertible elements of \mathcal{B} is denoted by Inv (\mathcal{B}) . If $a, b \in \text{Inv}(\mathcal{B})$ then $ab \in \text{Inv}(\mathcal{B})$ and $(ab)^{-1} = b^{-1}a^{-1}$.

For a unital Banach algebra we also have:

- (i) If $a \in \mathcal{B}$ and $\lim_{n \to \infty} \|a^n\|^{1/n} < 1$, then $1 a \in \text{Inv}(\mathcal{B})$;
- (ii) $\{a \in \mathcal{B}: \|1 b\| < 1\} \subset \text{Inv}(\mathcal{B});$
- (iii) Inv (\mathcal{B}) is an open subset of \mathcal{B} ;
- (iv) The map $\operatorname{Inv}(\mathcal{B}) \ni a \longmapsto a^{-1} \in \operatorname{Inv}(\mathcal{B})$ is continuous.

For simplicity, we denote z1, where $z \in \mathbb{C}$ and 1 is the identity of \mathcal{B} , by z. The resolvent set of $a \in \mathcal{B}$ is defined by

$$\rho(a) := \{ z \in \mathbb{C} : z - a \in \text{Inv}(\mathcal{B}) \};$$

the spectrum of a is $\sigma(a)$, the complement of $\rho(a)$ in \mathbb{C} , and the resolvent function of a is $R_a: \rho(a) \to \text{Inv}(\mathcal{B}), R_a(z) := (z-a)^{-1}$. For each $z, w \in \rho(a)$ we have the identity

$$R_a(w) - R_a(z) = (z - w) R_a(z) R_a(w)$$
.

We also have that

$$\sigma\left(a\right)\subset\left\{ z\in\mathbb{C}:\ \left|z\right|\leq\left\|a\right\|
ight\} .$$

The $spectral\ radius$ of a is defined as

$$\nu(a) = \sup\{|z| : z \in \sigma(a)\}.$$

Let \mathcal{B} a unital Banach algebra and $a \in \mathcal{B}$. Then

- (i) The resolvent set $\rho(a)$ is open in \mathbb{C} ;
- (ii) For any bounded linear functionals $\lambda : \mathcal{B} \to \mathbb{C}$, the function $\lambda \circ R_a$ is analytic on $\rho(a)$;
- (iii) The spectrum $\sigma(a)$ is compact and nonempty in \mathbb{C} ;
- (iv) For each $n \in \mathbb{N}$ and $r > \nu(a)$, we have $a^n = \frac{1}{2\pi i} \int_{|\xi|=r} \xi^n (\xi a)^{-1} d\xi$;
- (v) We have $\nu(a) = \lim_{n \to \infty} \|a^n\|^{1/n}$.

Let \mathcal{B} be a unital Banach algebra, $a \in \mathcal{B}$ and G be a domain of \mathbb{C} with $\sigma(a) \subset G$. If $f: G \to \mathbb{C}$ is analytic on G, we define an element f(a) in \mathcal{B} by

(1.2)
$$f(a) := \frac{1}{2\pi i} \int_{\delta} f(\xi) (\xi - a)^{-1} d\xi,$$

where $\delta \subset G$ is taken to be close rectifiable curve in G and such that $\sigma(a) \subset \operatorname{ins}(\delta)$, the inside of δ .

It is well known (see for instance [7, pp. 201-204]) that f(a) does not depend on the choice of δ and the *Spectral Mapping Theorem* (SMT)

(1.3)
$$\sigma(f(a)) = f(\sigma(a))$$

holde

Let $\mathfrak{Hol}(a)$ be the set of all the functions that are analytic in a neighborhood of $\sigma(a)$. Note that $\mathfrak{Hol}(a)$ is an algebra where if $f, g \in \mathfrak{Hol}(a)$ and f and g have domains D(f) and D(g), then fg and f+g have domain $D(f) \cap D(g)$. $\mathfrak{Hol}(a)$ is not, however a Banach algebra.

The following result is known as the Riesz Functional Calculus Theorem [7, p. 201-203]:

Theorem 2. Let \mathcal{B} a unital Banach algebra and $a \in \mathcal{B}$.

- (a) The map $f \mapsto f(a)$ of $\mathfrak{Hol}(a) \to \mathcal{B}$ is an algebra homomorphism. (b) If $f(z) = \sum_{k=0}^{\infty} \alpha_k z^k$ has radius of convergence $r > \nu(a)$, then $f \in \mathfrak{Hol}(a)$ and $f(a) = \sum_{k=0}^{\infty} \alpha_k a^k$.
- (c) If $f(z) \equiv 1$, then f(a) = 1.
- (d) If f(z) = z for all z, f(a) = a.
- (e) If $f, f_1, ..., f_n$... are analytic on $G, \sigma(a) \subset G$ and $f_n(z) \to f(z)$ uniformly on compact subsets of G, then $||f_n(a) - f(a)|| \to 0$ as $n \to \infty$.
- (f) The Riesz Functional Calculus is unique and if a, b are commuting elements in \mathcal{B} and $f \in \mathfrak{Hol}(a)$, then f(a)b = bf(a).

For some recent norm inequalities for functions on Banach algebras, see [4]-[5] and [10]-[16].

2. Some Identities

Let $f:D\subset\mathbb{C}\to\mathbb{C}$ be an analytic function on the convex domain D and z, $x \in D$, then we have the following Taylor's expansion with integral remainder

(2.1)
$$f(z) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(\xi) (z - \xi)^{k} + \frac{1}{n!} (z - \xi)^{n+1} \int_{0}^{1} f^{(n+1)} [(1 - s) \xi + sz] (1 - s)^{n} ds$$

for $n \geq 0$, see for instance [26].

Consider the function f(z) = Log(z) where $\text{Log}(z) = \ln|z| + i \operatorname{Arg}(z)$ and $\operatorname{Arg}(z)$ is such that $-\pi < \operatorname{Arg}(z) \leq \pi$. Log is called the "principal branch" of the complex logarithmic function. The function f is analytic on all of \mathbb{C}_{ℓ} : $\mathbb{C}\setminus\{x+iy:x\leq 0,\ y=0\}$ and

$$f^{(k)}(z) = \frac{(-1)^{k-1}(k-1)!}{z^k}, \ k \ge 1, \ z \in \mathbb{C}_{\ell}.$$

Using the representation (2.1) we then have

(2.2)
$$\operatorname{Log}(z) = \operatorname{Log}(\xi) + \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} \left(\frac{z-\xi}{\xi}\right)^{k} + (-1)^{n} (z-\xi)^{n+1} \int_{0}^{1} \frac{(1-s)^{n} ds}{[(1-s)\xi+sz]^{n+1}}$$

for all $z, \xi \in \mathbb{C}_{\ell}$ with $(1-s)\xi + sz \in \mathbb{C}_{\ell}$ for $s \in [0,1]$.

Consider the complex exponential function $f(z) = \exp(z)$, then by (2.1) we get

(2.3)
$$\exp(z) = \sum_{k=0}^{n} \frac{1}{k!} (z - \xi)^{k} \exp(\xi) + \frac{1}{n!} (z - \xi)^{n+1} \int_{0}^{1} (1 - s)^{n} \exp[(1 - s) \xi + sz] ds$$

for all $z, \xi \in \mathbb{C}$.

