SOME DISCRETE INEQUALITIES FOR CONVEX FUNCTIONS
DEFINED ON LINEAR SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we provide some discrete inequalities related to the
Hermite-Hadamard result for convex functions defined on convex subsets in
a linear space. Applications for norms and univariate real functions with an
example for the logarithm, are also given.

1. INTRODUCTION

Let X be areal linear space, a,b € X, a # band let [a,b] := {(1 — X) a+ Xb, XA € [0,1]}
be the segment generated by a and b. We consider the function f : [a,b] — R and
the attached function g (a,b) : [0,1] — R, g (a,b) (t) := f[(1 —t)a+tb], t € [0, 1].

It is well known that f is convex on [a, b] iff g (a,b) is convex on [0,1], and the
following lateral derivatives exist and satisfy

() g2 (a,0) (s) = (V£ [(1 = 5)a+ sb]) (b —a), s € [0,1)
(i) g% (a,0) (0) = (V+f( ) (b—a)

(iif) g~ (a,0) (1) = (V-1 (b)) (b —a)
) (y)

where (V1 f (2)) (y) are the Géteaux lateral derivatives, we recall that

(V+f (1‘)) (y) - = hli%lJr {f(fﬂ-l-h?;l’) - f(x)] ,

The following inequality is the well-known Hermite-Hadamard integral inequality
for convex functions defined on a segment [a,b] C X :

(HH) f<a+b> /f [(1—t a+tb]dt<w

2 i
which easily follows by the classical Hermite-Hadamard inequality for the convex
function g (a,b) : [0,1] = R

1 a a
9(a,b) (;) g/o g (oot) @t < @D O Lo @O M)

For other related results see the monograph on line [4].
We have the following result [2] related to the first Hermite-Hadamard inequality
n (HH):
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Theorem 1. Let X be a linear space, a,b € X, a#b and f:]a,b] C X — R be a
convex function on the segment [a,b]. Then for any s € (0,1) one has the inequality

(11) 5 [1= 9 (T f 1= s)atsb) (b= a) = (7 F[(1 = $)a+ sb]) (b~ a)
g/1f[(1—t)a—i—tb]dt—f[(l—s)a—i—sb]
<02 @) -0~ (T f @) b-a).

The constant % is sharp in both inequalities. The second inequality also holds for
s=0o0rs=1.

If f: [a,b] — R is as in Theorem 1 and Gateaux differentiable in ¢ := (1 — A\) a+
Ab, A € (0,1) along the direction b — a, then we have the inequality:

1 (G-N) @@ o-as [ fla-nesaa- .

(13) o< 5|t (F) om0 -vor () 6-a)

</01f[(1—t)a+tb}dt—f<a;b>

< U5 B) 6= a) = (74 @) (b-a).

If f is as in Theorem 1, then

The constant % is sharp in both inequalities.

Also we have the following result [3] related to the second Hermite-Hadamard
inequality in (HH):

Theorem 2. Let X be a linear space, a,b€ X, a#b and f :[a,b] CX - R be a
convez function on the segment [a,b]. Then for any s € (0,1) one has the inequality

(1.4) % [(1 =) (Vafl(L=s)a+st]) (b—a) = (V-f (1 = s)a+sb]) (b—a)

<(1-=3s)f(a)+sf(b /f (1—t)a+tbdt

IN

; [(1 =5 (V-F (1) (b= a) = 5* (v (@) (b= )]

The constant % is sharp in both inequalities. The second inequality also holds for
s=0o0rs=1.

If f:[a,b] — Ris as in Theorem 2 and Gateaux differentiable in ¢ := (1 — X\) a+
Ab, A € (0,1) along the direction b — a, then we have the inequality:

(1.5) <;)\)(vf(c))(ba)§(1>\)f )+ Af(b /f (1—t)a+tb]dt.
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If f is as in Theorem 2, then

1[+f( b)(bcw (50 00l

sV
gf / fIl—t)a+tb)dt

% (V- F () (b— ) — (V4 (@) (b~ a)].

(1.6) 0

IN

IN

The constant % is sharp in both inequalities.

2. THE RESULTS

Let f: C € X — R be a convex function on C. We define the function F} :
CxC—Rby

(2.1) Fy (z,y) ;:/0 F(A=t)z +ty)dt.

Theorem 3. Let f : C'C X — R be a convex function on C. Then the function F
is conver on C' X C and if z;, y; € C and p; > 0 fori=1,...,n with Z?:l pi =1,
then we have the inequalities

n 1 1 n n
(2.2) sz'/ S =1) $i+tyi)dt2/ f ((1—t)2pﬂi+t2piyi> dt
i=1 0 0 i=1 i=1

> f (im (mi ;ryl)> :

(2.3) sz (W) Zpl/ FU =)@+ ty:) dt
> ;Pif (wi;—%) > f (sz (%—5%))

i=1

Lo (S s (S

1 n n
/0 f ((1 — 1)y piwi + thiyz) dt
i=1 i=1

Y

ey Yn <f<>+f<y>>

i=1

v
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Proof. Let (z,y), (u,v) € C x C and «, § > 0 with a« + 8 = 1. Then
Fy (a(z,y) + B (u,v)) = Fy (ax + Bu, ay + Bo)

:/0 £ = 1) (az + Bu) + £ (ay + Bv)) dt
1
:/0 Flal(l=b)a+ty] +Bl(1—b)u+to]) dt
< [l (=@t + B (1= uk o) de
0

:a/lf((l—t)ac+ty)dt+[3/1f((1—t)u—i—tv)dt
0 0
= aFy (z,y) + BFf (u,v),

which proves the joint convexity of the function F.
By Jensen’s inequality for the convex function Fy we have

ZPiFf (@i, yi) = Fy (sz (%Jh)) = Fy (ZP&@ZM%) )
i=1 i=1 i=1 i=1

which is equivalent to the first inequality in (2.2).
By Hermite-Hadamard inequality (HH) we have

1 n n n . n .
/ f ((1 — 1)) _piai +tzpiyi> dt > f <Zi—1p’$” ; Z’—lp”yl> d
0 i=1 i=1

_ - (Tt Y
(5 (3)
and the second part of (2.2) is proved.

From (HH) we also have for each i € {1,...,n} that

Wz/ f{(l—t)xﬁtw]dt?f(mi;%)'

If we multiply this inequality by p; > 0 and sum over ¢ from 1 to n we get the first
and second inequality in (2.3).

The last part in (2.3) follows by Jensen’s inequality.

Let w:= Y. piz; and v:= Y ., p;y;. By Hermite-Hadamard inequality (HH)

we also have 1
M 2/0 Fl1—t)u+tv]dt,

which produces the second inequality in (2.4).
By Jensen’s inequality for f we have

szf(xz) > f <sz$z>

and

> opif () > f <Zpiyi> :
i=1 i=1
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If we sum these two inequalities and divide by 2 we get the first inequality in
(2.4). O

The following result also holds:

Theorem 4. With the assumptions of Theorem 3 we have

(2.5) O<[sz< (xi;yi>(yi_$i)>
—;pi (Vf (W) (yi — xz))]

< Zpi/o f[(lft)xﬂrtyi]dt—z:pif <$142ry1>
< é [Zpi (Vo f i) (Wi = 2:) =Y pi (Ve f (22)) (i — xi)] ,

i=1

and

0 05 Son (o1 (%5) 00)
—;n<w<W> —@)1

IN
[
3
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~—
§
_|_
kh
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v
_
|
=
§
+
~
N
5_/
&

We also have

(2.7) 0< é [VHC (sz (wl -2Fyz>> (sz' (yi — a:i))
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and

(2.8) 0< é [VJrf (sz (ml +yl>> (sz (yi — :m))

o En ) (o)

=1
< % [f (Zpil"i) +f (Zpiyz) —/0 f <(1 - t)ZPixi +t2piyi> dt
i=1 i=1 i=1 i=1

(V—f (ZPz%)) (Zpl (yi — 2170)
i=1 i=
- <V+f <sz%>> (sz (yi — xz))] :
i=1 i=1
Proof. From the inequality (1.3) we have for a = z; and b = y;, where i € {1, ...,

0< [ +f <$+y> (i —ai) —v-f (9“2“”) (yixi)}
§/01f[(1t):ci+ty4dtf<:ci;wﬁ>
1

i) — (Ve f (21) (g — )],

1
< Z
— 8

S =

n}

that

< g (V-5 () (yi — 2
for any i € {1,...,n}.
If we multiply this inequality by p; > 0 and sum over i from 1 to n, then we get

< ;ilpi {V+f <ml ;ryz> (yi — i) = V- f (xl;ryl) (yi — zz‘)]

! - T +Yi
i 1pi/0 f[(l—t)$i+tyi]dt—;pif <2>

pi (V= f () (Y — w:) = (Vo f (23)) (Y — 34)]

IA IA
0| —
M: i M: .

1

which is equivalent to (2.5).
The inequality (2.6) follows in a similar way by employing the inequality (1.6)
The inequalities (2.7) and (2.8) follow by takinga = Y. | p;a; and b= Y7 | p;y;
in the inequalities (1.3) and (1.6). O
3. EXAMPLES FOR NORMS

Now, assume that (X, ||-||) is a normed linear space. The function fy (s) = ;5 ||z,
x € X is convex and thus the following limits exist

() (2.9), = (V+fo () (@) = lim [Lerefull],

Hy+sz\|2*\|y\|2} .
)

() (@,9); = (V-fo () (@) = lim [ Leeel
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for any =, y € X. They are called the lower and upper semi-inner products
associated to the norm ||-||.

For the sake of completeness we list here some of the main properties of these
mappings that will be used in the sequel (see for example [1] or [5]), assuming that
p, q € {s,i} and p # ¢:

(a) (z, ), = ||z||* for all z € X;
(aa (am,ﬁy) =af(z,y), fa, 3>0and z, y € X;

Yy

(@
(ax +y,2 >p=a<x,x>p+( Y, >p 1fa:, ye X and a € R;
) (—z,9), 7<w,y>qforallx,y€X;
(va) (a-+y, 5 2)p < Nzl 2l + (y, 2),, for all 2, y, z € X;
(vaa) The mapping (-,-), is continuous and subadditive (superadditive) in the
first variable for p = s (or p = i);
(vaaa) The normed linear space (X, ||-]|) is smooth at the point xo € X\ {0} if and
only if (y,zo), = (y, zo), for all y € X; in general (y,z), < (y,z), for all z,
y € X;
(ax) If the norm ||-|| is induced by an inner product (-,-), then (y,z), = (y,z) =
(y,x), for all z, y € X.

Applying inequality (HH) for the convex function f, (z) = ||z||", r > 1 one may
deduce the inequality

(aaa

)
)
)
(av)
)
)
)

r+vy "
2

l=lI” + llyll”
2

1
(3.1) g/ |(1—t)z+ty||" dt <
0

for any z,y € X.

Let (X, ||||) be a normed linear space and & = (21,...,%n), ¥ = (Y1, .-, Yn) be
n-tuples of vectors in X, then for the probability distribution p = (p1,...,p,) and
r > 1 we have by Theorem 3 for the convex function f (x) = ||z||" that

n 1 1 n n r
(3.2) Zpi/ ||(1—t)mi+tyi\|rdt2/ (1=8)) piwi +t > piyi|| dt
i=1 0 0 i=1 i=1

Zn:pz- (I;y)”

>

i=1

xl + K3
I e ) ) E A EEer
=1
- T+ Yi '
S o (4 )||
and

=1
[EAl +||yz|| 1 []|¢ '
61 S ( -1
=1 =1
n n T
(1= pwi+t)_ piys
=1 =1

$z+yz >

i T

> dt.

S~
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If we use Theorem 4 for the convex function f (z) = 1 [||? then for & = (z1, ..., z,),

y = (Y1, .-, Yn) n-tuples of vectors in X and for the probability distribution p =
(p1, ..., pn) we have

(3.5) 0<4[;pk<yk—mk, : yk>s Zpk< Yk — T, kak>j

n 1 n x +y 2
E+ Yk
< E pk/ (1 = t) mp + tye|* dt — g Dk
k=1 0 k=1

2

lZpk Yk — T, k) Zpk k—$k7$k>]a

NH

and

1 $k+yk Ti + Yk
56 4Lz (- E) S (2 >]
n T +
<3 (”’f””y’“”> Zp / 11— )i+t e
k=1
1
1 Zpk Yk — Th Yk); Zpk (Yo — Tk, Th) g | -

k=1

We also have

(3.7) 0<i[<2pk Yi — k) Zp (xk+yk)>
(g £ (252))]
k=1 k=1 i
(1—t Zpkxk +t2pkyk Z (W)H
k=1

< i KZpk (yr — k) ,Zpkyk> - <Zpk (yr — =1) ,Zpkxk> ]
k=1 k=1 h—1 5

dt —

K2

(3.8) 0 Si Kipk (yk xk),ipk <W>>
<zm e S (252 |
_Al

n n n 2
Zpk?ﬁk (L=)>  prwr+1 Y Druk
k=1 k=1
i szk Yk — k) Zpkyk> - <Zpk (y — xk),ZPkSEk> ] .
k=1 k=1 s

i

1
2
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4. EXAMPLES FOR FUNCTIONS OF A REAL VARIABLE

If f: I — R is convex on the interval I and p; > 0,4 € {1,...,n} with > | p; =
1, then

n 1 1 n n
(4.1) sz'/o f((l—t)l‘i+ty1:)dt2/0 f((l—t)zpi$i+t217¢yi> dt

O S Y e ED ) ICET ey ir

If f: I — R is convex and differentiable on the interior of I then for all z; € I
and p; > 0,4 € {1,...,n} with Y | p; = 1, then by (2.5) and (2.6) we get

n 1 n . :
(4.3) 0§sz—/0 FIO =ty +tyildt = pif <x2y>
i=1 =1

<3l )~ F @) - ),

and

(4.4) 0< Zpi (W) - Zpi/o F((1=t)x; + ty;)dt

<

S pilf i) = f (@) (yi — m1) -
i=1

ool —

If f(t)= % with ¢ > 0, then for y; # x;, 7 € {1,...,n} we have

1 7lnyiflnx7;

1 1
1—t)x; +ty;)dt = dt
/0 Al @i+ ty:) /0 (1—t)x; + ty; Yi — x;

and

1 n n -1 n n
In (X7 pezs) — In (X7, pivi
/ ((1_t)§ pizi +1 E piyi> dt = n (i Pits) H(lelpzy’),
0 i=1 i=1

Doy Diti — )iy DiYi

provided E:L:l Dix; F# 21;1 PiYi-
From (4.1) we get

i hl Yi — hl xX; hl (Z:L:I pi%’) — ln (Z?:l pzyz)
— oy D1 PiTi — D iy Pii

that is equivalent to

n L n e
S\ Vi T . s\ i1 Pi%i 21 PiYi
" H(y) > n <§:271p1$’> ] :
i1 \Ti D i1 DiYi

i 1
(4 5) n (yz) vi—o; S (Z?_l p,b-;L'Z-) S Pi®i—Lr_q PiVi

>y DY
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From (4.2) we get in a similar way that

(4.6) exp Zp(g;yy) Hl(f”) | :

from (4.3) we get

(.

Py

Hn Yi |\ YiT T
i=1 \ u;

exp [2?21 Di (#‘%

2
-Tz + vi (yi - l‘l)

o (e

7) 1<

TiY;

and from (4.4) we get

(4.8) 1<

n | ity
exp [Zi:l Di (2x¢yi )] < exp li:p (z; + yL) (yi — ;)
— (3 — K3

I, (& viTTi i=1 =} yi
i=1 \ o

The interested reader may apply some of the above inequalities for other in-

oo

stances of convex functions such as f (t) = —Int, tInt, expt etc... and we omit the
details.
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