SOME DISCRETE INEQUALITIES FOR CONVEX FUNCTIONS DEFINED ON LINEAR SPACES

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. In this paper we provide some discrete inequalities related to the Hermite-Hadamard result for convex functions defined on convex subsets in a linear space. Applications for norms and univariate real functions with an example for the logarithm, are also given.

1. Introduction

Let X be a real linear space, $a, b \in X$, $a \neq b$ and let $[a, b] := \{(1 - \lambda) \ a + \lambda b, \ \lambda \in [0, 1]\}$ be the *segment* generated by a and b. We consider the function $f : [a, b] \to \mathbb{R}$ and the attached function $g(a, b) : [0, 1] \to \mathbb{R}$, $g(a, b)(t) := f[(1 - t) \ a + tb]$, $t \in [0, 1]$.

It is well known that f is convex on [a, b] iff g(a, b) is convex on [0, 1], and the following lateral derivatives exist and satisfy

(i)
$$g'_{\pm}(a,b)(s) = (\nabla_{\pm}f[(1-s)a+sb])(b-a), s \in [0,1)$$

(ii)
$$g'_{+}(a,b)(0) = (\nabla_{+}f(a))(b-a)$$

(iii)
$$g'_{-}(a,b)(1) = (\nabla_{-}f(b))(b-a)$$

where $(\nabla_+ f(x))(y)$ are the Gâteaux lateral derivatives, we recall that

$$\begin{split} \left(\bigtriangledown_{+} f\left(x\right) \right) \left(y \right) & : & = \lim_{h \to 0+} \left[\frac{f\left(x + hy\right) - f\left(x\right)}{h} \right], \\ \left(\bigtriangledown_{-} f\left(x\right) \right) \left(y \right) & : & = \lim_{k \to 0-} \left[\frac{f\left(x + ky\right) - f\left(x\right)}{k} \right], \ x, \ y \in X. \end{split}$$

The following inequality is the well-known Hermite-Hadamard integral inequality for convex functions defined on a segment $[a, b] \subset X$:

(HH)
$$f\left(\frac{a+b}{2}\right) \le \int_0^1 f\left[\left(1-t\right)a + tb\right] dt \le \frac{f\left(a\right) + f\left(b\right)}{2},$$

which easily follows by the classical Hermite-Hadamard inequality for the convex function $g(a,b):[0,1]\to\mathbb{R}$

$$g(a,b)\left(\frac{1}{2}\right) \le \int_0^1 g(a,b)(t) dt \le \frac{g(a,b)(0) + g(a,b)(1)}{2}.$$

For other related results see the monograph on line [4].

We have the following result [2] related to the first Hermite-Hadamard inequality in (HH):

1

¹⁹⁹¹ Mathematics Subject Classification. 26D15, 46B25.

Key words and phrases. Convex functions, Linear spaces, Jensen's inequality, Hermite-Hadamard inequality, Norm inequalities.

Theorem 1. Let X be a linear space, $a, b \in X$, $a \neq b$ and $f : [a, b] \subset X \to \mathbb{R}$ be a convex function on the segment [a, b]. Then for any $s \in (0, 1)$ one has the inequality

$$(1.1) \frac{1}{2} \left[(1-s)^2 \left(\bigtriangledown_+ f \left[(1-s) \, a + sb \right] \right) (b-a) - s^2 \left(\bigtriangledown_- f \left[(1-s) \, a + sb \right] \right) (b-a) \right]$$

$$\leq \int_0^1 f \left[(1-t) \, a + tb \right] dt - f \left[(1-s) \, a + sb \right]$$

$$\leq \frac{1}{2} \left[(1-s)^2 \left(\bigtriangledown_- f \left(b \right) \right) (b-a) - s^2 \left(\bigtriangledown_+ f \left(a \right) \right) (b-a) \right].$$

The constant $\frac{1}{2}$ is sharp in both inequalities. The second inequality also holds for s=0 or s=1.

If $f:[a,b]\to\mathbb{R}$ is as in Theorem 1 and Gâteaux differentiable in $c:=(1-\lambda)a+\lambda b, \lambda\in(0,1)$ along the direction b-a, then we have the inequality:

$$(1.2) \qquad \left(\frac{1}{2} - \lambda\right) \left(\nabla f\left(c\right)\right) \left(b - a\right) \leq \int_{0}^{1} f\left[\left(1 - t\right)a + tb\right] dt - f\left(c\right).$$

If f is as in Theorem 1, then

$$(1.3) 0 \leq \frac{1}{8} \left[\nabla_{+} f\left(\frac{a+b}{2}\right) (b-a) - \nabla_{-} f\left(\frac{a+b}{2}\right) (b-a) \right]$$

$$\leq \int_{0}^{1} f\left[(1-t) a + tb \right] dt - f\left(\frac{a+b}{2}\right)$$

$$\leq \frac{1}{8} \left[(\nabla_{-} f(b)) (b-a) - (\nabla_{+} f(a)) (b-a) \right].$$

The constant $\frac{1}{8}$ is sharp in both inequalities.