For various inequalities related to Taylor's expansions for real functions see [1]-[3], [17]-[23] and [25].

We have the following identity for functions in Banach algebras. This is a generalization of the scalar case for functions of real variable established in [6].

Theorem 3. Let \mathcal{B} be a unital Banach algebra, $a \in \mathcal{B}$ and G be a convex domain of \mathbb{C} with $\sigma(a) \subset G$. If $f: G \to \mathbb{C}$ is analytic on G, $\gamma \subset D$ is a smooth path parametrized by z(t), $t \in [0,1]$ with $z(0) = \alpha$ and $z(1) = \beta$ where $\alpha, \beta \in D$ and $n \geq 0$, then we have

$$(2.4) \int_{\gamma} f(z) dz - \sum_{k=0}^{n} \frac{1}{(k+1)!} f^{(k)}(a) \left[(\beta - a)^{k+1} + (-1)^{k} (a - \alpha)^{k+1} \right]$$

$$= \frac{1}{n!} \int_{\gamma} (z - a)^{n+1} \left(\int_{0}^{1} f^{(n+1)} \left[(1-s) a + sz \right] (1-s)^{n} ds \right) dz$$

$$= \frac{1}{n!} \int_{0}^{1} \left(\int_{\gamma} (z - a)^{n+1} f^{(n+1)} \left[(1-s) a + sz \right] dz \right) (1-s)^{n} ds.$$

Proof. If we take the integral over z on the path $\gamma = \gamma_{\alpha,\beta}$ in the equality (2.1), then we get for all $\xi \in D$ that

$$\int_{\gamma} f(z) dz = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(\xi) \int_{\gamma_{\alpha,\beta}} (z - \xi)^{k} dz$$

$$+ \frac{1}{n!} \int_{\gamma_{\alpha,\beta}} (z - \xi)^{n+1} \left(\int_{0}^{1} f^{(n+1)} \left[(1 - s) \xi + sz \right] (1 - s)^{n} ds \right) dz$$

$$= \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(\xi) \frac{(\beta - \xi)^{k+1} - (\alpha - \xi)^{k+1}}{k+1}$$

$$+ \frac{1}{n!} \int_{\gamma_{\alpha,\beta}} (z - \xi)^{n+1} \left(\int_{0}^{1} f^{(n+1)} \left[(1 - s) \xi + sz \right] (1 - s)^{n} ds \right) dz$$

$$= \sum_{k=0}^{n} \frac{1}{(k+1)!} f^{(k)}(\xi) \left[(\beta - \xi)^{k+1} + (-1)^{k+2} (\xi - \alpha)^{k+1} \right]$$

$$+ \frac{1}{n!} \int_{\gamma_{\alpha,\beta}} (z - \xi)^{n+1} \left(\int_{0}^{1} f^{(n+1)} \left[(1 - s) \xi + sz \right] (1 - s)^{n} ds \right) dz,$$

which proves the identity

$$(2.5) \int_{\gamma} f(z) dz - \sum_{k=0}^{n} \frac{1}{(k+1)!} f^{(k)}(\xi) \left[(\beta - \xi)^{k+1} + (-1)^{k} (\xi - \alpha)^{k+1} \right]$$

$$= \frac{1}{n!} \int_{\gamma} (z - \xi)^{n+1} \left(\int_{0}^{1} f^{(n+1)} \left[(1-s) \xi + sz \right] (1-s)^{n} ds \right) dz$$

$$= \frac{1}{n!} \int_{0}^{1} \left(\int_{\gamma} (z - \xi)^{n+1} f^{(n+1)} \left[(1-s) \xi + sz \right] dz \right) (1-s)^{n} ds$$

for all $\xi \in D$, where for the second equality we used Fubini's theorem.

Assume that $\delta \subset G$ is taken to be close rectifiable curve in G and such that $\sigma(a) \subset \operatorname{ins}(\delta)$. By using the analytic functional calculus (1.2) and the equality

(2.5) we obtain

$$(2.6) \int_{\gamma} f(z) dz \left(\frac{1}{2\pi i} \int_{\delta} (\xi - a)^{-1} d\xi\right)$$

$$-\sum_{k=0}^{n} \frac{1}{(k+1)!} \frac{1}{2\pi i} \int_{\delta} f^{(k)}(\xi) \left[(\beta - \xi)^{k+1} + (-1)^{k} (\xi - \alpha)^{k+1} \right] (\xi - a)^{-1} d\xi$$

$$= \frac{1}{n!} \frac{1}{2\pi i}$$

$$\times \int_{\delta} \left(\int_{\gamma} (z - \xi)^{n+1} \left(\int_{0}^{1} f^{(n+1)} \left[(1 - s) \xi + sz \right] (1 - s)^{n} ds \right) dz \right) (\xi - a)^{-1} d\xi$$

$$= \frac{1}{n!}$$

$$\times \int_{\gamma} \left(\int_{0}^{1} \left(\frac{1}{2\pi i} \int_{\delta} (z - \xi)^{n+1} f^{(n+1)} \left[(1 - s) \xi + sz \right] (\xi - a)^{-1} d\xi \right) (1 - s)^{n} ds \right) dz,$$

where for the last equality in (2.6) we also used Fubini's theorem.

By using the functional calculus for the analytic functions

$$G \ni \xi \mapsto f^{(k)}(\xi) \left[(\beta - \xi)^{k+1} + (-1)^k (\xi - \alpha)^{k+1} \right] \in \mathbb{C}$$

and

$$G \ni \xi \mapsto (z - \xi)^{n+1} f^{(n+1)} [(1 - s) \xi + sz] \in \mathbb{C}$$

where $k = 0, ..., n, z \in \gamma$ and $s \in [0, 1]$, then we obtain

$$\frac{1}{2\pi i} \int_{\delta} f^{(k)}(\xi) \left[(\beta - \xi)^{k+1} + (-1)^{k} (\xi - \alpha)^{k+1} \right] (\xi - a)^{-1} d\xi
= f^{(k)}(a) \left[(\beta - a)^{k+1} + (-1)^{k} (a - \alpha)^{k+1} \right],$$

$$\frac{1}{2\pi i} \int_{\delta} (z - \xi)^{n+1} f^{(n+1)} [(1 - s) \xi + sz] (\xi - a)^{-1} d\xi$$

$$= (z - a)^{n+1} f^{(n+1)} [(1 - s) a + sz]$$

and since

$$\frac{1}{2\pi i} \int_{\delta} (\xi - a)^{-1} d\xi = 1,$$

then by (2.6) we get the first equality in (2.4).

The second part of (2.4) follows by Fubini's theorem.

