BOUNDS FOR THE HH f-DIVERGENCE MEASURES IN
TERMS OF Y2-DIVERGENCE

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some inequalities for the Hermite-Hadamard
(HH) f-divergence measures in terms of x2-divergence. An application for
Kullback-Leibler divergence is also provided.

1. INTRODUCTION

Let the set X and the o-finite measure u be given and consider the set of all prob-
ability densities on  to be defined on Q@ := {plp: X = R, p(x) >0, [y p(z)du(z) =1}
The f-divergence is defined as follows [2], [3]
q(x)

(1.1) Dy (p.q) :=/Xp(x)f [p(z)] du(x), p.q €,

where the function f is convex on (0,00). It is assumed that f(w) is zero and
strictly convex at w = 1. By appropriately defining this convex function, various
divergences are derived. For instance, the following celebrated divergences are
particular cases of f-divergence

(1.2) Drr (p,q) :=/Xp(a?)10g ng] dp(z), p,q€Q,

(Kullback-Leibler divergence [9])

(1.3) D, (p.g) = /X Ip(2) — ¢ ()| du(2), poqe®;

(variation distance)

(14) Dit0.0) = [ Vo)~ Va@]du(w). p.aes:

(Hellinger distance [7])

(15) Do) = [ p@) [(‘“%1} du(z), pge

(x*-divergence)
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16 Do [ e -a@ mﬂ du(x). pqe

(Jeffreys distance [8])

(triangular discrimination [12])

dp (), p,q €.

In [10], Lin and Wong (see also [11]) introduced the following divergence

(1.8) Drw (p,q) == /Xp(x) log [1 p()

Qp%ac)wtéq(a:)} dp(x), p,q €

This can be represented as follows, using the Kullback-Leibler divergence:

+
Drw (p,q) = Dk (p’ p2q) .

Lin and Wong have established the following inequalities

1
(1.9) Drw (p,q) < S PkL (p,q);
(1.10) Drw (p,q) + Drw () < Dy (p,q) <25
(1.11) Drw (p,q) < 1.

In [11], Shioya and Da-te improved (1.9)-(1.11) by showing that

1
Drw (p,q) < §Dv (p,q) < 1.

In the same paper [11], the authors introduced the generalised Lin-Wong f-
divergence D (p, %p + %q) and the Hermite-Hadamard (HH) f-divergence

(=)

p(x) t) dt
(1'12) D{{H (p,Q) = / p(x) fl q(x)f( i dp (.’E), p,q €0
X L
p(x)

and, by use of the Hermite-Hadamard inequality for convex functions, proved the
following basic inequality
ptq 1
(1.13) Dy <p, 2) < Diy (p,g) < 5Dr (0,9,
provided that f is convex and normalised, i.e., f (1) = 0.

In 2002, Barnett, Cerone & Dragomir [1] improved the inequality (1.13) as fol-
lows:
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Theorem 1. Assume that the function f : (0,00) — R is conver and normalised,
i.e. f(1)=0. Let p,q € Q then we have the inequality,

(1.14) 0< Dy (p,p;q>
< ADg (p,p+/2\(q—p)> + (1 =)Dy <p7p+q +/\(q—p))
< Dl (p0) < 3 [Dy (0, (1= N)p+2a) + (1= X) Dy (p, )]

7Df (p7Q)7

N =

for all A € [0,1].
In particular,

i 0m(o257) 4o (o 50) o (525%)
1

< Diy (p,g) < 2[Df(pp2 )+;Df(p, )}

1

In 2005, [5], the author obtained the following estimate for a differentiable convex
and normalised function f : (0,00) — R

1

p+q
(1.16) 0 < DYy (p,q) — Dy (p7 5 ) < 3D (P, q)

for p, q € 1, where
(1.17) 1) =@ =1)1(t), t € (0,00).
In the paper [6] we also obtained the dual inequality

1 1
(1.18) 0= 35Dy (p.q) — Dy (p,q) < gD (p, q)

for p, q € (L.
Motivated by the above results, we establish in this paper other inequalities for
the HH f-divergence.

2. GENERAL RESULTS

We start with the following useful representation fir the HH f-divergence:

Lemma 1. Assume that the function f : (0,00) — R is convex and normalised,
then we have the representation

@) D= [pe ([ (O 4 g

p(

1
=/O Dy (p,sq+ (1 —s)p)ds

forp, g € Q.
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Proof. Using the change of variable

t= (@) , s €[0,1]

we have

a(x)

il OV EC TS HEN

o - p(@)

for z € X for which p(z), q(x), q(x) — p(x) #0.
Therefore
a(z)
[ F () dt
D = d
o (P:q) /Xp(x) %_ 1 ()

([ 1R v
- (o (2225252) )

where for the last equality we used Fubini’s theorem.

Since
[ ot (LSO ) = D s+ (1= )0
hence
i (rtos (51520 o)
= /OlDf (p,sq+ (1 —s)p)ds
and the equalities in are proved. 0

For s € [0,1] and the convex function f : (0,00) — R we define the s-weighted
perspective Py s : (0,00) x (0,00) — R by

(2.2) Pro (u,0) = uf <S“+(1_5)“> .

u
We have the following lemma that is of interest in itself as well:

Lemma 2. Assume that the function f : (0,00) — R is convez, then for all s € [0,1]
the s-weighted perspective Pr s is also convex as a function of two variables.
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Proof. Let (u,v), (w,z) € (0,00) x (0,00) and «a, f > 0 with o + 8 = 1. Then

Prs (c(u,v) + B8 (w, 2))
=Py s (au+ pw,av + fz)

— (ou+ pw) f (s (av + Bz) ;(Jlr;)i) (au +ﬁw))
— (ou+ fw) f(a(sv+(1—s)szigqiszﬂl—s)w))
ot o) f( BELE j;i'gfﬁ(}“_sm)

< (au + fw)
s () s (40

() (220

= apf,s (ua ’U) + 67))",8 (wv Z) )
which proves the joint convexity of the perspective P . |

Remark 1. If we use the perspective concept, then by (2.1) we also have

23) Dy (0.4 / ([ 2o @) 0@ du o)) as.

The following joint convexity of the HH f-divergence holds:

Theorem 2. Assume that the function f : (0,00) — R is conver and normalised,
then D;IH s conver as a mapping of two variables on € x ).

Proof. Let (p1,q1), (p2,q2) €  and and a, 8 > 0 with o+ 8 = 1. Then by the
representation (2.3) and Lemma 2 we have

Dl (@ (proar) + B (p2,42))
= D,y (ap1 + Bpa, aq1 + Bga)

- / 1 ( /X Prs (ap1 (2) + Bps (2) , a1 () + Bz () ds <x>) ds
- / 1 ( [ Pra 1 @) @)+ 502 2) 2 () <x>) s
> / 1 ( [ 16Ps 1 (@)1 )+ P 2 (@) 2 () <x>) s

~af 1 ([ Pron @) @) aato)) as
5 1 ([ Prn @) e @) e ) as

= OZD;{H (plaQ1) +ﬁD;{H (anQ2) )

which proves the desired convexity. O
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3. BounNDS IN TERMS OF x?-DIVERGENCE

The above definitions Dy (p,q) and DLH (p,q) can be extended to continuous
functions f defined on (0, 00) , however, in this general case, the positivity properties
of the divergences under consideration do not hold in general.

We have:

Theorem 3. Assume that the function f: (0,00) — R is twice differentiable and
normalised. Let 0 <r <1< R < o0 and p, q € ) are such that

z)

(x

Q
—~

(3.1) r < < R for p-almost every x € X.

~—

iS]

(i) If there exists a real number m such that
(3.2) m < f"(t) forallt € [r,R],
then we have the inequality

p+q 1 1
) - émez (p,q) < Dy (p,q) — émez (p,q)-

(3.3) 0< Dy <p, .
(ii) If there exists the real number M such that
(3.4) " () <M forallt € [r,R],

then we have the inequality

1 p+q 1
(3.5) 0< SMDye (p,q) — Dy (p’ 2) <MDy (p.q) — Dy (p, ) -

Proof. (i) Consider the auxiliary function g,, : [r,R] — R, g (t) == f(t) —
im (€% (t) — 1), where £(t) = t is the identity function. This function is convex
and normalized on [r, R], since g, is twice differentiable and
gn (t):=f"({t)—m>0forall te[rR].
We have for p, g € Q that
Dy (p,q)

: 1 -
= D}y (p.q) — §me{H1 (p.q)

= D1y (pra) — %m/xp(rv) (/01 qu(x) +p(§x; s)p(x)>2 - 11 d8> dp ()

= D1y () — %m/xp(x) (/01 <Sq (@) +p(2x; s)p(x)>2d8> dp ()

+§m/Xp<z> dpt ()

VI %m/xp(z) </01 <sq(z) +(1 s)pu))?dS) d(2) + %m_
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Observe that

and

_ /}(P(@((;EQ)Z-Fmﬁ-l)dp(w)
-/xp(z (Zg;)2dﬂ(m)*/}(P(I);Ei;du(w)+/Xp(:c)du(x)]
q2

/X p((j)du(x)-&-/ q(z)dp(z) + Xp(x)du(m)}

Wl Wik Wl W —

Therefore

1 1
DI (p,q) = DI,y (p,q) — ™M [D 2 (p,q) + 1] +om

1
= Dfy (p,9) — gD (.a).-

We also have

Now,
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p+q p+gq 1 p+q
ng (p’ 2 > = D.f (p7 2 ) - imDé271 (p) 2 )
p+q 1
= Dy (P» 2) - ngXQ (pa Q) .

If we use the first inequality in (1.13) for g,,, we have

pP+q m
0 S ng (p,2> S ng'—IH (p7q)u

which by above calculations gives

p+q 1 1
0=y (1 "5%) = Dy (0.0) < Dl (0.0) ~ gDy (0.

This proves (3.3).

(ii) Consider the auxiliary function gas : [r, R] — R, g (t) := %M (62 (t) — 1) —
f(t), where £ (t) = t is the identity function. This function is convex and normalized
on [r, R], since gy is twice differentiable and

gy (t)=M — f"(t)>0forallte€[rR].

Now, by using a similar argument to the one for the auxiliary function g,,, we deduce

the desired result (3.5). O
Corollary 1. With the assumptions of Theorem 38 and if
(3.6) 0<m< f"(t) <M < oo forallte[r,R],
then we have
1 p+q 1
(3.7) SmDﬁOm®<l%<n2><8ﬂﬂkz@ﬂ%
1 ; 1
(3.8) gDz (0:4) < Dy (pq) < gMDyz (pa)
and
1 : p+q 1
39 gD (.0) < Dy .0~ Dy (1757 < 30D (),

We also have:
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Theorem 4. Assume that the function f : (0,00) — R is twice differentiable and
normalised. Let 0 <r <1< R < 0o and p, g € Q are such that the condition (3.1)
is valid.

(i) If there exists a real number m such that the assumption (3.2) holds, then
we have the inequality

1 1 1
(3.10) 0< D}y (pq) - gD (p,q) < 3 Ds (p.q) — 7mDx (p.q)-

(ii) If there exists the real number M such that the assumption (3.4) holds, then
we have the inequality

1 1
(3.11) 0< cMDye (p.q) — Dl (p,q) < MD,a (p,q) — Dy (p,q) -

Proof. (i) Consider the auxiliary function g, : [r,R] — R, gm(t) := f(t) —
im (02 (t) — 1), where € (t) = t is the identity function. This function is convex
and normalized on [r, R].
We have
1
Dy (p.a) = Diryr (p,4) — gMmDxz (P, )
and

Dy, (p,q) :=/Xp(w)gm [Zgg} dp ()

= Jorolr Ga) - (*G) )l

1
=Dy (p,q) — 3mDye (P, q) -

If we use the second inequality in (1.13) we have

1
0 < DYy (p,q) < 5D (p,q),

namely

1
Dy (p,q) — amDye (p, q)

N =

1
0< Dy (p.q) — gD (p,q) <
1 1
= §Df (p,q) — szxz (P.q),

which proves (3.10).
(ii) Follows in a similar way for the auxiliary function g : [r, R] — R, g (t) :=
M (62 (t)—1) — f(t). 0

Corollary 2. With the assumptions of Theorem 3 and if the condition (3.6) holds,
then we have

1 1
(3.12) 3mDyz (p,q) < Dy (p,q) < 5MDy2 (p,q) (see also [4])
and
1 1 P 1
(3.13) 3mDxe (p,q) < 5 Ds (p,q) — Dy (p,q) < T3 MDye (P,q) -
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Further, we observe that by using the definitions of the auxiliary mappings g, (t)
and gps (t) we have

== 1) (10 = gm (@ -1) =10 =mele-)

and
ghe (8) = Mt(t—1) = f1(1).
This give
(3.14) D, (p,q) = Dyt (p, q m/ z < Ei; — 1> du (x)
= Dyt (p,q) —mD,2 (p, )
and
(3.15) Dy (p,q) =MD, (p,q) — Dyi (p,q) -

Theorem 5. Assume that the function f : (0,00) — R is twice differentiable and
normalised. Let 0 <r <1< R < 0o and p, g € Q are such that the condition (3.1)
1s valid.

(i) If there exists a real number m such that the assumption (3.2) holds, then
we have the inequality

+ 1
(3.16) 0< Dl (o)~ D5 (1 251 ) = JomDoo ()
1
<3 [Dyt (p,q) —mD,2 (p,q)]
and
1 1
(3.17) 0§§Df(p,Q)—D}}H(p,q) TR S 2 (p, q)

< % [fo (pa Q) - mDX2 (pv Q)] :

(i) If there exists the real number M such that the assumption (5.4) holds, then
we have the inequality

(3.18) 0< 2—14MD (p+q) = iy (p,q) + Dy (p,p;q)
é [MD,: (p,q) — Dy (p, q)]
and
(3.19) 0= 5 MDye (,0) = 5 D5 (0,6) + Dy (9,0)
é [MD,z (p,q) — Dy (p,q)] -

Proof. (i) If we use the inequality (1.16) for g,,, then we have

- p+yq 1
OSD%H(p’q)ing <p72) S ngjn (pv(I)a
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namely

1 p+gq 1
0 < Dl (m0) = gmDye (0.0) - s (1252 4 gmDya ()

< é [Dyt (p,q) —mDyz (p,9)]

which is equivalent to (3.16).
If we use (1.18) for g,,, then we have

1 1
0 S 7ng (p7 Q) - DiImH (p7 Q) S 7ngn (p’ q),

2 8
namely
1 1 ; 1
0< 5 |DrPa) = gmDyz (p.a)| =~ Dy (p,0) + gmDye (p,q)
1
< é I:Dflf (p7 Q) - Tn’l)x2 (pa Q)] ’
(ii) Follows in a similar way for gas. O

Finally, we have:

Corollary 3. With the assumptions of Theorem 3 and if the condition (3.6) holds,
then we have

1 1 p+q
(3.20) 13D (,0) < g Dyi (p,0) — Dy (p,q) + Dy (p, 2)
1
S EMDX2 (pa Q)
and
1 1 ; 1 1
(3:21) 5ymDy2 (p,q) < gDyt (p,a) + Dy (@) = 5D (,0) < 5y M Dy (p,q) -
4. AN EXAMPLE
We consider the convex and normalized function f : (0,00) — R, f (t) = —Int.
We have
D¢ (p,q) == Dkr (P, q)
and

p+gq

for all p, g € .
We define the identric mean of two positive numbers a, b > 0

1/(b-a)
L&) b £a,

aif b=a.

I(a,b) =

We observe that

1 b blnb—b—blnb+a
—— | Intdt= =InT(a,b).
b—a/a " b—a nl(a,b)
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Therefore
a(z)

Dhy (p,q)=—/Xp(w)Wdu(fv)=—/Xp($)ln [I (Wﬂ)] dp (x)

8 -1 p ()

_ /Xp(x) In [I (Zg 1)} i (#) = Diji (p,9)

where we call DEL (p, q) the Kullback-Leibler HH divergence.
If0 <r <1< R<oothen for f(t) = —Int,

1 1 1 1
inf //t: .f7:7’ //t: o
ity 0= = S 0= e 5=

If p, ¢ € Q satisfy the condition (3.1), then by using (3.7)-(3.9) for m = 4z and
M = %2 we get

1 1
(4.1) sz D (0:0) < Dow (p.a) < g5 D2 (0,9)
1 KL 1
(4.2) e Dx ,0) < Dup (p,0) < 55Dy (p,4)
and
1 KL
(4.3) sage D2 (@) < Dz (,9) = Drw (p,4) < 55 5 Dxz (,0) -
By (3.13), we also have
1 1 .
(4.4) gz P 10) < 5Dxr (p,q) = Dk (1,9) < 153 Dx (1, 0) -

Now, if f (t) = —Int, then

and

bS]

—~
&

~—

Dyt = [ 5@ (2D 1) auo) - [ (28 @) o)

B G SRR
—/Xq(x)du() 1= D,:(q,p)

for all p, g € Q.
Finally, by the (3.20) and (3.21) we also have

1 1
(4.5) 55z D (P:0) < g Dxz (¢:p) = Divy (p,q) + Drw (p, q)
1
S WDXQ (p, Q)
and
1 1 KL 1
(4.6) g D (p.q) < 3Dxe (¢,p) + Dyw (p,q) — 3 Dxr (p.q)
1
< mDX2 (pa Q) )

provided p, ¢ € 2 satisfy the condition (3.1).
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