Also we have the following result [3] related to the second Hermite-Hadamard inequality in (HH):

Theorem 2. Let X be a linear space, $a, b \in X$, $a \neq b$ and $f : [a, b] \subset X \to \mathbb{R}$ be a convex function on the segment [a, b]. Then for any $s \in (0, 1)$ one has the inequality

$$(1.4) \frac{1}{2} \left[(1-s)^2 \left(\nabla_+ f \left[(1-s) \, a + sb \right] \right) (b-a) - s^2 \left(\nabla_- f \left[(1-s) \, a + sb \right] \right) (b-a) \right]$$

$$\leq (1-s) \, f (a) + s f (b) - \int_0^1 f \left[(1-t) \, a + tb \right] dt$$

$$\leq \frac{1}{2} \left[(1-s)^2 \left(\nabla_- f (b) \right) (b-a) - s^2 \left(\nabla_+ f (a) \right) (b-a) \right].$$

The constant $\frac{1}{2}$ is sharp in both inequalities. The second inequality also holds for s = 0 or s = 1.

If $f:[a,b]\to\mathbb{R}$ is as in Theorem 2 and Gâteaux differentiable in $c:=(1-\lambda)\,a+\lambda b,\,\lambda\in(0,1)$ along the direction b-a, then we have the inequality:

$$(1.5) \quad \left(\frac{1}{2} - \lambda\right) \left(\nabla f\left(c\right)\right) \left(b - a\right) \le \left(1 - \lambda\right) f\left(a\right) + \lambda f\left(b\right) - \int_{0}^{1} f\left[\left(1 - t\right) a + tb\right] dt.$$

If f is as in Theorem 2, then

$$(1.6) 0 \leq \frac{1}{8} \left[\nabla_{+} f\left(\frac{a+b}{2}\right) (b-a) - \nabla_{-} f\left(\frac{a+b}{2}\right) (b-a) \right]$$

$$\leq \frac{f(a) + f(b)}{2} - \int_{0}^{1} f\left[(1-t) a + tb \right] dt$$

$$\leq \frac{1}{8} \left[\left(\nabla_{-} f(b) \right) (b-a) - \left(\nabla_{+} f(a) \right) (b-a) \right].$$

The constant $\frac{1}{8}$ is sharp in both inequalities.

2. The Results

Let $f: C \subset X \to \mathbb{R}$ be a convex function on C. We define the function $F_f: C \times C \to \mathbb{R}$ by

(2.1)
$$F_f(x,y) := \int_0^1 f((1-t)x + ty) dt.$$

Theorem 3. Let $f: C \subset X \to \mathbb{R}$ be a convex function on C. Then the function F_f is convex on $C \times C$ and if $x_i, y_i \in C$ and $p_i \geq 0$ for i = 1, ..., n with $\sum_{i=1}^n p_i = 1$, then we have the inequalities

(2.2)
$$\sum_{i=1}^{n} p_{i} \int_{0}^{1} f((1-t)x_{i} + ty_{i}) dt \ge \int_{0}^{1} f\left((1-t)\sum_{i=1}^{n} p_{i}x_{i} + t\sum_{i=1}^{n} p_{i}y_{i}\right) dt$$

$$\ge f\left(\sum_{i=1}^{n} p_{i}\left(\frac{x_{i} + y_{i}}{2}\right)\right),$$

(2.3)
$$\sum_{i=1}^{n} p_{i} \left(\frac{f(x_{i}) + f(y_{i})}{2} \right) \geq \sum_{i=1}^{n} p_{i} \int_{0}^{1} f((1-t)x_{i} + ty_{i}) dt$$
$$\geq \sum_{i=1}^{n} p_{i} f\left(\frac{x_{i} + y_{i}}{2} \right) \geq f\left(\sum_{i=1}^{n} p_{i} \left(\frac{x_{i} + y_{i}}{2} \right) \right)$$

(2.4)
$$\sum_{i=1}^{n} p_{i} \left(\frac{f(x_{i}) + f(y_{i})}{2} \right) \geq \frac{1}{2} \left[f\left(\sum_{i=1}^{n} p_{i} x_{i} \right) + f\left(\sum_{i=1}^{n} p_{i} y_{i} \right) \right]$$

$$\geq \int_{0}^{1} f\left((1 - t) \sum_{i=1}^{n} p_{i} x_{i} + t \sum_{i=1}^{n} p_{i} y_{i} \right) dt.$$