Remark 1. Let \mathcal{B} be a unital Banach algebra, $a \in \mathcal{B}$ and G be a convex domain of \mathbb{C} with $\sigma(a) \subset G$. If $f: G \to \mathbb{C}$ is analytic on G, $\gamma \subset D$ is a smooth path parametrized by z(t), $t \in [0,1]$ with $z(0) = \alpha$ and $z(1) = \beta$ where $\alpha, \beta \in D$. If we take n = 0 in (2.4), then we obtain the Ostrowski type equality

(2.7)
$$\int_{\gamma} f(z) dz - (\beta - \alpha) f(a) = \int_{\gamma} (z - a) \left(\int_{0}^{1} f' [(1 - s) a + sz] ds \right) dz$$
$$= \int_{0}^{1} \left(\int_{\gamma} (z - a) f' [(1 - s) a + sz] dz \right) ds.$$

For n = 1 in (2.4) we get the perturbed Ostrowski's equality

$$(2.8) \int_{\gamma} f(z) dz - (\beta - \alpha) f(a) - (\beta - \alpha) f'(a) \left(\frac{\beta + \alpha}{2} - a\right)$$

$$= \int_{\gamma} (z - a)^{2} \left(\int_{0}^{1} f'' \left[(1 - s) a + sz\right] (1 - s) ds\right) dz$$

$$= \int_{0}^{1} \left(\int_{\gamma} (z - a)^{2} f'' \left[(1 - s) a + sz\right] dz\right) (1 - s) ds.$$

Corollary 1. With the assumptions of Theorem 3 and for $b \in \mathcal{B}$ we have the general perturbed identity

$$(2.9) \int_{\gamma} f(z) dz - \sum_{k=0}^{n} \frac{1}{(k+1)!} f^{(k)}(a) \left[(\beta - a)^{k+1} + (-1)^{k} (a - \alpha)^{k+1} \right] - \frac{1}{(n+2)!} \left[(\beta - a)^{n+2} + (-1)^{n+1} (a - \alpha)^{n+2} \right] b = \frac{1}{n!} \int_{\gamma} (z - a)^{n+1} \left(\int_{0}^{1} \left(f^{(n+1)} \left[(1 - s) a + sz \right] - b \right) (1 - s)^{n} ds \right) dz = \frac{1}{n!} \int_{0}^{1} \left(\int_{\gamma} (z - a)^{n+1} \left(f^{(n+1)} \left[(1 - s) a + sz \right] - b \right) dz \right) (1 - s)^{n} ds.$$

Proof. Observe that

$$\begin{split} \int_{\gamma} (z-a)^{n+1} \left(\int_{0}^{1} \left(f^{(n+1)} \left[(1-s) \, a + sz \right] - b \right) (1-s)^{n} \, ds \right) dz \\ &= \int_{\gamma} (z-a)^{n+1} \left(\int_{0}^{1} \left(f^{(n+1)} \left[(1-s) \, a + sz \right] \right) (1-s)^{n} \, ds \right) dz \\ &- \left(\int_{0}^{1} (1-s)^{n} \, ds \right) \left(\int_{\gamma} (z-a)^{n+1} \, dz \right) b \\ &= \int_{\gamma} (z-a)^{n+1} \left(\int_{0}^{1} \left(f^{(n+1)} \left[(1-s) \, a + sz \right] \right) (1-s)^{n} \, ds \right) dz \\ &- \frac{1}{(n+1)(n+2)} \left[(\beta-a)^{n+2} - (\alpha-a)^{n+2} \right] b \\ &= \int_{\gamma} (z-a)^{n+1} \left(\int_{0}^{1} \left(f^{(n+1)} \left[(1-s) \, a + sz \right] \right) (1-s)^{n} \, ds \right) dz \\ &- \frac{1}{(n+1)(n+2)} \left[(\beta-a)^{n+2} + (-1)^{n+1} (a-\alpha)^{n+2} \right] b, \end{split}$$

and by (2.4) we get (2.9).

Remark 2. With the assumptions of Theorem 3, we have the identities

$$(2.10) \int_{\gamma} f(z) dz - \sum_{k=0}^{n+1} \frac{1}{(k+1)!} f^{(k)}(a) \left[(\beta - a)^{k+1} + (-1)^k (a - \alpha)^{k+1} \right]$$

$$= \frac{1}{n!} \int_{\gamma} (z - a)^{n+1} \left(\int_{0}^{1} \left(f^{(n+1)} \left[(1-s) a + sz \right] - f^{(n+1)}(a) \right) (1-s)^n ds \right) dz$$

$$= \frac{1}{n!} \int_{0}^{1} \left(\int_{\gamma} (z - a)^{n+1} \left(f^{(n+1)} \left[(1-s) a + sz \right] - f^{(n+1)}(a) \right) dz \right) (1-s)^n ds.$$

3. Norm Inequalities

We start to the following result:

Theorem 4. Let \mathcal{B} be a unital Banach algebra, $a \in \mathcal{B}$ and G be a convex domain of \mathbb{C} with $\sigma(a) \subset G$. If $f: G \to \mathbb{C}$ is analytic on G, $\gamma \subset D$ is a smooth path parametrized by z(t), $t \in [0,1]$ with $z(0) = \alpha$ and $z(1) = \beta$ where $\alpha, \beta \in D$ and $n \geq 0$, then we have

$$(3.1) \quad \left\| \int_{\gamma} f(z) \, dz - \sum_{k=0}^{n} \frac{1}{(k+1)!} f^{(k)}(a) \left[(\beta - a)^{k+1} + (-1)^{k} (a - \alpha)^{k+1} \right] \right\|$$

$$\leq \frac{1}{n!} \int_{\gamma} \|z - a\|^{n+1} \left\| \int_{0}^{1} f^{(n+1)} \left[(1-s) a + sz \right] (1-s)^{n} \, ds \right\| |dz|$$

$$\leq \frac{1}{n!} \int_{\gamma} \|z - a\|^{n+1} \left(\int_{0}^{1} \left\| f^{(n+1)} \left[(1-s) a + sz \right] \right\| (1-s)^{n} \, ds \right) |dz|$$

$$\leq \begin{cases} \frac{1}{(n+1)!} \int_{\gamma} \|z - a\|^{n+1} \sup_{s \in [0,1]} \left\| f^{(n+1)} \left[(1-s) a + sz \right] \right\| |dz| \\ \frac{1}{(qn+1)^{1/q}} \frac{1}{n!} \int_{\gamma} \|z - a\|^{n+1} \left(\int_{0}^{1} \left\| f^{(n+1)} \left[(1-s) a + sz \right] \right\|^{p} ds \right)^{1/p} |dz| \\ for p, \ q > 1 \ with \ \frac{1}{p} + \frac{1}{q} = 1;$$

$$\frac{1}{n!} \int_{\gamma} \|z - a\|^{n+1} \left(\int_{0}^{1} \left\| f^{(n+1)} \left[(1-s) a + sz \right] \right\| ds \right) |dz|.$$

Proof. Using the first identity in (2.4) we have

$$(3.2) \quad \left\| \int_{\gamma} f(z) dz - \sum_{k=0}^{n} \frac{1}{(k+1)!} f^{(k)}(a) \left[(\beta - a)^{k+1} + (-1)^{k} (a - \alpha)^{k+1} \right] \right\|$$

$$\leq \frac{1}{n!} \int_{\gamma} \left\| (z - a)^{n+1} \left(\int_{0}^{1} f^{(n+1)} \left[(1 - s) a + sz \right] (1 - s)^{n} ds \right) \right\| |dz|$$

$$\leq \frac{1}{n!} \int_{\gamma} \left\| (z - a)^{n+1} \right\| \left\| \int_{0}^{1} f^{(n+1)} \left[(1 - s) a + sz \right] (1 - s)^{n} ds \right\| |dz|$$

$$\leq \frac{1}{n!} \int_{\gamma} \left\| z - a \right\|^{n+1} \left\| \int_{0}^{1} f^{(n+1)} \left[(1 - s) a + sz \right] (1 - s)^{n} ds \right\| |dz|$$

$$\leq \frac{1}{n!} \int_{\gamma} \left\| z - a \right\|^{n+1} \left(\int_{0}^{1} \left\| f^{(n+1)} \left[(1 - s) a + sz \right] \right\| (1 - s)^{n} ds \right) |dz| =: A,$$

which proves the first part of (3.1).

Using Hölder's integral, we have

$$\int_{0}^{1} \left\| f^{(n+1)} \left[(1-s) \, a + sz \right] \right\| (1-s)^{n} \, ds$$

$$\leq \begin{cases}
\sup_{s \in [0,1]} \left\| f^{(n+1)} \left[(1-s) \, a + sz \right] \right\| \int_{0}^{1} (1-s)^{n} \, ds
\end{cases}$$

$$\leq \begin{cases}
\left(\int_{0}^{1} \left\| f^{(n+1)} \left[(1-s) \, a + sz \right] \right\|^{p} \, ds \right)^{1/p} \left(\int_{0}^{1} (1-s)^{qn} \, ds \right)^{1/q}
\end{cases}$$

$$for $p, q > 1 \text{ with } \frac{1}{p} + \frac{1}{q} = 1;$

$$\int_{0}^{1} \left\| f^{(n+1)} \left[(1-s) \, a + sz \right] \right\| \, ds$$

$$= \begin{cases}
\frac{1}{(qn+1)^{1/q}} \left(\int_{0}^{1} \left\| f^{(n+1)} \left[(1-s) \, a + sz \right] \right\|^{p} \, ds \right)^{1/p}
\end{cases}$$

$$for $p, q > 1 \text{ with } \frac{1}{p} + \frac{1}{q} = 1;$

$$\int_{0}^{1} \left\| f^{(n+1)} \left[(1-s) \, a + sz \right] \right\| \, ds,$$$$$$

which implies that

$$A \leq \begin{cases} \frac{1}{n+1} \frac{1}{n!} \int_{\gamma} \|z - a\|^{n+1} \sup_{s \in [0,1]} \|f^{(n+1)} [(1-s) a + sz] \| |dz| \\ \frac{1}{(qn+1)^{1/q}} \frac{1}{n!} \int_{\gamma} \|z - a\|^{n+1} \left(\int_{0}^{1} \|f^{(n+1)} [(1-s) a + sz] \|^{p} ds \right)^{1/p} |dz| \\ \text{for } p, q > 1 \text{ with } \frac{1}{p} + \frac{1}{q} = 1; \\ \frac{1}{n!} \int_{\gamma} \|z - a\|^{n+1} \left(\int_{0}^{1} \|f^{(n+1)} [(1-s) a + sz] \| ds \right) |dz|, \end{cases}$$

which proves the last part of (3.1).

Remark 3. We observe that, if

$$K_{a,\gamma}^{(n+1)} := \sup_{(s,z)\in[0,1]\times\gamma} \left\| f^{(n+1)} \left[(1-s) \, a + sz \right] \right\| < \infty, \ n \ge 0,$$

then from the first branch of (3.1) we get the simpler error estimate

(3.3)
$$\left\| \int_{\gamma} f(z) dz - \sum_{k=0}^{n} \frac{1}{(k+1)!} f^{(k)}(a) \left[(\beta - a)^{k+1} + (-1)^{k} (a - \alpha)^{k+1} \right] \right\|$$

$$\leq \frac{1}{(n+1)!} K_{a,\gamma}^{(n+1)} \int_{\gamma} \|z - a\|^{n+1} |dz|.$$

Using Hölder's inequality we also have

$$\int_{\gamma} \|z - a\|^{n+1} \left(\int_{0}^{1} \|f^{(n+1)}[(1-s)a + sz]\|^{p} ds \right)^{1/p} |dz|
\leq \left(\int_{\gamma} \left[\left(\int_{0}^{1} \|f^{(n+1)}[(1-s)a + sz]\|^{p} ds \right)^{1/p} \right]^{p} |dz| \right)^{1/p}
\times \left(\int_{\gamma} \|z - a\|^{q(n+1)} |dz| \right)^{1/q}
= \left(\int_{\gamma} \left(\int_{0}^{1} \|f^{(n+1)}[(1-s)a + sz]\|^{p} ds \right) |dz| \right)^{1/p} \left(\int_{\gamma} \|z - a\|^{q(n+1)} |dz| \right)^{1/q}$$

and by the second branch of (3.1) we get

$$(3.4) \quad \left\| \int_{\gamma} f(z) dz - \sum_{k=0}^{n} \frac{1}{(k+1)!} f^{(k)}(a) \left[(\beta - a)^{k+1} + (-1)^{k} (a - \alpha)^{k+1} \right] \right\|$$

$$\leq \frac{1}{(qn+1)^{1/q}} \frac{1}{n!} \left(\int_{\gamma} \|z - a\|^{q(n+1)} |dz| \right)^{1/q}$$

$$\times \left(\int_{\gamma} \left(\int_{0}^{1} \left\| f^{(n+1)} \left[(1-s) a + sz \right] \right\|^{p} ds \right) |dz| \right)^{1/p}$$

for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$.

We observe that, if we take n=0 in (3.1) then we get the Ostrowski type inequalities

$$(3.5) \quad \left\| \int_{\gamma} f(z) \, dz - (\beta - \alpha) \, f(a) \right\|$$

$$\leq \int_{\gamma} \|z - a\| \left\| \int_{0}^{1} f' \left[(1 - s) \, a + sz \right] \, ds \right\| |dz|$$

$$\leq \int_{\gamma} \|z - a\| \left(\int_{0}^{1} \|f' \left[(1 - s) \, a + sz \right] \| \, ds \right) |dz|$$

$$\leq \begin{cases} \int_{\gamma} \|z - a\| \sup_{s \in [0,1]} \|f' \left[(1 - s) \, a + sz \right] \| \, |dz| \\ \int_{\gamma} \|z - a\| \left(\int_{0}^{1} \|f' \left[(1 - s) \, a + sz \right] \|^{p} \, ds \right)^{1/p} |dz| \\ \text{for } p, \ q > 1 \text{ with } \frac{1}{p} + \frac{1}{q} = 1; \end{cases}$$

while for n = 1 in (3.1) then we get the Ostrowski type perturbed inequalities

$$(3.6) \quad \left\| \int_{\gamma} f(z) \, dz - (\beta - \alpha) \, f(a) - (\beta - \alpha) \, f'(a) \left(\frac{\beta + \alpha}{2} - a \right) \right\|$$

$$\leq \int_{\gamma} \|z - a\|^{2} \left\| \int_{0}^{1} f'' \left[(1 - s) \, a + sz \right] (1 - s) \, ds \right\| |dz|$$

$$\leq \int_{\gamma} \|z - a\|^{2} \left(\int_{0}^{1} \|f'' \left[(1 - s) \, a + sz \right] \|(1 - s) \, ds \right) |dz|$$

$$\leq \begin{cases} \frac{1}{2} \int_{\gamma} \|z - a\|^{2} \sup_{s \in [0, 1]} \|f'' \left[(1 - s) \, a + sz \right] \||dz| \\ \frac{1}{(q+1)^{1/q}} \int_{\gamma} \|z - a\|^{2} \left(\int_{0}^{1} \|f'' \left[(1 - s) \, a + sz \right] \|^{p} \, ds \right)^{1/p} |dz| \\ \text{for } p, \ q > 1 \text{ with } \frac{1}{p} + \frac{1}{q} = 1;$$

$$\int_{\gamma} \|z - a\|^{2} \left(\int_{0}^{1} \|f'' \left[(1 - s) \, a + sz \right] \|ds \right) |dz|.$$

If

$$K_{a,\gamma}^{(1)} := \sup_{(s,z) \in [0,1] \times \gamma} \|f'[(1-s)a + sz]\| < \infty, \ n \ge 0,$$

then by (3.5) we get

(3.7)
$$\left\| \int_{\gamma} f(z) dz - (\beta - \alpha) f(a) \right\| \leq K_{a,\gamma}^{(1)} \int_{\gamma} \|z - a\| |dz|.$$

Also, if

$$K_{a,\gamma}^{(2)} := \sup_{(s,z)\in[0,1]\times\gamma} \|f''[(1-s)a + sz]\| < \infty, \ n \ge 0,$$

then by (3.6) we get

$$(3.8) \quad \left\| \int_{\gamma} f(z) dz - (\beta - \alpha) f(a) - (\beta - \alpha) f'(a) \left(\frac{\beta + \alpha}{2} - a \right) \right\| \\ \leq \frac{1}{2} K_{a,\gamma}^{(2)} \int_{\gamma} \|z - a\|^{2} |dz|.$$

We also have:

Theorem 5. Let \mathcal{B} be a unital Banach algebra, $a \in \mathcal{B}$ and G be a convex domain of \mathbb{C} with $\sigma(a) \subset G$. If $f: G \to \mathbb{C}$ is analytic on G, $\gamma \subset D$ is a smooth path parametrized by z(t), $t \in [0,1]$ with $z(0) = \alpha$ and $z(1) = \beta$ where $\alpha, \beta \in D$ and

n > 0, then we have

$$(3.9) \quad \left\| \int_{\gamma} f(z) dz - \sum_{k=0}^{n} \frac{1}{(k+1)!} f^{(k)}(a) \left[(\beta - a)^{k+1} + (-1)^{k} (a - \alpha)^{k+1} \right] \right\|$$

$$\leq \frac{1}{n!} \int_{0}^{1} \left(\int_{\gamma} \|z - a\|^{n+1} \|f^{(n+1)} \left[(1-s) a + sz \right] \| |dz| \right) (1-s)^{n} ds$$

$$\begin{cases} \frac{1}{n!} \int_{\gamma} \|z - a\|^{n+1} |dz| \int_{0}^{1} \sup_{z \in \gamma} \|f^{(n+1)} \left[(1-s) a + sz \right] \| (1-s)^{n} ds, \\ \frac{1}{n!} \left(\int_{\gamma} \|z - a\|^{q(n+1)} |dz| \right)^{1/q} \\ \times \int_{0}^{1} \left(\int_{\gamma} \|f^{(n+1)} \left[(1-s) a + sz \right] \|^{p} |dz| \right)^{1/p} (1-s)^{n} ds \\ for \ p, \ q > 1 \ \ with \ \frac{1}{p} + \frac{1}{q} = 1, \\ \frac{1}{n!} \sup_{z \in \gamma} \|z - a\|^{n+1} \int_{0}^{1} \left(\int_{\gamma} \|f^{(n+1)} \left[(1-s) a + sz \right] \| |dz| \right) (1-s)^{n} ds \end{cases}$$

Proof. Using the second identity from (3.1), we have

$$(3.10) \quad \left\| \int_{\gamma} f(z) \, dz - \sum_{k=0}^{n} \frac{1}{(k+1)!} f^{(k)}(a) \left[(\beta - a)^{k+1} + (-1)^{k} (a - \alpha)^{k+1} \right] \right\|$$

$$\leq \frac{1}{n!} \int_{0}^{1} \left\| \int_{\gamma} (z - a)^{n+1} f^{(n+1)} \left[(1-s) a + sz \right] dz \right\| (1-s)^{n} \, ds$$

$$\leq \frac{1}{n!} \int_{0}^{1} \left(\int_{\gamma} \left\| (z - a)^{n+1} f^{(n+1)} \left[(1-s) a + sz \right] \right\| |dz| \right) (1-s)^{n} \, ds$$

$$\leq \frac{1}{n!} \int_{0}^{1} \left(\int_{\gamma} \left\| (z - a)^{n+1} \right\| \left\| f^{(n+1)} \left[(1-s) a + sz \right] \right\| |dz| \right) (1-s)^{n} \, ds$$

$$\leq \frac{1}{n!} \int_{0}^{1} \left(\int_{\gamma} \left\| z - a \right\|^{n+1} \left\| f^{(n+1)} \left[(1-s) a + sz \right] \right\| dz \right) (1-s)^{n} \, ds =: B.$$

Using the Hölder's integral inequality we have

$$\begin{split} & \int_{\gamma} \|z-a\|^{n+1} \left\| f^{(n+1)} \left[(1-s) \, a + sz \right] \right\| |dz| \\ & \leq \left\{ \begin{array}{l} \sup_{z \in \gamma} \left\| f^{(n+1)} \left[(1-s) \, a + sz \right] \right\| \int_{\gamma} \|z-a\|^{n+1} \, |dz| \\ & \left(\int_{\gamma} \left\| f^{(n+1)} \left[(1-s) \, a + sz \right] \right\|^{p} |dz| \right)^{1/p} \left(\int_{\gamma} \|z-a\|^{q(n+1)} \, |dz| \right)^{1/q} \\ & \text{for } p,q > 1 \text{ with } \frac{1}{p} + \frac{1}{q} = 1. \\ & \sup_{z \in \gamma} \|z-a\|^{n+1} \int_{\gamma} \left\| f^{(n+1)} \left[(1-s) \, a + sz \right] \right\| |dz| \, . \end{split}$$

Therefore,

Therefore,
$$B \leq \begin{cases} \frac{1}{n!} \int_{0}^{1} \sup_{z \in \gamma} \|f^{(n+1)}[(1-s) \, a + sz] \| \left(\int_{\gamma} \|z - a\|^{n+1} \, |dz| \right) (1-s)^{n} \, ds \\ \frac{1}{n!} \int_{0}^{1} \left(\int_{\gamma} \|f^{(n+1)}[(1-s) \, a + sz] \|^{p} \, |dz| \right)^{1/p} \\ \times \left(\int_{\gamma} \|z - a\|^{q(n+1)} \, |dz| \right)^{1/q} (1-s)^{n} \, ds \\ \text{for } p, q > 1 \text{ with } \frac{1}{p} + \frac{1}{q} = 1. \end{cases}$$

$$\frac{1}{n!} \int_{0}^{1} \sup_{z \in \gamma} \|z - a\|^{n+1} \left(\int_{\gamma} \|f^{(n+1)}[(1-s) \, a + sz] \| \, |dz| \right) (1-s)^{n} \, ds$$

$$= \begin{cases} \frac{1}{n!} \int_{\gamma} \|z - a\|^{n+1} \, |dz| \int_{0}^{1} \sup_{z \in \gamma} \|f^{(n+1)}[(1-s) \, a + sz] \| \, (1-s)^{n} \, ds \\ \frac{1}{n!} \left(\int_{\gamma} \|z - a\|^{q(n+1)} \, |dz| \right)^{1/q} \\ \times \int_{0}^{1} \left(\int_{\gamma} \|f^{(n+1)}[(1-s) \, a + sz] \|^{p} \, |dz| \right)^{1/p} (1-s)^{n} \, ds \\ \text{for } p, q > 1 \text{ with } \frac{1}{p} + \frac{1}{q} = 1. \\ \frac{1}{n!} \sup_{z \in \gamma} \|z - a\|^{n+1} \int_{0}^{1} \left(\int_{\gamma} \|f^{(n+1)}[(1-s) \, a + sz] \| \, |dz| \right) (1-s)^{n} \, ds, \end{cases}$$
which proves the last part of (3.9).

which proves the last part of (3.9).

4. Perturbed Norm Inequalities

Let $a \in \mathcal{B}$ and G be a convex domain of \mathbb{C} with $\sigma(a) \subset G$ and $\lambda \in G$. We define $G_{\lambda,a} := \{(1-t)\lambda + ta \mid \text{ with } t \in [0,1]\}$. We observe that $G_{\lambda,a}$ is a convex subset in \mathcal{B} for every $\lambda \in G$.

For two distinct elements u, v in the Banach algebra B we say that the function $g: G_{\lambda,a} \to \mathcal{B}$ belongs to the class $\Delta_{u,v}(G_{\lambda,a})$ if it satisfies the boundedness condition

(4.1)
$$\left\| g((1-t)\lambda + ta) - \frac{u+v}{2} \right\| \le \frac{1}{2} \|v-u\|$$

for all $t \in [0,1]$. We write $g \in \Delta_{u,v}(G_{\lambda,a})$. This definition is an extension to Banach algebras valued functions of the scalar case, see [8].

We say that the function $g: G_{\lambda,a} \to B$ is Lipschitzian on $G_{\lambda,a}$ with the constant $L_{\lambda,a} > 0$, if for all $x, y \in G_{\lambda,a}$ we have

$$||g(x) - g(y)|| \le L_{\lambda,a} ||x - y||.$$

This is equivalent to

$$(4.2) ||g((1-t)\lambda + ta) - g((1-s)\lambda + sa)|| \le L_{\lambda,a}|t-s|||a-\lambda||$$

for all $t, s \in [0, 1]$. We write this by $g \in \mathfrak{Lip}_{L_{\lambda,a}}(G_{\lambda,a})$.

Let $h: G \to \mathbb{C}$ be an analytic function on G. For $t \in [0,1]$ and $\lambda \in G$, the auxiliary function $h_{t,\lambda}$ defined on G by $h_{t,\lambda}(\xi) := h((1-t)\lambda + t\xi)$ is also analytic

and using the analytic functional calculus (2.1) for the element $a \in \mathcal{B}$, we can define

(4.3)
$$\widetilde{h}((1-t)\lambda + ta) := h_{t,\lambda}(a) = \frac{1}{2\pi i} \int_{\gamma} h_{t,\lambda}(\xi) (\xi - a)^{-1} d\xi$$
$$= \frac{1}{2\pi i} \int_{\gamma} h((1-t)\lambda + t\xi) (\xi - a)^{-1} d\xi.$$

We say that the scalar function $h \in \Delta_{u,v}(G_{\lambda,a})$ if its extension $\tilde{h}: G_{\lambda,a} \to B$ satisfies the boundedness condition (4.1). Also, we say that the scalar function $h \in \mathfrak{Lip}_{L_{\lambda,a}}(G_{\lambda,a})$ if its extension $\tilde{h}: G_{\lambda,a} \to B$ satisfies the Lipschitz condition (4.2).

We have:

Theorem 6. Let \mathcal{B} be a unital Banach algebra, $a \in \mathcal{B}$ and G be a convex domain of \mathbb{C} with $\sigma(a) \subset G$. Assume also that $f: G \to \mathbb{C}$ is analytic on G and $\lambda \in G$. If there exists $u, v \in \mathcal{B}$ with $u \neq v$ such that $f^{(n+1)} \in \Delta_{u,v}(G_{\lambda,a})$, then

$$(4.4) \quad \left\| \int_{\gamma} f(z) dz - \sum_{k=0}^{n} \frac{1}{(k+1)!} f^{(k)}(a) \left[(\beta - a)^{k+1} + (-1)^{k} (a - \alpha)^{k+1} \right] - \frac{1}{(n+2)!} \left[(\beta - a)^{n+2} + (-1)^{n+1} (a - \alpha)^{n+2} \right] \frac{u+v}{2} \right\| \\ \leq \frac{1}{2} \frac{1}{(n+1)!} \left\| v - u \right\| \int_{\gamma} \left\| z - a \right\|^{n+1} |dz|.$$

Proof. Taking the norm in the equality (2.10) for $b = \frac{u+v}{2}$ and using the fact that $f^{(n+1)} \in \Delta_{u,v}(G_{\lambda,a})$, then we have

$$\begin{aligned} (4.5) & \left\| \int_{\gamma} f\left(z\right) dz - \sum_{k=0}^{n} \frac{1}{(k+1)!} f^{(k)}\left(a\right) \left[\left(\beta - a\right)^{k+1} + \left(-1\right)^{k} \left(a - \alpha\right)^{k+1} \right] \right. \\ & \left. - \frac{1}{(n+2)!} \left[\left(\beta - a\right)^{n+2} + \left(-1\right)^{n+1} \left(a - \alpha\right)^{n+2} \right] \frac{u + v}{2} \right\| \\ & \leq \frac{1}{n!} \int_{\gamma} \left\| \left(z - a\right)^{n+1} \left(\int_{0}^{1} \left(f^{(n+1)} \left[\left(1 - s\right) a + sz \right] - \frac{u + v}{2} \right) \left(1 - s\right)^{n} ds \right) \right\| |dz| \\ & \leq \frac{1}{n!} \int_{\gamma} \left\| z - a \right\|^{n+1} \left\| \left(\int_{0}^{1} \left(f^{(n+1)} \left[\left(1 - s\right) a + sz \right] - \frac{u + v}{2} \right) \left(1 - s\right)^{n} ds \right) \right\| |dz| \\ & \leq \frac{1}{n!} \int_{\gamma} \left\| z - a \right\|^{n+1} \left(\int_{0}^{1} \left\| f^{(n+1)} \left[\left(1 - s\right) a + sz \right] - \frac{u + v}{2} \right\| \left(1 - s\right)^{n} ds \right) |dz| \\ & \leq \frac{1}{n!} \frac{1}{2} \left\| v - u \right\| \left(\int_{0}^{1} \left(1 - s\right)^{n} ds \right) \int_{\gamma} \left\| z - a \right\|^{n+1} |dz| \\ & = \frac{1}{2} \frac{1}{(n+1)!} \left\| v - u \right\| \int_{\gamma} \left\| z - a \right\|^{n+1} |dz| , \end{aligned}$$

which proves (4.4).

We have:

Theorem 7. Let \mathcal{B} be a unital Banach algebra, $a \in \mathcal{B}$ and G be a convex domain of \mathbb{C} with $\sigma(a) \subset G$. Assume also that $f: G \to \mathbb{C}$ is analytic on G and $\lambda \in G$. If $f^{(n+1)} \in \mathfrak{Lip}_{L_{\lambda,a}}(G_{\lambda,a})$ for some $L_{\lambda,a} > 0$, then

$$(4.6) \quad \left\| \int_{\gamma} f(z) dz - \sum_{k=0}^{n+1} \frac{1}{(k+1)!} f^{(k)}(a) \left[(\beta - a)^{k+1} + (-1)^{k} (a - \alpha)^{k+1} \right] \right\| \\ \leq \frac{1}{(n+2)!} L_{\lambda,a} \int_{\gamma} \|z - a\|^{n+2} |dz|.$$

Proof. By using the identity (2.10), we get

$$(4.7) \qquad \left\| \int_{\gamma} f(z) \, dz - \sum_{k=0}^{n+1} \frac{1}{(k+1)!} f^{(k)}(a) \left[(\beta - a)^{k+1} + (-1)^k (a - \alpha)^{k+1} \right] \right\|$$

$$\leq \frac{1}{n!} \int_{\gamma} \left\| (z - a)^{n+1} \left(\int_{0}^{1} \left(f^{(n+1)} \left[(1 - s) a + sz \right] - f^{(n+1)}(a) \right) (1 - s)^n \, ds \right) \right\| |dz|$$

$$\leq \frac{1}{n!} \int_{\gamma} \left\| (z - a)^{n+1} \right\| \left\| \int_{0}^{1} \left(f^{(n+1)} \left[(1 - s) a + sz \right] - f^{(n+1)}(a) \right) (1 - s)^n \, ds \right\| |dz|$$

$$\leq \frac{1}{n!} \int_{\gamma} \left\| z - a \right\|^{n+1} \left(\int_{0}^{1} \left\| f^{(n+1)} \left[(1 - s) a + sz \right] - f^{(n+1)}(a) \right\| (1 - s)^n \, ds \right) |dz|$$

$$\leq \frac{1}{n!} L_{\lambda, a} \int_{\gamma} \left\| z - a \right\|^{n+2} \left(\int_{0}^{1} s (1 - s)^n \, ds \right) |dz|$$

$$= \left(\int_{0}^{1} s (1 - s)^n \, ds \right) \frac{1}{n!} L_{\lambda, a} \int_{\gamma} \left\| z - a \right\|^{n+2} |dz|.$$

Since

$$\int_0^1 s (1-s)^n ds = \int_0^1 (1-s) s^n ds = \int_0^1 (s^n - s^{n+1}) ds$$
$$= \frac{1}{n+1} - \frac{1}{n+2} = \frac{1}{(n+1)(n+2)},$$

hence by (4.7) we get (4.6).

5. Applications for Exponential Function

Let \mathcal{B} be a unital Banach algebra, $a \in \mathcal{B}$, $\gamma \subset D$ is a *smooth path* parametrized by z(t), $t \in [0,1]$ with $z(0) = \alpha$ and $z(1) = \beta$ where α , $\beta \in \mathbb{C}$. Consider the exponential function $f(z) = \exp(z)$, $z \in \mathbb{C}$ and put

$$E_{a,\gamma} := \sup_{(s,z)\in[0,1]\times\gamma} \|\exp[(1-s)\,a + sz]\| < \infty, \ n \ge 0.$$

Observe that

$$\exp\left((1-t)\lambda + ta\right) = \exp\left[(1-t)\lambda\right] \exp\left(ta\right),$$

which gives

$$\begin{aligned} \|\exp((1-t)\lambda + ta)\| \\ &= |\exp[(1-t)\lambda]| \|\exp(ta)\| = \exp[(1-t)\operatorname{Re}\lambda] \|\exp(ta)\| \\ &\leq \exp[(1-t)\operatorname{Re}\lambda] \exp(t\|a\|) = \exp[(1-t)\operatorname{Re}\lambda + t\|a\|] \\ &\leq \exp(\max{\{\operatorname{Re}\lambda, \|a\|\}}) \end{aligned}$$

for any $t \in [0,1]$, $\lambda \in \mathbb{C}$.

Therefore

$$E_{a,\gamma} \leq \sup_{z \in \gamma} \exp\left(\max\left\{\operatorname{Re} z, \|a\|\right\}\right) = \exp\left(\max\left\{\max_{z \in \gamma} \operatorname{Re} z, \|a\|\right\}\right).$$

By utilising (3.3) we then get

(5.1)
$$\left\| \exp \beta - \exp \alpha - \sum_{k=0}^{n} \frac{1}{(k+1)!} \left[(\beta - a)^{k+1} + (-1)^{k} (a - \alpha)^{k+1} \right] \exp a \right\|$$

$$\leq \frac{1}{(n+1)!} \exp \left(\max \left\{ \max_{z \in \gamma} \operatorname{Re} z, ||a|| \right\} \right) \int_{\gamma} ||z - a||^{n+1} |dz|.$$

Now, if we define

(5.2)

$$E_n(\lambda, a) := \int_0^1 \exp[(1 - s) \operatorname{Re} \lambda + s \|a\|] (1 - s)^n ds$$

$$= \int_0^1 \exp[s \operatorname{Re} \lambda + (1 - s) \|a\|] s^n ds = \int_0^1 \exp[\|a\| + s (\operatorname{Re} \lambda - \|a\|)] s^n ds$$

then by using the integration by parts and assuming that $\operatorname{Re} \lambda \neq ||a||$ we have

$$\begin{split} \int_0^1 \exp\left[\|a\| + s\left(\operatorname{Re}\lambda - \|a\|\right)\right] s^n ds \\ &= \frac{1}{\operatorname{Re}\lambda - \|a\|} \int_0^1 s^n d\left(\exp\left[\|a\| + s\left(\operatorname{Re}\lambda - \|a\|\right)\right]\right) \\ &= \frac{1}{\operatorname{Re}\lambda - \|a\|} \\ &\times \left[s^n \exp\left[\|a\| + s\left(\operatorname{Re}\lambda - \|a\|\right)\right]\right]_0^1 - n \int_0^1 s^{n-1} \exp\left[\|a\| + s\left(\operatorname{Re}\lambda - \|a\|\right)\right] ds \right] \\ &= \frac{1}{\operatorname{Re}\lambda - \|a\|} \left[\exp\left(\operatorname{Re}\lambda\right) - n \int_0^1 s^{n-1} \exp\left[\|a\| + s\left(\operatorname{Re}\lambda - \|a\|\right)\right] ds \right], \end{split}$$

which gives the recursive relation

(5.3)
$$E_n(\lambda, a) = \frac{1}{\operatorname{Re} \lambda - \|a\|} \left[\exp\left(\operatorname{Re} \lambda \right) - n E_{n-1}(\lambda, a) \right], \ n \ge 1$$

with

(5.4)
$$E_0(\lambda, a) = \frac{\exp(\operatorname{Re}\lambda) - \exp(\|a\|)}{\operatorname{Re}\lambda - \|a\|}.$$

For Re $\lambda = ||a||$ we have $E_n(\lambda, a) = \frac{1}{n+1} \exp(||a||)$.

From the inequality (3.1) we get

$$(5.5) \quad \left\| \exp \beta - \exp \alpha - \sum_{k=0}^{n} \frac{1}{(k+1)!} \left[(\beta - a)^{k+1} + (-1)^{k} (a - \alpha)^{k+1} \right] \exp a \right\|$$

$$\leq \frac{1}{n!} \int_{\gamma} \|z - a\|^{n+1} \left(\int_{0}^{1} \|\exp \left[(1-s) a + sz \right] \| (1-s)^{n} ds \right) |dz|$$

$$\leq \frac{1}{n!} \int_{\gamma} \|z - a\|^{n+1} \left(\int_{0}^{1} \exp \left[(1-s) \operatorname{Re} z + s \|a\| \right] (1-s)^{n} ds \right) |dz|$$

and since, as shown by (5.2)

$$\int_{0}^{1} \exp \left[(1 - s) \operatorname{Re} z + s \|a\| \right] (1 - s)^{n} ds = E_{n}(z, a),$$

hence we get the inequality

(5.6)
$$\left\| \exp \beta - \exp \alpha - \sum_{k=0}^{n} \frac{1}{(k+1)!} \left[(\beta - a)^{k+1} + (-1)^{k} (a - \alpha)^{k+1} \right] \exp a \right\|$$

$$\leq \frac{1}{n!} \int_{\gamma} \|z - a\|^{n+1} E_{n}(z, a) |dz|.$$

The inequality (5.6) is sharper than (5.1) but the upper bound from (5.6) is much more difficult to calculate for a given path γ than the one from 5.1.

References

- [1] M. Akkouchi, Improvements of some integral inequalities of H. Gauchman involving Taylor's remainder. *Divulg. Mat.* 11 (2003), no. 2, 115–120.
- [2] G. A. Anastassiou, Taylor-Widder representation formulae and Ostrowski, Grüss, integral means and Csiszar type inequalities. Comput. Math. Appl. 54 (2007), no. 1, 9–23.
- [3] G. A. Anastassiou, Ostrowski type inequalities over balls and shells via a Taylor-Widder formula. J. Inequal. Pure Appl. Math. 8 (2007), no. 4, Article 106, 13 pp.
- [4] M. V. Boldea, Inequalities of Čebyšev type for Lipschitzian functions in Banach algebras. An. Univ. Vest Timiş. Ser. Mat.-Inform. 54 (2016), no. 2, 59–74.
- [5] M. V. Boldea, S. S. Dragomir and M. Megan, New bounds for Čebyšev functional for power series in Banach algebras via a Grüss-Lupaş type inequality. *PanAmer. Math. J.* 26 (2016), no. 3, 71–88.
- [6] P. Cerone, S. S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications. *Demonstratio Math.* 32 (1999), no. 4, 697–712.
- [7] J. B. Conway, A Course in Functional Analysis, Second Edition, Springer-Verlag, New York, 1990.
- [8] S. S. Dragomir, A counterpart of Schwarz's inequality in inner product spaces, East Asian Math. J., 20 (1) (2004), 1-10. Preprint, https://arxiv.org/abs/math/0305373.
- [9] S. S. Dragomir, New estimation of the remainder in Taylor's formula using Grüss' type inequalities and applications. *Math. Inequal. Appl.* 2 (1999), no. 2, 183–193.
- [10] S. S. Dragomir, Inequalities for power series in Banach algebras. SUT J. Math. 50 (2014), no. 1, 25–45
- [11] S. S. Dragomir, Inequalities of Lipschitz type for power series in Banach algebras. Ann. Math. Sil. No. 29 (2015), 61–83.
- [12] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14 (2017), no. 1, Art. 1, 283 pp.
- [13] S. S. Dragomir, M. V. Boldea and M. Megan, New norm inequalities of Čebyšev type for power series in Banach algebras. Sarajevo J. Math. 11 (24) (2015), no. 2, 253–266.
- [14] S. S. Dragomir, M. V. Boldea, C. Buşe and M. Megan, Norm inequalities of Čebyšev type for power series in Banach algebras. J. Inequal. Appl. 2014, 2014:294, 19 pp.

- [15] S. S. Dragomir, M. V. Boldea and M. Megan, Further bounds for Čebyšev functional for power series in Banach algebras via Grüss-Lupaş type inequalities for p-norms. Mem. Grad. Sch. Sci. Eng. Shimane Univ. Ser. B Math. 49 (2016), 15–34.
- [16] S. S. Dragomir, M. V. Boldea and M. Megan, Inequalities for Chebyshev functional in Banach algebras. Cubo 19 (2017), no. 1, 53–77.
- [17] S. S. Dragomir and H. B. Thompson, A two points Taylor's formula for the generalised Riemann integral. *Demonstratio Math.* 43 (2010), no. 4, 827–840.
- [18] H. Gauchman, Some integral inequalities involving Taylor's remainder. I. J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 26, 9 pp. (electronic).
- [19] H. Gauchman, Some integral inequalities involving Taylor's remainder. II. J. Inequal. Pure Appl. Math. 4 (2003), no. 1, Article 1, 5 pp. (electronic).
- [20] D.-Y. Hwang, Improvements of some integral inequalities involving Taylor's remainder. J. Appl. Math. Comput. 16 (2004), no. 1-2, 151–163.
- [21] A. I. Kechriniotis and N. D. Assimakis, Generalizations of the trapezoid inequalities based on a new mean value theorem for the remainder in Taylor's formula. J. Inequal. Pure Appl. Math. 7 (2006), no. 3, Article 90, 13 pp. (electronic).
- [22] Z. Liu, Note on inequalities involving integral Taylor's remainder. J. Inequal. Pure Appl. Math. 6 (2005), no. 3, Article 72, 6 pp. (electronic).
- [23] W. Liu and Q. Zhang, Some new error inequalities for a Taylor-like formula. J. Comput. Anal. Appl. 15 (2013), no. 6, 1158–1164.
- [24] A. Ostrowski, Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv., 10 (1938), 226-227.
- [25] N. Ujević, Error inequalities for a Taylor-like formula. Cubo 10 (2008), no. 1, 11–18.
- [26] Z. X. Wang and D. R. Guo, Special Functions, World Scientific Publ. Co., Teaneck, NJ (1989).

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E\text{-}mail\ address: \verb"sever.dragomir@vu.edu.au"$

 URL : http://rgmia.org/dragomir

 2 DST-NRF Centre of Excellence, in the Mathematical and Statistical Sciences, School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa