
BOUNDS FOR THE HH f-DIVERGENCE MEASURES IN
TERMS OF �2-DIVERGENCE

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish some inequalities for the Hermite-Hadamard
(HH) f -divergence measures in terms of �2-divergence. An application for
Kullback-Leibler divergence is also provided.

1. Introduction

Let the setX and the �-�nite measure � be given and consider the set of all prob-
ability densities on � to be de�ned on 
 :=

�
pjp : X ! R, p (x) � 0;

R
X
p (x) d� (x) = 1

	
The f -divergence is de�ned as follows [2], [3]

(1.1) Df (p; q) :=

Z
X

p (x) f

�
q (x)

p (x)

�
d� (x) ; p; q 2 
;

where the function f is convex on (0;1). It is assumed that f (u) is zero and
strictly convex at u = 1. By appropriately de�ning this convex function, various
divergences are derived. For instance, the following celebrated divergences are
particular cases of f -divergence

DKL (p; q) :=

Z
X

p (x) log

�
p (x)

q (x)

�
d� (x) ; p; q 2 
;(1.2)

(Kullback-Leibler divergence [9])

Dv (p; q) :=

Z
X

jp (x)� q (x)j d� (x) ; p; q 2 
;(1.3)

(variation distance)

DH (p; q) :=

Z
X

���pp (x)�pq (x)��� d� (x) ; p; q 2 
;(1.4)

(Hellinger distance [7])

D�2 (p; q) :=

Z
X

p (x)

"�
q (x)

p (x)

�2
� 1
#
d� (x) ; p; q 2 
;(1.5)

(�2-divergence)
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DJ (p; q) :=

Z
X

[p (x)� q (x)] ln
�
p (x)

q (x)

�
d� (x) ; p; q 2 
;(1.6)

(Je¤reys distance [8])

D� (p; q) :=

Z
X

[p (x)� q (x)]2

p (x) + q (x)
d� (x) ; p; q 2 
:(1.7)

(triangular discrimination [12])

In [10], Lin and Wong (see also [11]) introduced the following divergence

(1.8) DLW (p; q) :=

Z
X

p (x) log

�
p (x)

1
2p (x) +

1
2q (x)

�
d� (x) ; p; q 2 
:

This can be represented as follows, using the Kullback-Leibler divergence:

DLW (p; q) = DKL

�
p;
p+ q

2

�
:

Lin and Wong have established the following inequalities

(1.9) DLW (p; q) � 1

2
DKL (p; q) ;

(1.10) DLW (p; q) +DLW (q; p) � Dv (p; q) � 2;

(1.11) DLW (p; q) � 1:

In [11], Shioya and Da-te improved (1.9)-(1.11) by showing that

DLW (p; q) � 1

2
Dv (p; q) � 1:

In the same paper [11], the authors introduced the generalised Lin-Wong f -
divergence Df

�
p; 12p+

1
2q
�
and the Hermite-Hadamard (HH) f -divergence

(1.12) Df
HH (p; q) :=

Z
X

p (x)

R q(x)
p(x)

1 f (t) dt
q(x)
p(x) � 1

d� (x) ; p; q 2 


and, by use of the Hermite-Hadamard inequality for convex functions, proved the
following basic inequality

(1.13) Df

�
p;
p+ q

2

�
� Df

HH (p; q) �
1

2
Df (p; q) ;

provided that f is convex and normalised, i.e., f (1) = 0.
In 2002, Barnett, Cerone & Dragomir [1] improved the inequality (1.13) as fol-

lows:
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Theorem 1. Assume that the function f : (0;1) ! R is convex and normalised,
i.e. f (1) = 0: Let p; q 2 
 then we have the inequality,

0 � Df
�
p;
p+ q

2

�
(1.14)

� �Df
�
p; p+

�

2
(q � p)

�
+ (1� �)Df

�
p;
p+ q

2
+
�

2
(q � p)

�
� Df

HH (p; q) �
1

2
[Df (p; (1� �) p+ �q) + (1� �)Df (p; q)]

� 1

2
Df (p; q) ;

for all � 2 [0; 1].
In particular,

0 � Df
�
p;
p+ q

2

�
� 1

2

�
Df

�
p;
3p+ q

4

�
+Df

�
p;
p+ 3q

4

��
(1.15)

� Df
HH (p; q) �

1

2

�
Df

�
p;
p+ q

2

�
+
1

2
Df (p; q)

�
� 1

2
Df (p; q) :

In 2005, [5], the author obtained the following estimate for a di¤erentiable convex
and normalised function f : (0;1)! R

(1.16) 0 � Df
HH (p; q)�Df

�
p;
p+ q

2

�
� 1

8
Dfy (p; q)

for p; q 2 
; where

(1.17) fy (t) := (t� 1) f 0 (t) ; t 2 (0;1) :

In the paper [6] we also obtained the dual inequality

(1.18) 0 � 1

2
Df (p; q)�Df

HH (p; q) �
1

8
Dfy (p; q)

for p; q 2 
:
Motivated by the above results, we establish in this paper other inequalities for

the HH f -divergence.

2. General Results

We start with the following useful representation �r the HH f -divergence:

Lemma 1. Assume that the function f : (0;1) ! R is convex and normalised,
then we have the representation

Df
HH (p; q) =

Z
X

p (x)

�Z 1

0

f

�
sq (x) + (1� s) p (x)

p (x)

�
ds

�
d� (x)(2.1)

=

Z 1

0

Df (p; sq + (1� s) p) ds

for p; q 2 
:
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Proof. Using the change of variable

t =
sq (x) + (1� s) p (x)

p (x)
; s 2 [0; 1]

we have R q(x)
p(x)

1 f (t) dt
q(x)
p(x) � 1

=

Z 1

0

f

�
sq (x) + (1� s) p (x)

p (x)

�
ds

for x 2 X for which p (x) ; q (x) ; q (x)� p (x) 6= 0:
Therefore

Df
HH (p; q) :=

Z
X

p (x)

R q(x)
p(x)

1 f (t) dt
q(x)
p(x) � 1

d� (x)

=

Z
X

p (x)

�Z 1

0

f

�
sq (x) + (1� s) p (x)

p (x)

�
ds

�
d� (x)

=

Z 1

0

�Z
X

p (x) f

�
sq (x) + (1� s) p (x)

p (x)

�
d� (x)

�
ds;

where for the last equality we used Fubini�s theorem.
Since Z

X

p (x) f

�
sq (x) + (1� s) p (x)

p (x)

�
d� (x) = Df (p; sq + (1� s) p)

hence Z 1

0

�Z
X

p (x) f

�
sq (x) + (1� s) p (x)

p (x)

�
d� (x)

�
ds

=

Z 1

0

Df (p; sq + (1� s) p) ds

and the equalities in are proved. �

For s 2 [0; 1] and the convex function f : (0;1) ! R we de�ne the s-weighted
perspective Pf;s : (0;1)� (0;1)! R by

(2.2) Pf;s (u; v) := uf
�
sv + (1� s)u

u

�
:

We have the following lemma that is of interest in itself as well:

Lemma 2. Assume that the function f : (0;1)! R is convex, then for all s 2 [0; 1]
the s-weighted perspective Pf;s is also convex as a function of two variables.
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Proof. Let (u; v) ; (w; z) 2 (0;1)� (0;1) and �; � � 0 with �+ � = 1: Then
Pf;s (� (u; v) + � (w; z))
= Pf;s (�u+ �w; �v + �z)

= (�u+ �w) f

�
s (�v + �z) + (1� s) (�u+ �w)

�u+ �w

�
= (�u+ �w) f

�
� (sv + (1� s)u) + � (sz + (1� s)w)

�u+ �w

�
= (�u+ �w) f

 
�u sv+(1�s)uu + �w sz+(1�s)w

w

�u+ �w

!
� (�u+ �w)

�
�

�u

�u+ �w
f

�
sv + (1� s)u

u

�
+

�w

�u+ �w
f

�
sz + (1� s)w

w

��
= �uf

�
sv + (1� s)u

u

�
+ �wf

�
sz + (1� s)w

w

�
= �Pf;s (u; v) + �Pf;s (w; z) ;

which proves the joint convexity of the perspective Pf;s: �

Remark 1. If we use the perspective concept, then by (2.1) we also have

(2.3) Df
HH (p; q) =

Z 1

0

�Z
X

Pf;s (p (x) ; q (x)) d� (x)
�
ds:

The following joint convexity of the HH f -divergence holds:

Theorem 2. Assume that the function f : (0;1) ! R is convex and normalised,
then Df

HH is convex as a mapping of two variables on 
� 
:

Proof. Let (p1; q1) ; (p2; q2) 2 
 and and �; � � 0 with � + � = 1: Then by the
representation (2.3) and Lemma 2 we have

Df
HH (� (p1; q1) + � (p2; q2))

= Df
HH (�p1 + �p2; �q1 + �q2)

=

Z 1

0

�Z
X

Pf;s (�p1 (x) + �p2 (x) ; �q1 (x) + �q2 (x)) d� (x)
�
ds

=

Z 1

0

�Z
X

Pf;s (� (p1 (x) ; q1 (x)) + � (p2 (x) ; q2 (x))) d� (x)
�
ds

�
Z 1

0

�Z
X

[�Pf;s (p1 (x) ; q1 (x)) + �Pf;s (p2 (x) ; q2 (x))] d� (x)
�
ds

= �

Z 1

0

�Z
X

Pf;s (p1 (x) ; q1 (x)) d� (x)
�
ds

+ �

Z 1

0

�Z
X

Pf;s (p2 (x) ; q2 (x)) d� (x)
�
ds

= �Df
HH (p1; q1) + �D

f
HH (p2; q2) ;

which proves the desired convexity. �
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3. Bounds in Terms of �2-Divergence

The above de�nitions Df (p; q) and D
f
HH (p; q) can be extended to continuous

functions f de�ned on (0;1) ; however, in this general case, the positivity properties
of the divergences under consideration do not hold in general.
We have:

Theorem 3. Assume that the function f : (0;1) ! R is twice di¤erentiable and
normalised. Let 0 < r � 1 � R <1 and p; q 2 
 are such that

(3.1) r � q (x)

p (x)
� R for �-almost every x 2 X:

(i) If there exists a real number m such that

(3.2) m � f 00 (t) for all t 2 [r;R] ;

then we have the inequality

(3.3) 0 � Df
�
p;
p+ q

2

�
� 1
8
mD�2 (p; q) � Df

HH (p; q)�
1

6
mD�2 (p; q) :

(ii) If there exists the real number M such that

(3.4) f 00 (t) �M for all t 2 [r;R] ;

then we have the inequality

(3.5) 0 � 1

8
MD�2 (p; q)�Df

�
p;
p+ q

2

�
� 1

6
MD�2 (p; q)�Df

HH (p; q) :

Proof. (i) Consider the auxiliary function gm : [r;R] ! R, gm (t) := f (t) �
1
2m
�
`2 (t)� 1

�
; where ` (t) = t is the identity function. This function is convex

and normalized on [r;R] ; since gm is twice di¤erentiable and

g00m (t) := f
00 (t)�m � 0 for all t 2 [r;R] :

We have for p; q 2 
 that

Dgm
HH (p; q)

= Df
HH (p; q)�

1

2
mD`2�1

HH (p; q)

= Df
HH (p; q)�

1

2
m

Z
X

p (x)

 Z 1

0

"�
sq (x) + (1� s) p (x)

p (x)

�2
� 1
#
ds

!
d� (x)

= Df
HH (p; q)�

1

2
m

Z
X

p (x)

 Z 1

0

�
sq (x) + (1� s) p (x)

p (x)

�2
ds

!
d� (x)

+
1

2
m

Z
X

p (x) d� (x)

= Df
HH (p; q)�

1

2
m

Z
X

p (x)

 Z 1

0

�
sq (x) + (1� s) p (x)

p (x)

�2
ds

!
d� (x) +

1

2
m:
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Observe thatZ 1

0

�
sq (x) + (1� s) p (x)

p (x)

�2
ds

=

Z 1

0

"
s2
�
q (x)

p (x)

�2
+ 2s (1� s) q (x)

p (x)
+ (1� s)2

#
ds

=
1

3

�
q (x)

p (x)

�2
+
1

3

q (x)

p (x)
+
1

3
=
1

3

"�
q (x)

p (x)

�2
+
q (x)

p (x)
+ 1

#

and Z
X

p (x)

 Z 1

0

�
sq (x) + (1� s) p (x)

p (x)

�2
ds

!
d� (x)

=
1

3

Z
X

p (x)

 �
q (x)

p (x)

�2
+
q (x)

p (x)
+ 1

!
d� (x)

=
1

3

"Z
X

p (x)

�
q (x)

p (x)

�2
d� (x) +

Z
X

p (x)
q (x)

p (x)
d� (x) +

Z
X

p (x) d� (x)

#

=
1

3

�Z
X

q2 (x)

p (x)
d� (x) +

Z
X

q (x) d� (x) +

Z
X

p (x) d� (x)

�
=
1

3

�Z
X

q2 (x)

p (x)
d� (x) + 1 + 1

�
=
1

3

�
D�2 (p; q) + 3

�
=
1

3
D�2 (p; q) + 1:

Therefore

Dgm
HH (p; q) = D

f
HH (p; q)�

1

2
m

�
1

3
D�2 (p; q) + 1

�
+
1

2
m

= Df
HH (p; q)�

1

6
mD�2 (p; q) :

We also have

Dgm

�
p;
p+ q

2

�
= Df

�
p;
p+ q

2

�
� 1
2
mD`2�1

�
p;
p+ q

2

�
= Df

�
p;
p+ q

2

�
� 1
2
mD�2

�
p;
p+ q

2

�
:

Now,

D�2

�
p;
p+ q

2

�
=

Z
X

p (x)

24 p(x)+q(x)
2

p (x)

!2
� 1

35 d� (x)
=

Z
X

p (x)

"�
p (x) + q (x)

2p (x)

�2
� 1
#
d� (x)
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=

Z
X

p (x)

"
1

4

�
q (x)

p (x)
+ 1

�2
� 1
#
d� (x)

=

Z
X

p (x)

"
1

4

 �
q (x)

p (x)

�2
+ 2

q (x)

p (x)
+ 1

!
� 1
#
d� (x)

=
1

4

Z
X

p (x)

 �
q (x)

p (x)

�2
+ 2

q (x)

p (x)
+ 1

!
d� (x)� 1

=
1

4

�Z
X

q2 (x)

p (x)
d� (x) + 2

Z
X

p (x)
q (x)

p (x)
d� (x) +

Z
X

p (x) d� (x)

�
� 1

=
1

4
D�2 (p; q) + 1� 1 =

1

4
D�2 (p; q) ;

therefore

Dgm

�
p;
p+ q

2

�
= Df

�
p;
p+ q

2

�
� 1
2
mD`2�1

�
p;
p+ q

2

�
= Df

�
p;
p+ q

2

�
� 1
8
mD�2 (p; q) :

If we use the �rst inequality in (1.13) for gm we have

0 � Dgm
�
p;
p+ q

2

�
� Dgm

HH (p; q) ;

which by above calculations gives

0 � Df
�
p;
p+ q

2

�
� 1
8
mD�2 (p; q) � Df

HH (p; q)�
1

6
mD�2 (p; q) :

This proves (3.3).
(ii) Consider the auxiliary function gM : [r;R]! R, gM (t) := 1

2M
�
`2 (t)� 1

�
�

f (t) ; where ` (t) = t is the identity function. This function is convex and normalized
on [r;R] ; since gM is twice di¤erentiable and

g00M (t) =M � f 00 (t) � 0 for all t 2 [r;R] :
Now, by using a similar argument to the one for the auxiliary function gm we deduce
the desired result (3.5). �

Corollary 1. With the assumptions of Theorem 3 and if

(3.6) 0 < m � f 00 (t) �M <1 for all t 2 [r;R] ;
then we have

(3.7)
1

8
mD�2 (p; q) � Df

�
p;
p+ q

2

�
� 1

8
MD�2 (p; q) ;

(3.8)
1

6
mD�2 (p; q) � Df

HH (p; q) �
1

6
MD�2 (p; q)

and

(3.9)
1

24
mD�2 (p; q) � Df

HH (p; q)�Df
�
p;
p+ q

2

�
� 1

24
MD�2 (p; q) :

We also have:
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Theorem 4. Assume that the function f : (0;1) ! R is twice di¤erentiable and
normalised. Let 0 < r � 1 � R <1 and p; q 2 
 are such that the condition (3.1)
is valid.

(i) If there exists a real number m such that the assumption (3.2) holds, then
we have the inequality

(3.10) 0 � Df
HH (p; q)�

1

6
mD�2 (p; q) �

1

2
Df (p; q)�

1

4
mD�2 (p; q) :

(ii) If there exists the real number M such that the assumption (3.4) holds, then
we have the inequality

(3.11) 0 � 1

6
MD�2 (p; q)�Df

HH (p; q) �
1

2
MD�2 (p; q)�Df (p; q) :

Proof. (i) Consider the auxiliary function gm : [r;R] ! R, gm (t) := f (t) �
1
2m
�
`2 (t)� 1

�
; where ` (t) = t is the identity function. This function is convex

and normalized on [r;R] :
We have

Dgm
HH (p; q) = D

f
HH (p; q)�

1

6
mD�2 (p; q)

and

Dgm (p; q) :=

Z
X

p (x) gm

�
q (x)

p (x)

�
d� (x)

=

Z
X

p (x)

�
f

�
q (x)

p (x)

�
� 1
2
m

�
`2
�
q (x)

p (x)

�
� 1
��
d� (x)

= Df (p; q)�
1

2
mD�2 (p; q) :

If we use the second inequality in (1.13) we have

0 � Dgm
HH (p; q) �

1

2
Dgm (p; q) ;

namely

0 � Df
HH (p; q)�

1

6
mD�2 (p; q) �

1

2

�
Df (p; q)�

1

2
mD�2 (p; q)

�
=
1

2
Df (p; q)�

1

4
mD�2 (p; q) ;

which proves (3.10).
(ii) Follows in a similar way for the auxiliary function gM : [r;R]! R, gM (t) :=

1
2M

�
`2 (t)� 1

�
� f (t) : �

Corollary 2. With the assumptions of Theorem 3 and if the condition (3.6) holds,
then we have

(3.12)
1

2
mD�2 (p; q) � Df (p; q) �

1

2
MD�2 (p; q) (see also [4])

and

(3.13)
1

12
mD�2 (p; q) �

1

2
Df (p; q)�Df

HH (p; q) �
1

12
MD�2 (p; q) :



10 S. S. DRAGOMIR

Further, we observe that by using the de�nitions of the auxiliary mappings gm (t)
and gM (t) we have

gym (t) = (t� 1)
�
f (t)� 1

2
m
�
t2 � 1

��0
= fy (t)�mt (t� 1)

and

gyM (t) =Mt (t� 1)� f
y (t) :

This give

Dgym (p; q) = Dfy (p; q)�m
Z
X

p (x)
q (x)

p (x)

�
q (x)

p (x)
� 1
�
d� (x)(3.14)

= Dfy (p; q)�mD�2 (p; q)

and

(3.15) DgyM
(p; q) =MD�2 (p; q)�Dfy (p; q) :

Theorem 5. Assume that the function f : (0;1) ! R is twice di¤erentiable and
normalised. Let 0 < r � 1 � R <1 and p; q 2 
 are such that the condition (3.1)
is valid.

(i) If there exists a real number m such that the assumption (3.2) holds, then
we have the inequality

0 � Df
HH (p; q)�Df

�
p;
p+ q

2

�
� 1

24
mD�2 (p; q)(3.16)

� 1

8

�
Dfy (p; q)�mD�2 (p; q)

�
and

0 � 1

2
Df (p; q)�Df

HH (p; q)�
1

12
mD�2 (p; q)(3.17)

� 1

8

�
Dfy (p; q)�mD�2 (p; q)

�
:

(ii) If there exists the real number M such that the assumption (3.4) holds, then
we have the inequality

0 � 1

24
MD�2 (p; q)�Df

HH (p; q) +Df

�
p;
p+ q

2

�
(3.18)

� 1

8

�
MD�2 (p; q)�Dfy (p; q)

�
and

0 � 1

12
MD�2 (p; q)�

1

2
Df (p; q) +D

f
HH (p; q)(3.19)

� 1

8

�
MD�2 (p; q)�Dfy (p; q)

�
:

Proof. (i) If we use the inequality (1.16) for gm; then we have

0 � Dgm
HH (p; q)�Dgm

�
p;
p+ q

2

�
� 1

8
Dgym (p; q) ;
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namely

0 � Df
HH (p; q)�

1

6
mD�2 (p; q)�Df

�
p;
p+ q

2

�
+
1

8
mD�2 (p; q)

� 1

8

�
Dfy (p; q)�mD�2 (p; q)

�
;

which is equivalent to (3.16).
If we use (1.18) for gm; then we have

0 � 1

2
Dgm (p; q)�D

gm
HH (p; q) �

1

8
Dgym (p; q) ;

namely

0 � 1

2

�
Df (p; q)�

1

2
mD�2 (p; q)

�
�Df

HH (p; q) +
1

6
mD�2 (p; q)

� 1

8

�
Dfy (p; q)�mD�2 (p; q)

�
;

(ii) Follows in a similar way for gM : �

Finally, we have:

Corollary 3. With the assumptions of Theorem 3 and if the condition (3.6) holds,
then we have

1

12
mD�2 (p; q) �

1

8
Dfy (p; q)�Df

HH (p; q) +Df

�
p;
p+ q

2

�
(3.20)

� 1

12
MD�2 (p; q)

and

(3.21)
1

24
mD�2 (p; q) �

1

8
Dfy (p; q) +D

f
HH (p; q)�

1

2
Df (p; q) �

1

24
MD�2 (p; q) :

4. An Example

We consider the convex and normalized function f : (0;1) ! R; f (t) = � ln t:
We have

Df (p; q) := DKL (p; q)

and

Df

�
p;
p+ q

2

�
= DLW (p; q)

for all p; q 2 
:
We de�ne the identric mean of two positive numbers a; b > 0

I (a; b) :=

8><>:
1
e

�
bb

aa

�1=(b�a)
if b 6= a;

a if b = a:

We observe that

1

b� a

Z b

a

ln tdt =
b ln b� b� b ln b+ a

b� a = ln I (a; b) :
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Therefore

Df
HH (p; q) = �

Z
X

p (x)

R q(x)
p(x)

1 ln tdt
q(x)
p(x) � 1

d� (x) = �
Z
X

p (x) ln

�
I

�
q (x)

p (x)
; 1

��
d� (x)

=

Z
X

p (x) ln

�
I

�
q (x)

p (x)
; 1

���1
d� (x) =: DKL

HH (p; q) ;

where we call DKL
HH (p; q) the Kullback-Leibler HH divergence.

If 0 < r < 1 < R <1 then for f (t) = � ln t;

inf
t2[r;R]

f 00 (t) = inf
t2[r;R]

1

t2
=

1

R2
; sup
t2[r;R]

f 00 (t) = sup
t2[r;R]

1

t2
=
1

r2
:

If p; q 2 
 satisfy the condition (3.1), then by using (3.7)-(3.9) for m = 1
R2 and

M = 1
r2 we get

(4.1)
1

8R2
D�2 (p; q) � DLW (p; q) � 1

8r2
D�2 (p; q) ;

(4.2)
1

6R2
D�2 (p; q) � DKL

HH (p; q) �
1

6r2
D�2 (p; q)

and

(4.3)
1

24R2
D�2 (p; q) � DKL

HH (p; q)�DLW (p; q) � 1

24r2
D�2 (p; q) :

By (3.13), we also have

(4.4)
1

12R2
D�2 (p; q) �

1

2
DKL (p; q)�DKL

HH (p; q) �
1

12r2
D�2 (p; q) :

Now, if f (t) = � ln t; then

fy (t) := �
�
t� 1
t

�
=
1

t
� 1

and

Dfy (p; q) =

Z
X

p (x)

�
p (x)

q (x)
� 1
�
d� (x) =

Z
X

�
p2 (x)

q (x)
� p (x)

�
d� (x)

=

Z
X

p2 (x)

q (x)
d� (x)� 1 = D�2 (q; p)

for all p; q 2 
.
Finally, by the (3.20) and (3.21) we also have

1

12R2
D�2 (p; q) �

1

8
D�2 (q; p)�DKL

HH (p; q) +DLW (p; q)(4.5)

� 1

12r2
D�2 (p; q)

and
1

24R2
D�2 (p; q) �

1

8
D�2 (q; p) +D

KL
HH (p; q)�

1

2
DKL (p; q)(4.6)

� 1

24r2
D�2 (p; q) ;

provided p; q 2 
 satisfy the condition (3.1).
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