Proof. Let (x,y), $(u,v) \in C \times C$ and $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$. Then

$$F_{f}(\alpha(x,y) + \beta(u,v)) = F_{f}(\alpha x + \beta u, \alpha y + \beta v)$$

$$= \int_{0}^{1} f((1-t)(\alpha x + \beta u) + t(\alpha y + \beta v)) dt$$

$$= \int_{0}^{1} f(\alpha[(1-t)x + ty] + \beta[(1-t)u + tv]) dt$$

$$\leq \int_{0}^{1} [\alpha f((1-t)x + ty) + \beta f((1-t)u + tv)] dt$$

$$= \alpha \int_{0}^{1} f((1-t)x + ty) dt + \beta \int_{0}^{1} f((1-t)u + tv) dt$$

$$= \alpha F_{f}(x,y) + \beta F_{f}(u,v),$$

which proves the joint convexity of the function F_f .

By Jensen's inequality for the convex function F_f we have

$$\sum_{i=1}^{n} p_{i} F_{f}(x_{i}, y_{i}) \ge F_{f}\left(\sum_{i=1}^{n} p_{i}(x_{i}, y_{i})\right) = F_{f}\left(\sum_{i=1}^{n} p_{i} x_{i}, \sum_{i=1}^{n} p_{i} y_{i}\right),$$

which is equivalent to the first inequality in (2.2).

By Hermite-Hadamard inequality (HH) we have

$$\int_{0}^{1} f\left((1-t)\sum_{i=1}^{n} p_{i}x_{i} + t\sum_{i=1}^{n} p_{i}y_{i}\right) dt \ge f\left(\frac{\sum_{i=1}^{n} p_{i}x_{i} + \sum_{i=1}^{n} p_{i}y_{i}}{2}\right) dt$$

$$= f\left(\sum_{i=1}^{n} p_{i}\left(\frac{x_{i} + y_{i}}{2}\right)\right)$$

and the second part of (2.2) is proved.

From (HH) we also have for each $i \in \{1, ..., n\}$ that

$$\frac{f(x_i) + f(y_i)}{2} \ge \int_0^1 f[(1-t)x_i + ty_i] dt \ge f\left(\frac{x_i + y_i}{2}\right).$$

If we multiply this inequality by $p_i \ge 0$ and sum over i from 1 to n we get the first and second inequality in (2.3).

The last part in (2.3) follows by Jensen's inequality.

Let $u := \sum_{i=1}^{n} p_i x_i$ and $v := \sum_{i=1}^{n} p_i y_i$. By Hermite-Hadamard inequality (HH) we also have

$$\frac{f(u) + f(v)}{2} \ge \int_0^1 f[(1-t)u + tv] dt,$$

which produces the second inequality in (2.4).

By Jensen's inequality for f we have

$$\sum_{i=1}^{n} p_i f(x_i) \ge f\left(\sum_{i=1}^{n} p_i x_i\right)$$

$$\sum_{i=1}^{n} p_i f(y_i) \ge f\left(\sum_{i=1}^{n} p_i y_i\right).$$

If we sum these two inequalities and divide by 2 we get the first inequality in (2.4).

The following result also holds:

Theorem 4. With the assumptions of Theorem 3 we have

$$(2.5) \quad 0 \leq \frac{1}{8} \left[\sum_{i=1}^{n} p_{i} \left(\nabla_{+} f\left(\frac{x_{i} + y_{i}}{2}\right) (y_{i} - x_{i}) \right) - \sum_{i=1}^{n} p_{i} \left(\nabla_{-} f\left(\frac{x_{i} + y_{i}}{2}\right) (y_{i} - x_{i}) \right) \right]$$

$$\leq \sum_{i=1}^{n} p_{i} \int_{0}^{1} f\left[(1 - t) x_{i} + t y_{i} \right] dt - \sum_{i=1}^{n} p_{i} f\left(\frac{x_{i} + y_{i}}{2}\right)$$

$$\leq \frac{1}{8} \left[\sum_{i=1}^{n} p_{i} \left(\nabla_{-} f\left(y_{i}\right) \right) (y_{i} - x_{i}) - \sum_{i=1}^{n} p_{i} \left(\nabla_{+} f\left(x_{i}\right) \right) (y_{i} - x_{i}) \right],$$

