GENERALIZED OSTROWSKI TYPE NORM INEQUALITIES FOR
ANALYTIC FUNCTIONS IN BANACH ALGEBRAS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let B be a unital Banach algebra, a € B, G be a convex domain
of C with o (a) C G and v C G is a piecewise smooth path parametrized by
A(t),t€0,1] from A(0) =ato A(1) =6.If f: G — Cis analytic on G, then
by using the analytic functional calculus we obtain among others the following

result
< 1
ds — (k) C )R (C1)E (a — )kt
[ 1@ =3 e i @ [0 - 0 - -]
1 ("+1)/ n+1
< Ka, Iz —all"™" |dz|
(n4+1) "7 ~

provided

Kl(lfl.;rl) = sup ‘f("+1) [(1-— s)a+sz]H < oo, n>0.

(s,2)€[0,1] x~
Applications for the exponential function of elements in Banach algebras are
also given.

1. INTRODUCTION

In 1938, A. Ostrowski [24], proved the following inequality concerning the dis-
tance between the integral mean ;1 f; f(t)dt and the value f (2), z € [a,b].

Theorem 1 (Ostrowski, 1938 [24]). Let f : [a,b] — R be continuous on [a, ]
and differentiable on (a,b) such that f' : (a,b) — R is bounded on (a,b), i.e.,
lf'll.o == sup |f' (t)] < oo. Then

te(a,b)

a

2
1 x — afb
S (b—2> 1]l (0= a),

b
(1.1) if(x) S el RACL.

for all z € [a,b] and the constant § is the best possible.

For a recent survey on Ostrowski’s inequality for scalar functions and Lebesgue
integral see [12].

In order to extend Ostrowski’s inequality for analytic functions defined on Ba-
nach algebras, we need the following preparations.

Let B be an algebra. An algebra norm on B is a map ||-|| : B—[0,00) such that
(B,|I-]) is a normed space, and, further: ||ab|| < |la| ||b| for any a,b € B. The
normed algebra (B, ||-||) is a Banach algebra if ||-|| is a complete norm. We assume
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2 S.S. DRAGOMIR

that the Banach algebra is unital, this means that B has an identity 1 and that
11 = 1.

Let B be a unital algebra. An element a € B is invertible if there exists an
element b € B with ab = ba = 1. The element b is unique; it is called the inverse of
a and written ! or <. The set of invertible elements of B is denoted by Inv (B).
If a,b € Inv (B) then ab € Inv (B) and (ab)™' = b~ta~L.

For a unital Banach algebra we also have:

(i) If a € B and lim, o [|a”]|*/™ < 1, then 1 — a € Inv (B);
(ii) {a € B: |1 =b|| <1} C Inv (B);

(iii) Inv(B) is an open subset of B;

(iv) The map Inv (B) 3 a — a~! € Inv (B) is continuous.

For simplicity, we denote z1, where z € C and 1 is the identity of B, by z. The
resolvent set of a € B is defined by

pla):={z2€C: z—a€Inv(B)};
the spectrum of a is o (a) , the complement of p (a) in C, and the resolvent function
of ais R, : p(a) — Inv(B), Ry (2) := (2 —a)”". For each z,w € p(a) we have the
identity
Ry (w) — Ry (2) = (2 — w) Ry (2) Re (w) .
We also have that
o(a) C{zeC: |z| <|al}-

The spectral radius of a is defined as

v(a) =sup{|z|:z€0(a)}.
Let B a unital Banach algebra and a € B. Then
(i) The resolvent set p (a) is open in C;
(ii) For any bounded linear functionals X : B —C, the function Ao R, is analytic

on p(a);
(iii) The spectrum o (a) is compact and nonempty in C;

(iv) For each n € N and r > v (a), we have a" = 5= fIE\ L€ (6 - )"t de;
(v) We have v (a) = limy,_.o [|a™]"/™ .

Let B be a unital Banach algebra, @ € B and G be a domain of C with o (a) C G.
If f: G — C is analytic on G, we define an element f (a) in B by

(1.2) =57 [ HO €0 i

where § C G is taken to be close rectifiable curve in G and such that o (a) C ins (),
the inside of 6.

It is well known (see for instance [7, pp. 201-204]) that f (a) does not depend
on the choice of § and the Spectral Mapping Theorem (SMT)

(1.3) o (f(a)) = f(o(a))
holds.

Let $ol(a) be the set of all the functions that are analytic in a neighborhood
of o (a). Note that $ol(a) is an algebra where if f, g € $Hol(a) and f and g have
domains D (f) and D (g), then fg and f + ¢ have domain D (f) N D (g). $Hol(a) is
not, however a Banach algebra.
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The following result is known as the Riesz Functional Calculus Theorem [7, p.
201-203]:

Theorem 2. Let B a unital Banach algebra and a € B.
(a) The map f — f(a) of Hol(a) — B is an algebra homomorphism.
(b) If [ (2) = Y pey ar2z”® has radius of convergence r > v (a), then f € $Hol (a)
and f(a) = Y7o, aa®.
(c) If f(2) =1, then f(a) = 1.
(d) If f(z) = z for all z, f (a) = a.
(e) If f, f1, e fn-.. are analytic on G, o (a) C G and f, (z) — f (2) uniformly
on compact subsets of G, then ||f, (a) — f (a)|| — 0 as n — oo.
(f) The Riesz Functional Calculus is unique and if a, b are commuting elements

in B and f € $Hol(a), then f(a)b=>bf (a).
For some recent norm inequalities for functions on Banach algebras, see [4]-[5]
and [10]-[16].
2. SOME IDENTITIES

Let f : D € C— C be an analytic function on the convex domain D and =z,
x € D, then we have the following Taylor’s expansion with integral remainder

21 [ =Y M@ E-oF
k=0

1 n+1 ! (n+1) 111 1 "
s G [ - s (- 0" ds

for n > 0, see for instance [26].

Consider the function f(z) = Log(z) where Log(z) = In|z| + i Arg(z) and
Arg (2) is such that —7m < Arg(z) < w. Log is called the "principal branch" of
the complex logarithmic function. The function f is analytic on all of C, :=
C\{z+iy:2 <0, y=0} and

i - 0 o)

Using the representation (2.1) we then have

n k—1 k
(22) Log(z) =Log (&) + Y % (Z g 5)
k=1

, k>1, ze€ C,y.

3
(1—s)"ds
1—s)&+s2]"t!

) (! / 1

for all z, £ € C; with (1 —s)¢+ sz € Cy for s € [0,1].
Consider the complex exponential function f (z) = exp (2), then by (2.1) we get

(23) ep(:)=) (-0 e (©)

k=0

L et 11 " 1 d
oGm0 [ =) e (- ) €4 2 s
for all z, £ € C.
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For various inequalities related to Taylor’s expansions for real functions see [1]-
[3], [17]-[23] and [25].

We have the following identity for functions in Banach algebras. This is a gen-
eralization of the scalar case for functions of real variable established in [6].

Theorem 3. Let B be a unital Banach algebra, a € B and G be a convexr domain
of C with o(a) C G. If f : G — C is analytic on G, v C D is a smooth path
parametrized by z (t), t € [0,1] with z(0) = « and z (1) = 8 where o, B € D and
n > 0, then we have

ey [0 > w > Y @6 1 e

:mL(z— )y (/01f<”+1> [(1—s)a+sz](1—s)"ds> dz

-~ 01 ( / (= = )" FH (1= s)a + s dz) (1—s)"ds.

n!

Proof. 1f we take the integral over z on the path v = v, 5 in the equality (2.1),
then we get for all £ € D that

"1
[re=3 g |
1
+ ’nl, /y _ 71+1 ( f(n+1) [(1 _ S)§—|— SZ] (1 . S)n ds) dz

a,B

:il (k 6 £)k+1 (Oz—f)k+1
— k!

k+1

. (z—&)"“( [ - e sal (- 7 s

- sy IAMCI A R S
=0

eaf o (] )6 s (- 9" s )

which proves the 1dent1ty

s [16) > g O [e-9" ey -]

— L (z =&t < 01 FOD (1 —s) e +52](1—5)" ds> dz

1 1
= ( / (z=&" (1 = 5) €+ s2] dz) (1—5)"ds
n. 0 ,-Y
for all £ € D, where for the second equality we used Fubini’s theorem.

Assume that § C G is taken to be close rectifiable curve in G and such that
o (a) C ins(d). By using the analytic functional calculus (1.2) and the equality
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(2.5) we obtain

(26) / rea (5 [0 )

2 i LIV O -0 0 -0 - o ae
1
ol 2w
1
X /5 </7 (z— " (/0 FOFV(1 — s) €+ s2] (1 —5)" d5> dz> (€—a)de
1
Tl

<f (/ 1 (55 [G-0m 5006+ sel (6~ o) de) (1- o) ds)

where for the last equality in (2.6) we also used Fubini’s theorem.
By using the functional calculus for the analytic functions

G3Em [P [B- " +(-)F -] ecC

and
Go¢m (2" D [(1—s)e+s2]€C
where k =0,...,n, z € v and s € [0, 1], then we obtain

[19© -0+ 1t €- 0] (6 - ae
= /M (@) |8 =" + (=) (a - )],

1
211

L e (1 )€t os2) (6 - a) e

27 Js
— (2 — )" D [(1 = s)a+ 52
and since
3 [ (e—a e =1

271

then by (2.6) we get the first equality in (2.4).
The second part of (2.4) follows by Fubini’s theorem. O

Remark 1. Let B be a unital Banach algebra, a € B and G be a conver domain
of C with o(a) C G. If f : G — C is analytic on G, v C D is a smooth path
parametrized by z (t), t € [0,1] with z (0) = a and z (1) = § where o, B € D.

If we take n =0 in (2.4), then we obtain the Ostrowski type equality

2.7) [yf(z)dz—(ﬁ—a)f(a):/v(z—a) (/Olf'[(l—s)a+sz]ds)dz

:/01 (L(z—a)f’[(l—s)a+sz]dz)ds.
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Forn =1 1in (2.4) we get the perturbed Ostrowski’s equality

28) [ 1= 3-a)f@--0) e (52 ~a)

:/W(z—a)2 (/0 f”[(l—s)a+sz](1—s)ds> dz
:/01 (L(z—a)zf”[(l—s)a+sz]dz) (1— s)ds.

Corollary 1. With the assumptions of Theorem 3 and for b € B we have the
general perturbed identity

(2.9) /f )dz —

i @ [(6 =)+ (1) (0 - )]

_ ﬁ {(/3 — @)™ 4 (—1)" (g — a)n+z] b
= % A (z—a)" ™ (/1 (f(n+1) [(1—3s)a+sz] — b) (1—s)" ds> dz

(/z a)" ! f( "t (1 - s)a+ sz] — b)dz)(l—s)”ds.

~

Proof. Observe that

L (z — )"t </01 (f<n+1> [(1—s)a+sz] - b) 1-s)" ds> dz
- L (2 —a)" ! </01 (f("“) [(1—s)a+ sz]) 1-s)" ds> dz

- </01(1_s)"d5) (L(z—a)”“dz)b
:L(z_a>"+1 (/01 (£ = 9)a+s2]) (1= s)" ds> dz

- WI(H‘FQ) [(5 - a)n+2 — (o= Q)HH} b

- [ (] (o sz (- o) ds)

. m [(6 B a)n+2 + (_1)"+1 (CL - a)n+2j| b7

and by (2.4) we get (2.9). O
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Remark 2. With the assumptions of Theorem 3, we have the identities

n+1 1
(2.10) / f(z)dz— Z mf(k) (a) [(6 — )" 4 (=D (a— a)k+1}
v k=0 )
=) o (/ (0010 = sl = 7240 (@) (1= o) ds ) s

3. NORM INEQUALITIES

We start to the following result:

Theorem 4. Let B be a unital Banach algebra, a € B and G be a convexr domain
of C with o(a) C G. If f : G — C is analytic on G, v C D is a smooth path
parametrized by z (t), t € [0,1] with z(0) = « and z (1) = 8 where o, B € D and
n > 0, then we have

1
p 0(k+1)

< ] [/ ||Z — a”n-‘rl /0 f(n+1) [(1 _ s)a—|— SZ] (1 o S)n ds

<o f 1= (] e - sya sal - as )

i [z = all ™ sup,eion [ £V (L - ) a+ sz [dz]

B (@) (8- + (1) (a - )]

|dz|

n 1/p
(qn+1)1/q nl f Iz — all ! (f ”f(n+1) (1-s)a+sz H ds) |dz|
forp, ¢>1 with  + 2 =1;

IN

n 1 n
Sz = al™ (S 11 = ) a+ 52| ds) [z
Proof. Using the first identity in (2.4) we have

n

62 | F@d-3 g T @[+ () )]
. ;/7 (2 — )"t (/ FO 1 = s)a+s2] (1—s)" )H 4z
< L= [ o010 a0 o as] 0
< ni/ Iz — af" / SOV - s)a+ sz] (1 — 5)" ds|| |dz]|

<o [ ( oo sy sal] -y as) oo =

which proves the first part of (3.1).
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Using Holder’s integral, we have
/ Hf(nﬂ) s)a+ sz H (1—2s)"ds
n 1 n
sup,epo, 1) |/ (1 = ) a+s2|| fy (1—9)"ds

(fol ||f(”+1) (1—s)at sz]”p d5>1/p (fol (1—s)™ ds) 1/q

ar 11 .
forp,q>1w1th];+afl,

IN

fol ||f(n+1) [(1 - S) a+ sz]” ds
7T SUPseo,1] | £ [(1 = 5) a + sz]||

1/p
B W(fo [| £ (175)a+sz” ds)
forp,q>1w1thp+a*1

fol Hf("“) [(1-s)a+ sz]” ds,
which implies that
arra Jo 2= al|"supyeio [[fOTV (1 = ) a+ s2]|| |dz]

n 1/p
A< (qn+1 @nt D)7 nl o Nz —all i (f |1 = s)a+ s2]||” ds) |dz|
a forp7q>1W1thp—|—E 1;

0,0z = al ™ (fy £ [ = ) at s3] ds) Jaz

which proves the last part of (3.1).

Remark 3. We observe that, if

(7,17+1) — sup Hf(n+1) [(1-s)a+ SZ}H )
(s,2)€[0,1]xy

then from the first branch of (3.1) we get the simpler error estimate

(3.3)

[1@a- 3 @ [6- 0+ 0 -]

< G [ el el
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Using Hdélder’s inequality we also have

||z —a|" (/1 Hf<n+1> [(1—s)a+ sz]de8>1/p |dz|
1 ) 1/p7P 1/p
n+1
< (/7 [(/0 Hf( + )[(l—s)a—&-sz]H ds) 1 dz|>
x ( [ = dz|)1/q
1/p . 1/q
_ (L (/ [ 10— syat sz >|dz) (L Iz — a|« +1>|dz>

and by the second branch of (3.1) we get
1 (k) k1 k k+1
=M (@) (8- + (1) (a - )"

[ Grdz-
v k=0 )t
1/q
< ot ([ el )
qn +1 e \Jy

X (/7 (/01 Hf<n+1> [(1—s)a+sz]des> |dz>1/p

n

(3.4)

forp,q>1with%+%:1.

We observe that, if we take n = 0 in (3.1) then we get the Ostrowski type
inequalities

(3.5) z)dz— (B —a) f(a)

< [1z-a ]/OIf'[a—s)wsz]ds

</7|z—a|| (/ 1710 = )+ sl s ) s

[,z = allsupepony 17 [(1 = 5) a + s2]]| |dz|

|dz|

< 1 1/p
S llz = all (J 1711~ )a+ szl|P ds) "z
for p, q>1with%+%:1;
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while for n = 1 in (3.1) then we get the Ostrowski type perturbed inequalities

(3.6) Z)dz—(ﬁ—a)f(a)—(ﬁ—a)f(a)<6+a )H
"1 s)a+sz](1—s)ds| |dz|
—al? "1 — 1-— d) d
s/7||z al (/ 1F7 (L= s)a+ 2]l (1= 5) ds ) dz]
Lz = all? sup,epo 17 11— s)a+ 2] dz|
1/p
) e Ll al (o I = s a+ szl Pds) a2
a forp,q>1with%+%:1;
S Wz = all® (Jy 15710 = 5) @+ s2]]| ds) |dz]
If
Kl(f% = sup ||f'[(1—s)a+sz]|| <oo, n>0,

(,2)€[0,1]x

then by (3.5) we get

(3.7) z)dz— (8 —a) f(a)

< ng/ = — al| dz|.
Yy
Also, if

K@= sp [0 s)a+ szl < oo, n >0,
(s,2)€[0,1] xvy

then by (3.6) we get

(3.8)

D= (- @ - G- @ (L5 =)

2
K [ 12l jdsl.
2l

<

N | =

We also have:

Theorem 5. Let B be a unital Banach algebra, a € B and G be a convexr domain
of C with o(a) C G. If f : G — C is analytic on G, v C D is a smooth path
parametrized by z (t), t € [0,1] with z(0) = « and z (1) = 5 where o, B € D and
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n > 0, then we have

1 k+1 k k+1
(3.9) = e (6= + (=) (a-a) *]‘
1 (/ 2= al™ [ £ [ = )+ 52 |dz> (1-s)"ds
:
L llz = al ™ e fy supaey £V (1= ) a+ 2| (1 - 5)" ds,
& (1 - a||q<”“> azf)
<

P 1/p n
S (1= sy oo 1ael) (1 - sy s
for p,q > 1 with L+ 1 =1,

Lsupe |z = al ™ L (£ [0 - s)a+ 2] ldel ) (1~ 5)" ds.

Proof. Using the second identity from (3.1), we have

n

[ F@d:= s @ [(3 = (1) (o= )]
v k=0 ’
< % A 1
< % /01 (L | =™ re 0 @ - 9o+ s |dz|) (1= s)"ds

< / 1 ( / Gz = a0 100 = 9y a+ 52 |dz|) (1—s)"ds

(3.10)

(1—5)"ds

/ (z—a)" T FOD (1 = 5)a + s2]dz
.

Using the Holder’s integral inequality we have
Jle=al 0@ - a5 g
~
n n+1
sup.c, [|FFV[(1 = s)a+ sz [, llz —a " |dz|

(10 (1 = sya+ 52| az1) " (1, 1z - all 7@ azl)

forp,q>1w1thp+5—1.

IA

sup.c, [z = al ™ [ [[FD[(1 = s) @+ ]| |dz].

< 1 ( [l =al s —8)a+SZ]Hdz> (1—s)"ds = B.
0 v

11
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Therefore,
3 Jsupaey [0 (1= )t sel| (1, 2 — all ™ =) (1 - )" ds
1/p
o fol (fﬂ, ||f("+1) [(1—s)a+ sz]Hp |dz|>
1/
Bos g (L=l jasl) (1 - )" ds
forp,q>1with%+%:1.
L fol sup,e., ||z — a||”+1 (fﬂ{ Hf("‘H) [(1—s)a+ sz]” \dz|) (1—5)"ds
L[ llz = all" " ldz] fy sup.c, [|[FOFV[(1 = s)a + s2)]| (1 - 5)" ds
" 1/q
& (0, 12 = el jaz)
— 1/p "
= X fol (f7 |1~ s)a+ s2]||” |dz|) (1—5)"ds
forp,q>1with%—|—%:1.
Lsup, [z — al" j;)l (fv | FPHD[(1 = s)a+ s2]]| \dz|) (1—5)"ds,
which proves the last part of (3.9). O

4. PERTURBED NORM INEQUALITIES

Let a € B and G be a convex domain of C with o (a) C G and A € G. We define
Gro :={(1—t)X+ta | with t € [0,1]}. We observe that G , is a convex subset
in B for every A € G.

For two distinct elements u, v in the Banach algebra B we say that the func-
tion g : G, — B belongs to the class A, , (Gx,) if it satisfies the boundedness
condition

u—+v

(a1) o2 < Llo—ul

for allt € [0,1]. We write g € Ay, (Ga,q) - This definition is an extension to Banach
algebras valued functions of the scalar case, see [8].

We say that the function g : G , — B is Lipschitzian on G , with the constant
Lyq >0, if for all z, y € G, we have

lg () =g Wl < Lxallz —yll-
This is equivalent to
(4.2) lg (A =t)A+ta) —g((1—s)A+sa)l| < Laalt —sllla— Al

for all ¢, s € [0,1]. We write this by g € £ipy,  (Gr.a)-
Let h : G — C be an analytic function on G. For t € [0,1] and A € G, the
auxiliary function h; » defined on G by hy x (§) := h ((1 —t) A+ t&) is also analytic
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and using the analytic functional calculus (2.1) for the element a € B, we can define

1

(4.3) h((1—=t) A+ ta) := hy (a) = 5 / hox (€) (€ —a)~ " de

2w

=L a e € —a) e

We say that the scalar function h € A, , (Gx,q) if its extension h: Gra — B
satisfies the boundedness condition (4.1). Also, we say that the scalar function
h € Lipy, . (Ga,q) if its extension h: G, — B satisfies the Lipschitz condition
(4.2).

We have:

Theorem 6. Let B be a unital Banach algebra, a € B and G be a convexr domain
of C with o (a) C G. Assume also that f : G — C is analytic on G and X € G. If
there exists u, v € B with u # v such that f"t1) ¢ Ay (Gra), then

(4.4) F9 (@) [(8 =) + (1) (a = )"

d 1
dz_k;(kﬂ)!

1 n+2 n+1 n+2] U +v
- — -1 — -
g (60" (0 @ ]
1 1 n+1
<= - - .
< Sy ool el e

Proof. Taking the norm in the equality (2.10) for b = “£* and using the fact that
fOY e A, (Gya), then we have

(45) > > g @6 - @ 1 @ )]
n—|—2)'[ a)"™* _1)%1(@_@)%2}%“}
(T H
g% z—a|"t (/;(Wl (1- s)a—l—sz}—u;v)(l—s >Hdz|
sni/nz all"“(/ole("“ (1= 9atsd =5 (1= 97 ds) a2
< lju) (/ (1" as) [ el

= sl f el e,
which proves (4.4). O

‘We have:
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Theorem 7. Let B be a unital Banach algebra, a € B and G be a conver domain
of C with o (a) C G. Assume also that f : G — C is analytic on G and \ € G. If
fltl) ¢ Lipy,  (Gra) for some Ly, >0, then

7n+1 1 (k) RN S VRN A SR |
(46) | [ r(=d==3" F9 (@ [(8 =) 4+ (-1 (a = )]

|
prs (k+1)!
Lya / iz — al™*?|dz.
vy

1

= mr2)

Proof. By using the identity (2.10), we get

(4.7) / f(z)dz - % L9 @) [(6 - @) () (o )]
. 8! = (bt 1)
<o o (/01 (£ 010 = ) at sz = 1 (@) (1= )" ds) ‘ -
1 e [ (et - o0 )=

<o [ () = ek o - 0 @) (- 0 s

1
n!
1 n+2 ! n
< —'LA@/Hz—aH (/ s(l—s) ds) |dz|
n! . 0
! 1
— (/ 5(1_5)"ds) —'LA7Q/||z—aH"+2|dz\.
0 n: 5

Since
1 1 1
/ s(l—s)nds: / (1—3) SndSZ/ (Sn_sn—H) ds
0 0 0
_ 1 I 1
n+l n+2 (+1)(n+2)’
hence by (4.7) we get (4.6). O

5. APPLICATIONS FOR EXPONENTIAL FUNCTION

Let B be a unital Banach algebra, a € B, v C D is a smooth path parametrized
by z(t), t € [0,1] with 2(0) = « and 2 (1) = 8 where a, § € C. Consider the
exponential function f (z) = exp(2), z € C and put

E.n:= sup |exp[(1—s)a+ sz]|| < oo, n>0.
(s,2)€[0,1] xy

Observe that
exp ((1 —t) A+ ta) =exp[(1 — ) A] exp (ta),
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which gives

lexp (1 =) A+ ta)||
= lexp [(1 —t) A]| [[exp (ta)|| = exp [(1 — t) Re A] [lexp (ta)||
<exp[(1—t)Re)exp(t|al)=exp[(1—1t)ReA+t]all]
< exp (max {Re A, [|a||})

for any ¢t € [0,1], A € C.
Therefore

E, . <supexp (max{Rez,|al}) =exp <maX {maxRe z, ||a||}> .
zey zey
By utilising (3.3) we then get

n

expf —expa — kz:% ﬁ {(5 _ a)k“ + (fl)k (a— a)/ﬂ-l} expa

1 n
=y P (max{f?ggRez’lall})/wnza ]

(5.1)

Now, if we define
(5.2)

B (M a) = /0 exp[(1— s)Re A+ s af] (1 — 5)" ds

1 1
= / exp[sReA+ (1 —s) ||al|] s"ds = / exp [||la]] + s (Re A — ||a|)] s"ds
0 0

then by using the integration by parts and assuming that Re A # ||a]| we have
1
| expllall +5 @®ex ~ falp] s"ds
0

1 /4
= s"d (exp[|la|| + s (Re A — ||a
R [ e llal+ 5 (ReA— fal))
_ 1
~ Re\—|a

1
X [S”GXp[IlallJrS(Re/\— IIGII)]\é—n/0 s""exp [lall + s (Re A — la]))] dS}

1 1
=———— lexp(Re})) — n/ s""Lexp|lal + s (ReX — [|a]])] ds] ,
Re A — |a]| [ 0
which gives the recursive relation

1
. = —nky_1(Aa)], n=>1
(5.3) E, (\a) Rex—Jal [exp (ReA) —nE,_1 (A a)], n
with
exp (Re A) — exp (||al])
4 E = .
>4 R

For Re X = |[a]| we have E,, (\,a) = -5 exp (||a]]) .
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From the inequality (3.1) we get
o1

(5.5) |lexpB —expa — Z F {(/3 _ a)k‘+1 +(=1)"(a— a)k-s-l} expa
=0

k
<t / = ol ([ oo [(1— 8)a+ s (1 - )" ds )

<oy el ([ el - oRes e sfel) 0 -7 as)

and since, as shown by (5.2 )

/0 exp[(1—s)Rez+s|al]] (1 —s)"ds = E, (2,a),

hence we get the inequality

n

(5.6) |lexpf —expa— Z

k=0

ﬁ [(ﬂ - a)k+1 + (—1)k (CL — a)’“‘l} exp a

1
< —/ |z — aHnJr1 E, (z,a)|dz|.
n! ~

The inequality (5.6) is sharper than (5.1) but the upper bound from (5.6) is much

more difficult to calculate for a given path ~ than the one from 5.1.
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