and

$$(2.6) \quad 0 \leq \frac{1}{8} \left[\sum_{i=1}^{n} p_{i} \left(\nabla_{+} f\left(\frac{x_{i} + y_{i}}{2}\right) (y_{i} - x_{i}) \right) - \sum_{i=1}^{n} p_{i} \left(\nabla_{-} f\left(\frac{x_{i} + y_{i}}{2}\right) (y_{i} - x_{i}) \right) \right]$$

$$\leq \sum_{i=1}^{n} p_{i} \left(\frac{f(x_{i}) + f(y_{i})}{2} \right) - \sum_{i=1}^{n} p_{i} \int_{0}^{1} f((1 - t) x_{i} + t y_{i}) dt$$

$$\leq \frac{1}{8} \left[\sum_{i=1}^{n} p_{i} \left(\nabla_{-} f(y_{i}) \right) (y_{i} - x_{i}) - \sum_{i=1}^{n} p_{i} \left(\nabla_{+} f(x_{i}) \right) (y_{i} - x_{i}) \right].$$

We also have

$$(2.7) \quad 0 \leq \frac{1}{8} \left[\nabla_{+} f\left(\sum_{i=1}^{n} p_{i}\left(\frac{x_{i} + y_{i}}{2}\right)\right) \left(\sum_{i=1}^{n} p_{i}\left(y_{i} - x_{i}\right)\right) - \nabla_{-} f\left(\sum_{i=1}^{n} p_{i}\left(\frac{x_{i} + y_{i}}{2}\right)\right) \left(\sum_{i=1}^{n} p_{i}\left(y_{i} - x_{i}\right)\right) \right]$$

$$\leq \int_{0}^{1} f\left((1 - t)\sum_{i=1}^{n} p_{i}x_{i} + t\sum_{i=1}^{n} p_{i}y_{i}\right) dt - f\left(\sum_{i=1}^{n} p_{i}\left(\frac{x_{i} + y_{i}}{2}\right)\right)$$

$$\leq \frac{1}{8} \left[\left(\nabla_{-} f\left(\sum_{i=1}^{n} p_{i}y_{i}\right)\right) \left(\sum_{i=1}^{n} p_{i}\left(y_{i} - x_{i}\right)\right) - \left(\nabla_{+} f\left(\sum_{i=1}^{n} p_{i}x_{i}\right)\right) \left(\sum_{i=1}^{n} p_{i}\left(y_{i} - x_{i}\right)\right)\right]$$

and

$$(2.8) \quad 0 \leq \frac{1}{8} \left[\nabla_{+} f\left(\sum_{i=1}^{n} p_{i}\left(\frac{x_{i} + y_{i}}{2}\right)\right) \left(\sum_{i=1}^{n} p_{i}\left(y_{i} - x_{i}\right)\right) - \nabla_{-} f\left(\sum_{i=1}^{n} p_{i}\left(\frac{x_{i} + y_{i}}{2}\right)\right) \left(\sum_{i=1}^{n} p_{i}\left(y_{i} - x_{i}\right)\right) \right]$$

$$\leq \frac{1}{2} \left[f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) + f\left(\sum_{i=1}^{n} p_{i} y_{i}\right)\right] - \int_{0}^{1} f\left((1 - t)\sum_{i=1}^{n} p_{i} x_{i} + t\sum_{i=1}^{n} p_{i} y_{i}\right) dt$$

$$\leq \frac{1}{8} \left[\left(\nabla_{-} f\left(\sum_{i=1}^{n} p_{i} y_{i}\right)\right) \left(\sum_{i=1}^{n} p_{i}\left(y_{i} - x_{i}\right)\right) - \left(\nabla_{+} f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)\right) \left(\sum_{i=1}^{n} p_{i}\left(y_{i} - x_{i}\right)\right) \right].$$

Proof. From the inequality (1.3) we have for $a = x_i$ and $b = y_i$, where $i \in \{1, ..., n\}$ that

$$0 \leq \frac{1}{8} \left[\bigtriangledown_{+} f\left(\frac{x_{i} + y_{i}}{2}\right) (y_{i} - x_{i}) - \bigtriangledown_{-} f\left(\frac{x_{i} + y_{i}}{2}\right) (y_{i} - x_{i}) \right]$$

$$\leq \int_{0}^{1} f\left[(1 - t) x_{i} + t y_{i} \right] dt - f\left(\frac{x_{i} + y_{i}}{2}\right)$$

$$\leq \frac{1}{8} \left[(\bigtriangledown_{-} f(y_{i})) (y_{i} - x_{i}) - (\bigtriangledown_{+} f(x_{i})) (y_{i} - x_{i}) \right],$$

for any $i \in \{1, ..., n\}$.

If we multiply this inequality by $p_i \geq 0$ and sum over i from 1 to n, then we get

$$0 \leq \frac{1}{8} \sum_{i=1}^{n} p_{i} \left[\bigtriangledown_{+} f\left(\frac{x_{i} + y_{i}}{2}\right) (y_{i} - x_{i}) - \bigtriangledown_{-} f\left(\frac{x_{i} + y_{i}}{2}\right) (y_{i} - x_{i}) \right]$$

$$\leq \sum_{i=1}^{n} p_{i} \int_{0}^{1} f\left[(1 - t) x_{i} + t y_{i} \right] dt - \sum_{i=1}^{n} p_{i} f\left(\frac{x_{i} + y_{i}}{2}\right)$$

$$\leq \frac{1}{8} \sum_{i=1}^{n} p_{i} \left[(\bigtriangledown_{-} f(y_{i})) (y_{i} - x_{i}) - (\bigtriangledown_{+} f(x_{i})) (y_{i} - x_{i}) \right],$$

which is equivalent to (2.5).

The inequality (2.6) follows in a similar way by employing the inequality (1.6). The inequalities (2.7) and (2.8) follow by taking $a = \sum_{i=1}^{n} p_i x_i$ and $b = \sum_{i=1}^{n} p_i y_i$ in the inequalities (1.3) and (1.6).

3. Examples for Norms

Now, assume that $(X, \|\cdot\|)$ is a normed linear space. The function $f_0(s) = \frac{1}{2} \|x\|^2$, $x \in X$ is convex and thus the following limits exist

$$\begin{split} & \left(\mathrm{iv}\right) \ \left\langle x,y\right\rangle_{s} := \left(\bigtriangledown_{+}f_{0}\left(y\right)\right)\left(x\right) = \lim_{t\to0+} \left[\frac{\|y+tx\|^{2}-\|y\|^{2}}{2t}\right]; \\ & \left(\mathrm{v}\right) \ \left\langle x,y\right\rangle_{i} := \left(\bigtriangledown_{-}f_{0}\left(y\right)\right)\left(x\right) = \lim_{s\to0-} \left[\frac{\|y+sx\|^{2}-\|y\|^{2}}{2s}\right]; \end{split}$$

for any $x, y \in X$. They are called the lower and upper semi-inner products associated to the norm $\|\cdot\|$.

For the sake of completeness we list here some of the main properties of these mappings that will be used in the sequel (see for example [1] or [5]), assuming that $p, q \in \{s, i\}$ and $p \neq q$:

- (a) $\langle x, x \rangle_p = \|x\|^2$ for all $x \in X$; (aa) $\langle \alpha x, \beta y \rangle_p = \alpha \beta \langle x, y \rangle_p$ if $\alpha, \beta \ge 0$ and $x, y \in X$;
- (aaa) $\left| \langle x, y \rangle_p \right| \le ||x|| \, ||y|| \text{ for all } x, y \in X;$
- (av) $\langle \alpha x + y, x \rangle_p = \alpha \langle x, x \rangle_p + \langle y, x \rangle_p$ if $x, y \in X$ and $\alpha \in \mathbb{R}$;
- (v) $\langle -x, y \rangle_p = -\langle x, y \rangle_q$ for all $x, y \in X$;
- $(\text{va}) \ \langle x+y,z\rangle_p \leq \|x\| \ \|z\| + \langle y,z\rangle_p \ \text{for all} \ x,\,y,\,z \in X;$
- (vaa) The mapping $\langle \cdot, \cdot \rangle_p$ is continuous and subadditive (superadditive) in the first variable for p = s (or p = i);
- (vaaa) The normed linear space $(X, \|\cdot\|)$ is smooth at the point $x_0 \in X \setminus \{0\}$ if and only if $\langle y, x_0 \rangle_s = \langle y, x_0 \rangle_i$ for all $y \in X$; in general $\langle y, x \rangle_i \leq \langle y, x \rangle_s$ for all x,
 - (ax) If the norm $\|\cdot\|$ is induced by an inner product $\langle\cdot,\cdot\rangle$, then $\langle y,x\rangle_i=\langle y,x\rangle=\langle y,x\rangle$ $\langle y, x \rangle_s$ for all $x, y \in X$.

Applying inequality (HH) for the convex function $f_r(x) = ||x||^r$, $r \ge 1$ one may deduce the inequality

(3.1)
$$\left\| \frac{x+y}{2} \right\|^r \le \int_0^1 \left\| (1-t) x + ty \right\|^r dt \le \frac{\left\| x \right\|^r + \left\| y \right\|^r}{2}$$

for any $x, y \in X$.

Let $(X, \|\cdot\|)$ be a normed linear space and $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$ be n-tuples of vectors in X, then for the probability distribution $p = (p_1, ..., p_n)$ and $r \geq 1$ we have by Theorem 3 for the convex function $f(x) = ||x||^r$ that

(3.2)
$$\sum_{i=1}^{n} p_{i} \int_{0}^{1} \left\| (1-t) x_{i} + t y_{i} \right\|^{r} dt \ge \int_{0}^{1} \left\| (1-t) \sum_{i=1}^{n} p_{i} x_{i} + t \sum_{i=1}^{n} p_{i} y_{i} \right\|^{r} dt$$

$$\ge \left\| \sum_{i=1}^{n} p_{i} \left(\frac{x_{i} + y_{i}}{2} \right) \right\|^{r},$$

(3.3)
$$\sum_{i=1}^{n} p_{i} \left(\frac{\|x_{i}\|^{r} + \|y_{i}\|^{r}}{2} \right) \geq \sum_{i=1}^{n} \int_{0}^{1} p_{i} \|(1-t) x_{i} + t y_{i}\|^{r} dt$$
$$\geq \sum_{i=1}^{n} p_{i} \left\| \frac{x_{i} + y_{i}}{2} \right\|^{r} \geq \left\| \sum_{i=1}^{n} p_{i} \left(\frac{x_{i} + y_{i}}{2} \right) \right\|^{r}$$

(3.4)
$$\sum_{i=1}^{n} p_{i} \left(\frac{\|x_{i}\|^{r} + \|y_{i}\|^{r}}{2} \right) \geq \frac{1}{2} \left[\left\| \sum_{i=1}^{n} p_{i} x_{i} \right\|^{r} + \left\| \sum_{i=1}^{n} p_{i} y_{i} \right\|^{r} \right]$$
$$\geq \int_{0}^{1} \left\| (1-t) \sum_{i=1}^{n} p_{i} x_{i} + t \sum_{i=1}^{n} p_{i} y_{i} \right\|^{r} dt.$$

If we use Theorem 4 for the convex function $f(x) = \frac{1}{2} ||x||^2$ then for $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$ n-tuples of vectors in X and for the probability distribution $p = (p_1, ..., p_n)$ we have

$$(3.5) \quad 0 \leq \frac{1}{4} \left[\sum_{k=1}^{n} p_{k} \left\langle y_{k} - x_{k}, \frac{x_{k} + y_{k}}{2} \right\rangle_{s} - \sum_{k=1}^{n} p_{k} \left\langle y_{k} - x_{k}, \frac{x_{k} + y_{k}}{2} \right\rangle_{i} \right]$$

$$\leq \sum_{k=1}^{n} p_{k} \int_{0}^{1} \left\| (1 - t) x_{k} + t y_{k} \right\|^{2} dt - \sum_{k=1}^{n} p_{k} \left\| \frac{x_{k} + y_{k}}{2} \right\|^{2}$$

$$\leq \frac{1}{4} \left[\sum_{k=1}^{n} p_{k} \left\langle y_{k} - x_{k}, y_{k} \right\rangle_{i} - \sum_{k=1}^{n} p_{k} \left\langle y_{k} - x_{k}, x_{k} \right\rangle_{s} \right],$$

and

$$(3.6) \quad 0 \leq \frac{1}{4} \left[\sum_{k=1}^{n} p_{k} \left\langle y_{k} - x_{k}, \frac{x_{k} + y_{k}}{2} \right\rangle_{s} - \sum_{k=1}^{n} p_{k} \left\langle y_{k} - x_{k}, \frac{x_{k} + y_{k}}{2} \right\rangle_{i} \right]$$

$$\leq \sum_{k=1}^{n} p_{k} \left(\frac{\|x_{k}\|^{2} + \|y_{k}\|^{2}}{2} \right) - \sum_{k=1}^{n} p_{k} \int_{0}^{1} \|(1 - t) x_{k} + t y_{k}\|^{2} dt$$

$$\leq \frac{1}{4} \left[\sum_{k=1}^{n} p_{k} \left\langle y_{k} - x_{k}, y_{k} \right\rangle_{i} - \sum_{k=1}^{n} p_{k} \left\langle y_{k} - x_{k}, x_{k} \right\rangle_{s} \right].$$

We also have

$$(3.7) \quad 0 \leq \frac{1}{4} \left[\left\langle \sum_{k=1}^{n} p_{k} \left(y_{k} - x_{k} \right), \sum_{k=1}^{n} p_{k} \left(\frac{x_{k} + y_{k}}{2} \right) \right\rangle_{s} - \left\langle \sum_{k=1}^{n} p_{k} \left(y_{k} - x_{k} \right), \sum_{k=1}^{n} p_{k} \left(\frac{x_{k} + y_{k}}{2} \right) \right\rangle_{i} \right]$$

$$\leq \int_{0}^{1} \left\| (1 - t) \sum_{k=1}^{n} p_{k} x_{k} + t \sum_{k=1}^{n} p_{k} y_{k} \right\|^{2} dt - \left\| \sum_{k=1}^{n} p_{k} \left(\frac{x_{k} + y_{k}}{2} \right) \right\|^{2}$$

$$\leq \frac{1}{4} \left[\left\langle \sum_{k=1}^{n} p_{k} \left(y_{k} - x_{k} \right), \sum_{k=1}^{n} p_{k} y_{k} \right\rangle_{i} - \left\langle \sum_{k=1}^{n} p_{k} \left(y_{k} - x_{k} \right), \sum_{k=1}^{n} p_{k} x_{k} \right\rangle_{s} \right]$$

$$(3.8) \quad 0 \leq \frac{1}{4} \left[\left\langle \sum_{k=1}^{n} p_{k} \left(y_{k} - x_{k} \right), \sum_{k=1}^{n} p_{k} \left(\frac{x_{k} + y_{k}}{2} \right) \right\rangle_{s} - \left\langle \sum_{k=1}^{n} p_{k} \left(y_{k} - x_{k} \right), \sum_{k=1}^{n} p_{k} \left(\frac{x_{k} + y_{k}}{2} \right) \right\rangle_{i} \right]$$

$$\leq \frac{1}{2} \left[\left\| \sum_{k=1}^{n} p_{k} x_{k} \right\|^{2} + \left\| \sum_{k=1}^{n} p_{k} y_{k} \right\|^{2} \right] - \int_{0}^{1} \left\| (1 - t) \sum_{k=1}^{n} p_{k} x_{k} + t \sum_{k=1}^{n} p_{k} y_{k} \right\|^{2} dt$$

$$\leq \frac{1}{4} \left[\left\langle \sum_{k=1}^{n} p_{k} \left(y_{k} - x_{k} \right), \sum_{k=1}^{n} p_{k} y_{k} \right\rangle_{i} - \left\langle \sum_{k=1}^{n} p_{k} \left(y_{k} - x_{k} \right), \sum_{k=1}^{n} p_{k} x_{k} \right\rangle_{s} \right].$$

4. Examples for Functions of a Real Variable

If $f: I \to \mathbb{R}$ is convex on the interval I and $p_i \ge 0$, $i \in \{1, ..., n\}$ with $\sum_{i=1}^n p_i = 1$, then

$$(4.1) \qquad \sum_{i=1}^{n} p_{i} \int_{0}^{1} f\left((1-t)x_{i} + ty_{i}\right) dt \ge \int_{0}^{1} f\left((1-t)\sum_{i=1}^{n} p_{i}x_{i} + t\sum_{i=1}^{n} p_{i}y_{i}\right) dt$$

(4.2)
$$\sum_{i=1}^{n} p_i \left(\frac{f(x_i) + f(y_i)}{2} \right) \ge \sum_{i=1}^{n} p_i \int_0^1 f((1-t)x_i + ty_i) dt.$$

If $f: I \to \mathbb{R}$ is convex and differentiable on the interior of \mathring{I} then for all $x_i \in \mathring{I}$ and $p_i \geq 0, i \in \{1, ..., n\}$ with $\sum_{i=1}^{n} p_i = 1$, then by (2.5) and (2.6) we get

$$(4.3) 0 \leq \sum_{i=1}^{n} p_{i} \int_{0}^{1} f\left[\left(1-t\right) x_{i} + t y_{i}\right] dt - \sum_{i=1}^{n} p_{i} f\left(\frac{x_{i} + y_{i}}{2}\right)$$

$$\leq \frac{1}{8} \sum_{i=1}^{n} p_{i} \left[f'\left(y_{i}\right) - f'\left(x_{i}\right)\right] \left(y_{i} - x_{i}\right),$$

and

$$(4.4) 0 \leq \sum_{i=1}^{n} p_{i} \left(\frac{f(x_{i}) + f(y_{i})}{2} \right) - \sum_{i=1}^{n} p_{i} \int_{0}^{1} f((1-t)x_{i} + ty_{i}) dt$$
$$\leq \frac{1}{8} \sum_{i=1}^{n} p_{i} \left[f'(y_{i}) - f'(x_{i}) \right] (y_{i} - x_{i}).$$

If $f(t) = \frac{1}{t}$ with t > 0, then for $y_i \neq x_i$, $i \in \{1, ..., n\}$ we have

$$\int_{0}^{1} f((1-t)x_{i} + ty_{i}) dt = \int_{0}^{1} \frac{1}{(1-t)x_{i} + ty_{i}} dt = \frac{\ln y_{i} - \ln x_{i}}{y_{i} - x_{i}}$$

and

$$\int_0^1 \left((1-t) \sum_{i=1}^n p_i x_i + t \sum_{i=1}^n p_i y_i \right)^{-1} dt = \frac{\ln \left(\sum_{i=1}^n p_i x_i \right) - \ln \left(\sum_{i=1}^n p_i y_i \right)}{\sum_{i=1}^n p_i x_i - \sum_{i=1}^n p_i y_i},$$

provided $\sum_{i=1}^{n} p_i x_i \neq \sum_{i=1}^{n} p_i y_i$.

From (4.1) we get

$$\sum_{i=1}^{n} p_i \frac{\ln y_i - \ln x_i}{y_i - x_i} \ge \frac{\ln \left(\sum_{i=1}^{n} p_i x_i\right) - \ln \left(\sum_{i=1}^{n} p_i y_i\right)}{\sum_{i=1}^{n} p_i x_i - \sum_{i=1}^{n} p_i y_i}$$

that is equivalent to

$$\ln \left(\prod_{i=1}^{n} \left(\frac{y_i}{x_i} \right)^{\frac{p_i}{y_i - x_i}} \right) \ge \ln \left[\left(\frac{\sum_{i=1}^{n} p_i x_i}{\sum_{i=1}^{n} p_i y_i} \right)^{\sum_{i=1}^{n} p_i x_i - \sum_{i=1}^{n} p_i y_i} \right]$$

and to

(4.5)
$$\prod_{i=1}^{n} \left(\frac{y_i}{x_i}\right)^{\frac{p_i}{y_i - x_i}} \ge \left(\frac{\sum_{i=1}^{n} p_i x_i}{\sum_{i=1}^{n} p_i y_i}\right)^{\frac{1}{\sum_{i=1}^{n} p_i x_i - \sum_{i=1}^{n} p_i y_i}}.$$

From (4.2) we get in a similar way that

(4.6)
$$\exp\left[\sum_{i=1}^{n} p_i \left(\frac{x_i + y_i}{2x_i y_i}\right)\right] \ge \prod_{i=1}^{n} \left(\frac{y_i}{x_i}\right)^{\frac{p_i}{y_i - x_i}},$$

from (4.3) we get

$$(4.7) 1 \le \frac{\prod_{i=1}^{n} \left(\frac{y_i}{x_i}\right)^{\frac{p_i}{y_i - x_i}}}{\exp\left[\sum_{i=1}^{n} p_i \left(\frac{2}{x_i + y_i}\right)\right]} \le \exp\left(\frac{1}{8} \sum_{i=1}^{n} p_i \frac{(x_i + y_i) (y_i - x_i)^2}{x_i^2 y_i^2}\right)$$

and from (4.4) we get

$$(4.8) 1 \leq \frac{\exp\left[\sum_{i=1}^{n} p_{i}\left(\frac{x_{i} + y_{i}}{2x_{i}y_{i}}\right)\right]}{\prod_{i=1}^{n}\left(\frac{y_{i}}{x_{i}}\right)^{\frac{p_{i}}{y_{i} - x_{i}}}} \leq \exp\left(\frac{1}{8}\sum_{i=1}^{n} p_{i}\frac{(x_{i} + y_{i})\left(y_{i} - x_{i}\right)^{2}}{x_{i}^{2}y_{i}^{2}}\right).$$

The interested reader may apply some of the above inequalities for other instances of convex functions such as $f(t) = -\ln t$, $t \ln t$, exp t etc... and we omit the details.

References

- [1] I. Ciorănescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.
- [2] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure & Appl. Math., Volume 3, Issue 2, Article 31, 2002. [Online https://www.emis.de/journals/JIPAM/article183.html?sid=183].
- [3] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure & Appl. Math. Volume 3, Issue 3, Article 35, 2002. [Online https://www.emis.de/journals/JIPAM/article187.html?sid=187].
- [4] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. [Online https://rgmia.org/monographs/hermite_hadamard.html].
- [5] S. S. Dragomir, Semi-inner Products and Applications. Nova Science Publishers, Inc., Hauppauge, NY, 2004. x+222 pp. ISBN: 1-59033-947-9

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E\text{-}mail\ address: \verb"sever.dragomir@vu.edu.au"$

 URL : http://rgmia.org/dragomir

 2 DST-NRF Centre of Excellence, in the Mathematical and Statistical Sciences, School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa